CALCULO DEL MODELO DINAMICO DE UN BRAZO ROBÓTICO DE DOS ARTICULACIONES CONTROLADO POR RED TENDONAL

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CALCULO DEL MODELO DINAMICO DE UN BRAZO ROBÓTICO DE DOS ARTICULACIONES CONTROLADO POR RED TENDONAL"

Transcripción

1 AUO DE ODEO DIAIO DE U BAZO OBÓTIO DE DO ATIUAIOE OTOADO PO ED TEDOA c. Ing. Edardo Alberto irera Dpto. Ingeniería ecánica-u...e-av. as Heras 77-esistencia-haco-Tel ecirera@ing.nne.ed.ar Ing. Verónica iz erio EUE a propesta de este trabajo es obtener el odelo dináico de n brazo robótico de dos articlaciones controlado por na red tendonal, aplicando el étodo de agrange. Dicho étodo plantea el problea en base a térinos de energía. as ecaciones obtenidas servirán de base para realizar el control dináico del robot, cyo análisis escapa a los objetivos de este articlo y qe será tratado en na próia entrega, en la qe se analizará el control dináico, con el so de técnicas de control discontino y sperficies deslizantes. Este trabajo fora parte del Tesis final de la arrera Técnicatra en isteas. PAABA AVE: odelo ateático red tendonal brazo robótico ITODUIÓ Un robot es n aniplador fleible, reprograable y ltifncional, en contraposición a las áqinas atoáticas, las qe están diseñadas para realizar, únicaente na tarea específica. En los robots al igal qe scede con los seres hanos, para ejectar calqier tarea se debe analizar cáles serán los oviientos necesarios y cál será la ferza qe se le aplicará. El odelo dináico precisaente analiza esta sitación y epresa las ferzas o pares reqeridos por los actadores, para lograr el oviiento deseado, en térinos de posiciones, velocidades y aceleraciones a lo largo de la trayectoria y los paráetros del aniplador. Esto peritirá evalar vibraciones, sobrepesos y sobrevoltajes, qe llevarían a oviientos erráti o descoordinados. os pares de torsión qe se reqieren para iplsar el brazo del robot no peden deterinarse solo considerando las ferzas estáticas y dináicas, sino qe tabién deberá tenerse en centa qe cada articlación reacciona a los pares de torsión de las otras articlaciones en el aniplador y los efectos de estas reacciones deberán inclirse en el análisis. eslta difícil proporcionar na solción adecada para las aceleraciones de los enlaces pesto qe las isas dependen de la inercia y esta a s vez de la configración del brazo, la qe está sjeta a cabios debido al oviiento de las articlaciones. Otro factor adicional qe inflye en relación con la inercia, es la asa de la carga útil y s posición con respecto a las articlaciones la qe tabién se odifica con el oviiento de estas. Otro pnto a tener en centa es la velocidad de oviiento del brazo, si esta es relativaente elevada, los efectos centrífgos qe se generen será significativos.

2 ϕ ϕ El odelo plantea na serie de ecaciones, cya resolción nos perite obtener la inforación necesaria, la qe será enviada hasta el robot ediante tarjetas electrónicas insertadas en él. Estos circitos envian la señal de voltaje a la fente de potencia del robot, encargada de convertirla en la potencia adecada qe necesita cada otor para realizar la fnción asignada. onocer esta inforación antes de ensablar el robot perite qe las tarjetas, otores y fentes de potencia tengan n ejor fncionaiento y se desgasten enos. chas veces se cae en el error de diseñar la parte ecánica y pasar por alto la obtención del odelo dináico; cando esto ocrre el robot pede recibir valores inadecados de ferza para over ss articlaciones, lo qe disinye el desepeño del oviiento y se presentan coportaientos indeseados. En canto al sistea de transisión del oviiento del brazo robótico, se considera qe se realizará ediante na red tendonal qe ofrece ventajas en térinos de carga y fleibilidad. onsta de n sistea de poleas y cables qe se tilizan para transitir potencia desde los actadores, sitados en la base del robot, lo qe redce sbstancialente el peso del brazo, y perite colocar ayor carga en el efector final. El cable pede estar constitido por fibras de acero o ateriales sintéti tales coo el nylon. HIPÓTEI IPIFIATIVA: Para el desarrollo del odelo será necesario tener en centa las sigientes a asa eqivalente se encentra concentrada en n pnto, lego podrá corregirse añadiendo nas constantes de inercia (I) El oviiento es plano (el eje W es perpendiclar al plano). DEAOO ATEÁTIO DE ODEO: El étodo de agrange reqiere del calclo las energías inética (T) y Potencial (U). onociendo las coordenadas de las asas y en fnción de los ánglos y derivando respecto del tiepo, obtendreos las velocidades de cada na de ellas. T U AGAGIAO

