n n ... = + : : : : : : : [ ]
|
|
|
- Marina Villalba Maestre
- hace 7 años
- Vistas:
Transcripción
1 Considérs l siguin sisma d cuacions difrncials linals d rimr ordn d coficins consans, n dond las incógnias son las funcions x x ( ), x x ( ),, x ( ) n xn / d a x ( ) a x ( ) a x ( ) f ( ) n n / d a x ( ) a x ( ) a x ( ) f ( ) n n / d a x ( ) a x ( ) a x ( ) f ( ) n n n n n Uilizando vcors y marics s ud scribir d la siguin forma Una noación abrviada s / d a a a n x ( ) f( ) / d a a a x( ) f( ) / d a a a x ( ) f ( ) n n n n n n ( ) A ( ) F( ) Para rsolvr l sisma s imiará l rocdimino ralizado ara rsolvr una cuación difrncial d rimr ordn d coficins consans no omogéna or variación d arámros, s dcir, rsolvr una cuación d la forma a x( ) f ( ) d Rcordmos qu n l rocdimino d or variación d arámros ara rsolvr la cuación a x( ) f ( ), rimro s rsulv la cuación omogéna a x( ) 0 d d a x 0 a x a d a d ln( x) a c x( ) C d d x x Así, x( ) C a x ( ) s la solución d la cuación omogéna a Aora, ara consruir una solución aricular x ( ) or s méodo, s cambia l arámro C a d x ( ) C a or la variabl u( ), qudando qu x ( ) u( ) - -
2 a a a Si x ( ) u( ) x ( ) u ( ) a u( ) Susiuyndo x ( ) y ( ) x n s obin a a a u ( ) a u( ) a u( ) f ( ) a a a u ( ) f ( ) u ( ) f ( ) u( ) f ( ) d a a Así, x ( ) f ( ) d Por ano, la solución d la cuación a x( ) f ( ) d s ( ) a a ( ) a x C f d a Si llamamos φ ( ), noncs la solución s scrib x( ) C φ ( ) φ( ) f ( ) φ ( ) d Aora, Cómo imiar s rocdimino ara rsolvr ( ) A ( ) F( )? Primro s alla la solución dl sisma omogéno asociado k Suóngas qu ( ) K k n ( ) K y ( ) K ( ) A ( ) Cómo? s la solución d ( ) [ A ] ( ) [ ] s susiuyn n [ ] K [ A ] K [ 3 ] La xrsión [ 3 ] simlificada s K [ A ] K [ A ] K K 0 ([ A ] I) K 0 La solución rivial dl sisma omogéno ([ A ] ) I K 0 s k 0 K 0 k 0 Rcordmos qu l sisma ([ A ] I) K 0 in solución rivial si ([ ] ) in solucions no rivials si d ([ A ] I) 0 La xrsión ([ ] ) d A I 0, y d A I 0 conduc a la cuación olinómica P( ) 0, llamada cuación caracrísica, la cual ud nr raícs rals difrns, rals iguals o comljas Cada raíz d ( ) 0 A I P s un valor roio d la mariz ([ ] ) - -
3 Al rmlazar l valor roio n l sisma omogéno ([ A ] ) I K 0, s obin como solución un vcor roio K, l cual s un vcor d consans Así, una solución dl sisma ( ) A ( ) s ( ) K Si las raícs d P( ) 0 son númros rals difrns,, 3,, n, s obinn n vcors roios difrns K, K, K,, K 3 n Enoncs, la solución gnral dl sisma omogéno n ( ) A ( ) s ()c K c K c K n n Si l olinomio P( ) in coficins rals y las raícs d P( ) 0 son comljas, y cada una aarcrá con su conjugado, s dcir, si z α β i s una raíz, z α β i ambién lo srá Suóngas l caso n qu A s una mariz d amaño x, las raícs son α β i α β i, los vcors roios son comljos K y K, noncs las solucions dl sisma son ( ) ( ) K αβi y ( ) ( ) K αβi Uilizando la fórmula d Eulr Cos ( ) isn( ) α α ( ) K [ Cos( β ) i Sn( β ) ] y ( ) K [ Cos( ) i Sn( ) ] α ( ) [ B Cos( β ) B Sn( β) ] roducos s obinn a las solucions rals α ( ) [ B Cos( β) B Sn( β) ] B i ( KK) y B ( K K) θ θ θ las solucions s udn xrsar como β β Al ralizar los Finalmn la solución s ()c c y, n dond Si la cuación P( ) 0 in m raícs o valors roios qu s rin, rsularán m vcors roios linalmn indndins K, K,, K m als qu A I K 0 [ ] [ ] [ ] [ ] A I K K A I K K 3 A I K K 4 3 A I K K m m- Con sos vcors roios, s consruy la solución d la forma ( ) ck c K K c3 K K K3!!! c K K K K 3!!!
4 En cualquira d los rs casos, la solución d maricial ( ) φ( ) C ( ), dond fundamnal d solucions c C c n ( ) A ( ) s ud scribir n la forma s un vcor d consans y φ( ) s una mariz Siguindo con l rocdimino d variación d arámros, aora s buscará la solución c u ( ) aricular ( ) cambiando n ( ) φ( ) C l vcor C or l U ( ), c n u ( ) n obniéndos ( ) ( ) U ( ) 4 φ Hallamos ( ) ( ) U ( ) ( ) U ( ) φ φ [ 5 ] S susiuyn [ 4 ] y [ 5 ] n ( ) [ A ] ( ) F( ), y s obin φ ( ) U ( ) φ( ) U ( ) [ A ]( φ( ) U ( ) ) F( ) [ 6 ] Como ( ) ( ) C φ s solución ( ) [ A ] ( ) ( ) φ ( ) C n ( ) [ A ] ( ) s obin φ ( ) C [ A ] φ( ) C, quivaln a φ ( ) [ A ] φ ( ) [ 7 ] S susiuy [ 7 ] n [ 6 ] y s obin ( ) A φ( ) U ( ) φ( ) U ( ) A φ( ) U ( ) F( ) φ( ) U ( ) F( ) U ( ) φ ( ) F( ) U ( ) φ ( ) F( ) d, noncs al susiuir ( ) φ( ) C y [ 8 ] Rmlazando [ 8 ] n [ 4 ] s in qu ( ) ( ) ( ) ( ) φ φ F d Finalmn, la solución dl sisma d cuacions no omogéno ( ) ( ) ( ) ( ) φ( ) C φ( ) φ ( ) F( ) d ( ) A ( ) F( ) s Como s ud arciar, la solución dl sisma d cuacions linals d rimr ordn d coficins consans y no omogéno, s similar a la solución d la cuación linal d rimr ordn d coficins consans y no omogéna VS x( ) C φ ( ) φ( ) f ( ) φ ( ) d ( ) φ( ) C φ( ) φ ( ) F( ) d - 4 -
5 Considérs l sisma x ( ) 3 x( ) 3 y ( ) 4 y( ) x ( ) 3 x( ) Primro s rsulv l sisma omogéno y ( ) 4 y( ) 3 La cuación caracrísica s d ( )( 5) 0 4 Los valors roios son y 5 Si, noncs 3 ( ) 0 0 K 4 ( ) 0 0 Si 5, noncs 3 ( 5) 0 0 K 4 ( 5) 0 0 Las solucions son ( ) y ( ) 5 La mariz fundamnal d solucions s 5 φ ( ) 5 La invrsa d la mariz φ ( ) s Enoncs 3 3 φ ( ) ( ) φ( ) φ ( ) F( ) d d Así, la solución dl sisma s ( ) φ( ) C φ( ) φ ( ) F( ) d ( ) c c
6 Rsolvr los siguins sismas d cuacions difrncials 0) x ( ) 5 x( ) Csc( ) y ( ) y( ) Sc( ) 0) x ( ) 3 x( ) y ( ) 3 y( ) 3 03) x ( ) 0 x( ) y ( ) 0 y( ) 3 z ( ) z( ) 04) x ( ) x( ) 0 8 y ( ) 4 y( ) 0 z ( ) 0 3 z( ) ) x ( ) x( ) 3 y ( ) 3 4 y( ) z ( ) 5 6 z( ) 06) Laboraorio Sabmos qu ara rsolvr la cuación x ( ) a x ( ) b x( ) f ( ), nconramos la solución d la cuación omogéna asociada x ( ) a x ( ) b x( ) 0 y lugo or variación d arámros allamos la solución aricular Suóngas qu la solución d x ( ) a x ( ) b x( ) 0 s x ( ) c ( ) ( ) x c x, noncs ara allar la solución aricular or variación d arámros, cambiamos los arámros c y c or funcions u() y u( ) als x ( ) u ( ) ( ) ( ) ( ) x u x saisfaga a la cuación x ( ) a x ( ) b x( ) f ( ) Si W ( ) s l wronskiano d las funcions x( ) y x( ), noncs x( ) f ( ) x ( ) f ( ) u( ) d y u( ) W ( ) d W ( ) x( ) f ( ) x ( ) f ( ) Por lo ano, x ( ) x ( ) d x( ) d W ( ) W ( ) x( ) f ( ) x ( ) f ( ) cuación s x( ) c x( ) c x( ) x( ) d x( ) d W ( ) W ( ), y la solución gnral d la S odría imiar s rocdimino ara rsolvr l sisma d cuacions difrncials d sgundo - 6 -