3 v T i EEGIA IETIA T [ ] sen sen g sen g U EEGIA POTEIA En base a esta ecación se podrán calclar las ferzas de rotación en las articlaciones y a partir de la sigiente epresión: n n n dt d τ Obteniéndose las sigientes ecaciones del odelo τ dt d τ dt d Donde: [ ] g g g sen g

4 d sen sen dt d dt ( sen ) Operando y ordenando se obtiene el odelo del brazo τ τ Donde: τ y τ son los torqes aplicados directaente en las articlaciones ( ) sen g g g ( ) Esqea de poleas y tendones En este tipo de configración, es necesario calclar los torqes qe se aplicarán, en fnción del recorrido, la elasticidad y la etensión de los tendones. Para ello, deberá conocerse de anteano la distribción de los isos, los radios de las poleas, y otros paráetros. Para hacer este análisis, nos basareos en la configración qe se indica en la sigiente figra:

5 ϕ e e h h ϕ e e h h on esta configración la dináica del odelo tendrá la sigiente epresión: [ ] [ ],, [ P ( h h )] [ P e] Donde:, y cantifican los pares qe srgen de las ferzas de inercia, centrífga y oriolis. on la noenclatra indicada en la figra planteaos: Fnciones del recorrido de los tendones o etensión debido a los ecanisos h h h h iendo: i : long noinal de cada tendón cando i ij : radios de las poleas del I-ésio tendón en la j-ésia polea Teniendo en centa qe:

6 Fnciones de la elasticidad de los tendones: i consideraos qe toda la elasticidad se la pede tratar coo n solo eleento elástico, del tipo resorte, cya constante de elasticidad será k i >. e podrá constrir la atriz de rigidez. k k k k Fnciones de la etensión de los tendones debido a los actadores:. e obtiene la atriz de acoplaiento P. e calcla na neva atriz de acoplaiento Q en fnción de la rigidez. T h P k Q P k k k k k egidaente se hallaran las diferencias de etensión debido a los ecanisos para lo cal se deberá plantear la sigiente epresión: ( ) h h h h donde h()son las longitdes de los tendones para na rotación ; y h() son las longitdes noinales de los tendones cando. alclando la atriz de rigidez total se obtiene la sigiente epresión: P ( h( ) h ) ( k ) k k k k k ( k k ) ( k k )

7 Finalente la ecación de la dináica del brazo robótico de dos articlaciones, con tendones elásti qeda de la sigiente anera: [ ( )] [ ],, [ ] [ ] [ Q] [ e] Donde las e i serán las etensiones prodcidas por los actadores, y se las pede asiilar coo señales de control i Operando se obtienen las sigientes ecaciones: ( ) sen [ ] [ ] [ ] [ ] ( k k ) [( ) g g ( )] ( k k ) ( k k ) [ ] [ k ] e [ k ] e [ k ] e [ k ] e [ ] [ ] [ sen ] g ( ) [ ] [ k ] e [ k ] e ( k k ) [ ] [ ( k k )] y sponiendo qe e -e y e -e, debido a qe cada no de los pares de tendones se encentra coandado por n otor [( ) ] [ ] [ sen ] [ ] ( k k ) [( ) g g ( )] ( k k ) ( k k ) [ ] [ k k ] e [ k k] e [ ] [ ] [ sen ] g ( ) [ ] [ k k ] e ( k k ) Asignando variables de estado: [ ] [ ( k k )]

8 i e i de esta anera se obtiene y el odelo qeda conforado en variables de estado (, ) Q Q Q Q (, ) Q Q Operando con estas ecaciones, se llega a las sigientes epresiones: (I) [ Q Q ] [ Q Q ] ( ) ( ), [ Q Q ] ( ), () En estas epresiones () y () se definen: AA BB [ Q Q ] [ Q Q ] ( ) (, ) [ Q Q ] (, ) e despejan las derivadas de y, lego se resta iebro a iebro, llegándose a las sigientes epresiones: [ AA] [ BB] [ AA] [ BB]

9 Finalente el odelo en variables de estado, adopta la sigiente fora: ( ) ( ) [ Q Q ] [ Q Q ] [ Q Q ] [ Q Q ] [ Q Q ] [ Q Q ] i consideraos qe los tendones están constitidos por pares de igal elasticidad, tendreos qe: Tendón Tendón k k k Tendón Tendón k k k Definios entonces: E ( ) E E sen entonces tendreos qe: E A [ ( E )] E B sen ( E ) E