Sistemas de Ecuaciones Diferenciales
ismas d Ecuacions Difrncials Un sisma d dos cuacions difrncials d primr ordn s pud rprsnar n forma gnral como g g, x,, x, Dond x, son las variabls dpndins s la variabl indpndin dl sisma. i cada una d las
Reacciones Reversibles. Reacciones Paralelas o Competitivas. Reacciones Consecutivas. Reacciones en Cadena Ramificada. Explosiones
Raccions Rrsibls Raccions Parallas o Compiias Raccions Conscuias Raccions n Cadna Ramificada. Explosions Mcanismos d Racción Raccions Rrsibls Para la racción A _ B dond ano la racción dirca como la inrsa
Se plantea para el sistema térmico un circuito eléctrico equivalente en donde Tc es la temperatura del calefactor y Th es la temperatura del líquido.
La figura musra n forma squmáica un sisma d calnamino d líquidos conocido como pava lécrica. Un rsisor d masa dsprciabl calfacciona una placa málica cuya capacidad érmica la suponmos concnrada n C1 y su
ECUACIONES DIFERENCIALES ORDINARIAS (EDOS)
EUAIONES DIFERENIALES ORDINARIAS EDOS.- Introducción onsidrmos los siguints roblmas. Problma uáls srán las curvas qu vrifican qu la ndint n cada uno d sus untos s igual al dobl d la suma d las coordnadas
Análisis de Fourier en TC. Teorema de Fourier Serie de Fourier Transformada de Fourier Fórmulas de análisis y síntesis Respuesta en f de sistemas LTI
Análisis d Fourir n C orma d Fourir Sri d Fourir ransformada d Fourir Fórmulas d análisis y sínsis Rspusa n f d sismas LI Modología Dominio d Frcuncia -Sñals lmnals a parir d las cuals s pud consruir por
CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden
APITULO 5. EUAIONES DIFERENIALES DE ORDEN N 5.. Introducción Una cuación difrncial d sgundo ordn s una prsión matmática n la qu s rlaciona una función con sus drivadas primra sgunda. Es dcir, una prsión
MATEMÁTICAS FINANCIERAS
MATEMÁTICAS FINANCIERAS TEMA: INTERÉS COMPUESTO CONTINUO. Inrés Compuso Coninuo 2. Mono Compuso a Capialización Coninua 3. Equivalncia nr Tasas d Inrés Compuso Discro y Coninuo 4. Equivalncia nr Tasa d
Unidad 11 Derivadas 4
Unidad 11 rivadas SOLUCIONES 1. La solución n cada caso s:. Las drivadas son: f ( ) f () a) [ f () f () lím f (6 ) f (6) 9 b) f (6) lím lím 5 f (0 ) f (0) c) [ f (0) f (0) lím. En cada caso: a) f() no
INTEGRALES INDEFINIDAS
Ingrals Indfinidas@JEMP INTEGRALES INDEFINIDAS MÉTODOS DE INTEGRACIÓN. Ingración inmdiaa.- Tnindo n cuna qu l procso d ingración s l invrso d la drivación, podmos scribir fácilmn las ingrals indfinidas
EJERCICIOS DE INTEGRALES EULERIANAS PROPUESTOS EN EXÁMENES. x y = 1. π 2 3. sen x cos xdx (Septiembre Ex. Or.)
TUTORÍA DE MATEMÁTICAS III (º A.D.E.) -mail: [email protected] hp://lfonica.n/wb/imm EJERCICIOS DE INTEGRALES EULERIANAS PROPUESTOS EN EXÁMENES.- Razon y obnga qu la ingral ulriana (p) (gamma d p) para p
La integral Indefinida MOISES VILLENA MUÑOZ
. DEFINIIÓN. TÉNIAS DE INTEGRAIÓN.. FORMULAS.. PROPIEDADES.. INTEGRAIÓN DIRETA.. INTEGRAIÓN POR SUSTITUIÓN.. INTEGRAIÓN POR PARTES..6 INTEGRALES DE FUNIONES TRIGONOMÉTRIAS..7 INTEGRAIÓN POR SUSTITUIÓN
1.1 Introducción 1.2 Ecuaciones Lineales 1.3 Ecuaciones de Bernoulli 1.4 Ecuaciones separables 1.5 Ecuaciones Homogéneas 1.6 Ecuaciones exactas
ap. Ecuacions Difrncials d Primr ordn. Inroducción. Ecuacions Linals. Ecuacions d Brnoulli. Ecuacions sparabls.5 Ecuacions Homogénas.6 Ecuacions acas.7 Facor Ingran.8 Esabilidad dinámica dl quilibrio.9
TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE.
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Ingniría Indusrial (GITI/GITI+ADE) Ingniría d Tlcomunicación (GITT/GITT+ADE) CÁLCULO Curso -6 TEMA : CÁLCULO INTEGRAL
MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL
El méodo dirco d la rigidz. Méodo maricial MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL 1. SISTEMAS DE REERENCIA La sismaización dl méodo cuyos fundamnos s han prsnado anriormn rquir dl paso d unas caracrísicas
SOLUCIONES DE LAS ACTIVIDADES Págs. 65 a 83
TEMA. ECUACIONES SOLUCIONES DE LAS ACTIVIDADES Págs. 6 a 8 Página 6. a) mcm (, ) ( ) + ( ) + 7 + / mcm (6, 0) 0 ( + ) ( ) 0 + 8 0 / c) mcm (7, ) 8 ( ) 7 ( + ) 8 (9 ) 8 97 / 9 d) mcm (8, ) 8 6 (0 ) 8 Página
Soluciones del capítulo 11 Teoría de control
Solucions dl capíulo Toría d conrol Hécor Lomlí y Bariz Rumbos d marzo d a x = y u = S raa d un máximo b x = + y u = S raa d un mínimo c x = 5 + y u = 5 S raa d un mínimo d x = 4 + y u = + S raa d un máximo
3. Ecuaciones diferenciales de orden superior. ( Chema Madoz, VEGAP, Madrid 2009)
. Ecuacions difrncials d ordn suprior Chma Madoz, VEGAP, Madrid 009 Ecuacions linals: toría básica Un problma d valor inicial d n-ésimo ordn consist n rsolvr la EDO linal: a n n d d d a a a0 g n n n d
Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx
Prubs d ccso Ensñns Univrsiris Oficils d Grdo. chillro. O. E. Mri: MTEMÁTCS nsruccions: El luno dbrá consr un d ls dos opcions propuss o. os jrcicios dbn rdcrs con clridd, dlldn ronndo ls rspuss. Puds
Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos
. Considr los siguints númros compljos: ) z = 3 i 2) z 2 = 2 3 i 3) z 3 = + 3 i ) z = i π Matmáticas Avanzadas para Ingniría Funcions rals xtndidas al Plano Compljo, problmas rsultos Dtrmin la part ral
I, al tener una ecuación. diferencial de segundo orden de la forma (1)
.6. Rducción d ordn d una cuación difrncial linal d ordn dos a una d primr ordn, construcción d una sgunda solución a partir d otra a conocida 9.6. Rducción d ordn d una cuación difrncial linal d ordn
INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades.
INTEGRALES 5. Primitiva d una unción. Intgral indinida. Propidads. 5. Intgración d uncions racionals. 5. Intgración por parts. 5. Intgración por cambio d variabls. 5. Primitiva d una unción. Intgral indinida.