10 E E E sen D [ ] E E E E [ ] E E E sen F E E E G E E sen H E I E E J E E E E E E E E E E E P De esta anera, el odelo qeda:

11 P J J I H G F E D B A J I D B A P J H G F E OUIOE: En este trabajo se presentaron los pasos y se obtvo el odelo dináico de n brazo robótico de dos articlaciones, coandado por na red tendonal. Este odelo es de tilidad a la hora de calclar los controles qe se aplicarán al brazo, así al conocer la trayectoria deseada, las velocidades y aceleraciones sobre dicha trayectoria, es posible calclar las coordenadas de áqina y ss derivadas por edio de transforaciones inversas y deterinar de esa fora los pares actantes reqeridos. in ebargo esto pede consir na cantidad de tiepo considerable, para calclar el oviiento entre dos pntos adyacentes en na trayectoria planeada. El tiepo de copto pede redcirse ediante la siplificación de las ecaciones, por ejeplo ignorando los térinos de segndo orden de oriolis y la reacción centrífga, pero estos odelos aproiados resltan en n rendiiento sbóptio y reqieren qe se restrinjan las velocidades de los brazos. EFEEIA BIBIOGAFIA: ikell P.Groover, itchell Weiss, oger. agel y icholas G. Odrey, obótica Indstrial. Tecnología, Prograación y Aplicaciones, c Graw Hill, 989.

Los datos del sistema están dados en valores por unidad sobre las mismas bases.

Los datos del sistema están dados en valores por unidad sobre las mismas bases. Ejemplo. Malio Rodrígez. Ejemplo, Malio Rodrígez En el sigiente sistema de potencia ocrre n cortocircito trifásico sólido en el pnto, el cal esta bicado exactamente en la mita de la línea -. Los interrptores

Más detalles

Figura 4.1. Representación esquemática del modelo tensión-deformación utilizada en el modelo lineal equivalente

Figura 4.1. Representación esquemática del modelo tensión-deformación utilizada en el modelo lineal equivalente 4. 4.. Introdcción La respesta sísica del selo frente a n oviiento sísico se ha silado tilizando prograas inforáticos qe tilizan varias hipótesis siplificadoras. Unos de los prieros prograas fe SHAKE [7].

Más detalles

DERIVADA DE LA FUNCIÓN EXPONENCIAL DE CUALQUIER BASE Y DE LA FUNCIÓN LOGARÍTMO NATURAL

DERIVADA DE LA FUNCIÓN EXPONENCIAL DE CUALQUIER BASE Y DE LA FUNCIÓN LOGARÍTMO NATURAL DERIVADA DE LA FUNCIÓN EXPONENCIAL DE CUALQUIER BASE Y DE LA FUNCIÓN LOGARÍTMO NATURAL Sgerencias para qien imparte el crso: Se deberá concebir a la Matemática como na actividad social y cltral, en la

Más detalles

SOLUCIONES PROBLEMAS FÍSICA. TEMA 2: OSCILACIONES Y ONDAS

SOLUCIONES PROBLEMAS FÍSICA. TEMA 2: OSCILACIONES Y ONDAS Facltad de Ciencias Crso 00-0 Grado de Óptica y Optoetría SOLUCIONES PROBLEMAS FÍSICA. TEMA : OSCILACIONES Y ONDAS. Una onda sonora plana y de recencia,00 khz se propaga en n edio gaseoso de densidad,4

Más detalles

3. Sistema Por Unidad Ejemplos

3. Sistema Por Unidad Ejemplos Anexo. istema Por Unidad Ejemplos Ejemplo.1 Dos generadores conectados en paralelo a la misma barra poseen reactancias sbtransitoria de 10%. El generador número no posee na capacidad de 500 KA, y el número

Más detalles

6 La semejanza en el plano

6 La semejanza en el plano TIVIS MPLIIÓN 6 La semejanza en el plano 1. alcla las medidas de los segmentos,, z, t en la sigiente figra, sabiendo qe las medidas de los segmentos conocidos están epresadas en metros. 4 G z t. ibja n

Más detalles

TEMA 7: VECTORES. También un vector queda determinado por su módulo, dirección y sentido. Dado el vector u. = AB, se define: Módulo del vector u