GUIA DE ACTIVIDADES Y TRABAJO PRACTICO Nº 20
GUIA DE TRABAJO PRACTICO º PAGIA º OBJETIVOS: GUIA DE ACTIVIDADES Y TRABAJO PRACTICO º Lograr qu l Alumno: Distinga tipos d cuacions difrncials ordinarias Rsulva Ecuacions difrncials ordinarias Rsulva
5.4 ANÁLISIS CUALITATIVO PARA LA ESTABILIDAD DINÁMICA. DIAGRAMA DE FASE DE DOS VARIABLES.
Moisés Villna Muñoz ap. Sismas d Ecuacions Dincials n Dincias... INTRODUIÓN.. EUIONES DIFERENILES SIMULTÁNES.. EUIONES EN DIFERENIS SIMULTÁNES.. NÁLISIS ULITTIVO PR L ESTILIDD DINÁMI. DIGRM DE FSE DE DOS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 9 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción
UNA INVITACIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES ORDINARIAS. Maritza de Franco
UNA INVITACIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES ORDINARIAS. Marita d Franco A Francisco José, Shrl, Marión, Paola, Constanc, Luis Migul Migul. AGRADECIMIENTOS Al Ing. Pdro Rangl por su comprnsión,
Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos
Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la
Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos
Matmáticas II TEMA 8 Drivadas. Torma. Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto. Utilizando la dfinición, calcula la drivada d f ( ) n l punto. +. Utilizando la dfinición, halla
El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )
Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con
Integrales indefinidas. 2Bach.
Intgrals indfinidas. Bach..- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f(), dirmos qu F() s una primitiva suya si F ()f(). Nota: La primitiva
Prof. Jesús Olivar. Resumen de Cálculo II ING. PETRÓLEO
Prof. Jsús Olivar Rsumn d Cálculo II ING. PETRÓLEO.- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f, dirmos qu F s una primitiva suya si F
UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN ELECTRÓNICA Y AUTOMATIZACIÓN
VERSIÓN: FECHA: TITULO DE LA PRACTICA: Slución d cuacins difrncials pr l métd d variación d parámtrs ASIGNATURA: Matmáticas III HOJA: DE: 5 UNIDAD TEMATICA: Ecuacins Difrncials d rdn suprir FECHA DE REALIZACIÓN:
EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL
EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4
LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES
96 LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES JUSTIFICACIÓN: En sta Lcción s cntrará la atnción n l studio d aqullas cuacions difrncials ordinarias d primr ordn
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción
Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.
MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El
PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.
Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f
La ecuación diferencial ordinaria lineal de primer y segundo orden
La uaión ifrnial orinaria linal rimr sguno orn José Graro Dionisio Romro Jiménz Aamia Mamáias l Daramno Ingniría n Comuniaions Elrónia Esula Surior Ingniría Mánia Eléria IPN Méxio Rsumn. En s rabajo s
APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS
APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS 0 Considérs un anqu qu in un volumn inicial V 0 d solución (una mzcla d soluo y solvn). Hay un flujo ano d
Introducción a la integración de funciones compuestas INTREGRACION POR SUSTITUCION
Inroducción a la ingración d funcions compusas INTREGRACION POR SUSTITUCION Cuando s raa d funcions compusas, s aplica un méodo qu s llama ingración por susiución, s méodo srá nndido sin dificulad n la
1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x)
IES Padr Povda (Guadi) UNIDAD : INTEGRAL INDEFINIDA.. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funcions f y F dfinidas n un dominio D, dcimos qu:
1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x)
IES Padr Povda (Guadi) UNIDAD INTEGRAL INDEFINIDA.. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funcions f y F dfinidas n un dominio D, dcimos qu: Ejmplos:
Una onda es una perturbación que se propaga y transporta energía.