TEMA 7: VECTORES. También un vector queda determinado por su módulo, dirección y sentido. Dado el vector u. = AB, se define: Módulo del vector u DPTO DE MATEMÁTICAS T5: VECTORES - 1 1.- VECTORES EN EL PLANO TEMA 7: VECTORES Hay magnitdes como ferza, desplazamiento, elocidad, qe no qedan completamente definidas por n número. Por ejemplo, no es sficiente

Más detalles

Criterio de la segunda derivada para funciones de dos variables por Sergio Roberto Arzamendi Pérez

Criterio de la segunda derivada para funciones de dos variables por Sergio Roberto Arzamendi Pérez Criterio de la segnda derivada para fnciones de dos variables por Sergio Roberto Arzamendi Pérez Sea la fnción f de dos variables definida por f (, ) contina de primera segnda derivadas continas en s dominio,

Más detalles

Tema 5: Ecuaciones diferenciales de primer orden homogéneas

Tema 5: Ecuaciones diferenciales de primer orden homogéneas Tema 5: Ecaciones diferenciales de primer orden homogéneas 5.1 Primer método de solción En la e.d. homogénea d (1) f (, ) d donde, de acerdo con lo visto en (.), f(t, t) f(, ), se sstite () v s correspondiente

Más detalles

156 Ecuaciones diferenciales

156 Ecuaciones diferenciales 156 Ecuaciones diferenciales 3.6 Mecánica El paracaidiso es uno de los deportes extreos que día a día cuenta con ayor núero de adeptos. Los que practican este deporte se tiran desde un avión en oviiento

Más detalles

3. Campos escalares diferenciables: gradiente.

3. Campos escalares diferenciables: gradiente. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. 3. Campos escalares diferenciables: gradiente. Plano tangente diferenciabilidad. Consideremos na fnción f :(, ) U f(, ) de dos variables n pnto (, interior al conjnto

Más detalles

el blog de mate de aida MI: apuntes de vectores y rectas pág. 1 VECTORES

el blog de mate de aida MI: apuntes de vectores y rectas pág. 1 VECTORES el blog de mate de aida MI: apntes de vectores y rectas pág. VECTORES.- LOS EJES CARTESIANOS Y EL ORIGEN El eje horizontal se llama eje de abscisas y el eje vertical se llama eje de ordenadas. El pnto

Más detalles

Tema 10 Ejercicios resueltos

Tema 10 Ejercicios resueltos Tema 1 Ejercicios reseltos 1.1. Determinar el campo de eistencia de las fnciones sigientes: - 1 f(, ) = log f(, ) = ç è + ø f(, ) + - = ( f (, ) = log - 3 ) + 1.. Calclar los límites de las sigientes fnciones

Más detalles

MMII_L1_c3: Método de Lagrange.

MMII_L1_c3: Método de Lagrange. MMII_L_c3: Método de Lagrange. Gión de la clase: Esta clase está centrada en plantearse la resolción de las ecaciones casi lineales de primer orden mediante el Método de Lagrange. El método eqivale a plantearse

Más detalles

b 2 m 2 k 2 sin fricción + L C R 2

b 2 m 2 k 2 sin fricción + L C R 2 INGENIERÍA EN AUTOMATIZACIÓN Y CONTROL INDUSTRIAL Contol Atoático Pobleas 3 UNIVERSIDAD NACIONAL DE QUILMES 25 de azo de 2002 Página de 5. Obtene n odelo ateático del sistea asa-esote-aotigado ontado sobe

Más detalles

TEMA 7 VECTORES MATEMÁTICAS 1

TEMA 7 VECTORES MATEMÁTICAS 1 TEMA 7 VECTORES MATEMÁTICAS TEMA 7 VECTORES 7. LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un ector es n segmento orientado. Un ector AB qeda determinado por dos pntos, origen A y extremo B. Elementos de

Más detalles

ESTADO DE TENSIONES Y DE DEFORMACIONES

ESTADO DE TENSIONES Y DE DEFORMACIONES ENSAYOS NDUSTRALES Dpto. ngeniería Mecánica y Naval acltad de ngeniería Universidad de Benos Aires ESTADO DE TENSONES Y DE DEORMACONES Lis A. de Vedia Hernán Svoboda Benos Aires 00 - Ensayos ndstriales

Más detalles

Áreas de Regiones Cuadrangulares

Áreas de Regiones Cuadrangulares Geoetría ÍTUL XIII Áreas de egiones adranglares 01. ado n triánglo, en la prolongación de y en se bican los pntos y Q respectivaente, se trazan H y Q ; ( H) ; calcle el área de la región QH si = H = H;

Más detalles

Método de identificación de modelos de orden reducido de tres puntos 123c

Método de identificación de modelos de orden reducido de tres