Onda Una onda s una prturbación qu s propaga y transporta nrgía. La onda qu transmit un látigo llva una nrgía qu s dscarga n su punta al golpar. TIPOS DE ONDAS Si las partículas dl mdio n l qu s propaga
( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto)
ARAGÓN / JUNIO. LOGSE / MATEMÁTICAS II / ANÁLISIS / OPCIÓN A / CUESTIÓN A www.profs.nt s un srvicio gratuito d Edicions SM CUESTIÓN A Calcular l ára ncrrada ntr la gráfica d la función ponncial f ) ( y
TEMA 1 INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN
Cód. 80607 TEMA INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN. INTEGRAL INDEFINIDA Dfinición: S dic qu una función F() s una primiiva d la función f() si y sólo si F () = f() Ejmplo: F () = y F ()= son primiivas
lm í d x = lm í ln x + x 1 H = lm í x + e x 2
Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg
COMPUTACIÓN. Práctica nº 2
Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros
FUNCIONES EULERIANAS
NOTAS PARA LOS ALUMNOS DEL CURSO DE ANALISIS MATEMATICO III FUNCIONES EULERIANAS Ing. Juan Sacrdoi Dparamno d Ingniría Univrsidad d Bunos Airs V. INDICE.- FUNCIÓN GAMMA: EULERIANA DE SEGUNDA ESPECIE..-
EXAMEN DE MACROECONOMÍA AVANZADA ITINERARIO DE ANÁLISIS ECONÓMICO 9 DE JUNIO DE 2014 Prof: Luis Puch y Jesús Ruiz
EXAMEN DE MACROECONOMÍA AVANZADA ITINERARIO DE ANÁLISIS ECONÓMICO 9 DE JUNIO DE 14 Prof: Luis Puh y Jsús Ruiz El xamn onsa d rs ars. La rimra s un s d 5 rgunas. Cada rguna in sólo una rsusa orra. Una rsusa
CONTROL I ING. QUIRINO JIMENEZ D. CAPITULO IV. ANÁLISIS DE RESPUESTA TRANSITORIA
ONTROL I ING. QUIRINO IMENEZ D. APITULO IV. ANÁLII DE REPUETA TRANITORIA La rspusa n l impo d un sisma d conrol s divid normalmn n dos pars: la rspusa ransioria y la rspusa n sado sabl o régimn prmann.
OPCIÓN A. a) Estudiar si A y B tienen inversa y calcularla cuando sea posible (1 punto)
San Blas, 4, ntrplanta. 983 30 70 54 OPCIÓN A 4 E.- San A = 3 y B = a) Estudiar si A y B tinn invrsa y calcularla cuando sa posibl ( punto) 0 b) Dtrminar X tal qu AX = B I sindo I = 0 (.5 puntos) a) Una
Ejercicios para aprender a integrar Propiedades de las integrales:
Julián Morno Mstr www.juliwb.s Ejrcicios para aprndr a intgrar Propidads d las intgrals: af d = a f d f ± g( ) d = f d ± g( ) d b a b f d = f d = [ F( ) ] a = F( b) F( a) a b Rglas d intgración: ad = a
La ecuación de trasmicion de FRIIS relaciona la potencia recibida a la potencia trasmitida entre dos antenas separadas por una distancia:
.4 ECUACIÓN E TRANSMISIÓN E FRIIS La cuación d rasmicion d FRIIS rlaciona la poncia rcibida a la poncia rasmiida nr dos annas sparadas por una disancia: R dond s la dimnsión más grand d cualquir anna.
SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla.
UNIA : Introducción a las drivadas ACTIVIAES-PÁG. 0. Las solucions aparcn n la tabla. [0, ] [, 6] a) f () = b) f () = + c) f () = 9 d) f () = 7, 6 8, 67. El valor d los límits s: f ( h) f () a) lím 6 h
6. [ARAG] [JUN-A] Sea F(x) = 7. [ARAG] [JUN-B] Calcular
MasMatscom Slctividad CCNN 7 [ANDA] [JUN-A] San f: y g: las funcions dfinidas mdiant: f() = + y g() = + a) Esboza la gráfica d f y d g calculando sus puntos d cort b) Calcula l ára d cada uno d los dos
III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS
III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar
Definición de derivada
Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()
TEMA 5: INTEGRAL INDEFINIDA
MATEMÁTIAS II TEMA : INTEGRAL INDEFINIDA. Primitiva d una función El objtivo d st tma s l studio dl procso contrario al d drivación. Si drivamos la función partimos d f tnmos y dirmos qu s una primitiva
Análisis de Señales. Descripción matemática de señales
Análisis d Sñals Dscripción mamáica d sñals Sñals Las sñals son funcions d variabls indpndins, poradoras d información Sñals lécricas:nsions y corrins n un circuio Sñals acúsicas: audio Sñals d vido: variación
7.6 SEÑOREAJE E HIPERINFLACIÓN
Ecuacions qu componn l modlo: a) Equilibrio n l mrcado d dinro: M P aπ () = +, dond π π. b) Expcaivas adapaivas: c M P d + + c) Crcimino monario: i + b + b b i i= 0 () π π = ( π π ) π = ( ) π. M (3) +
Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES
Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas
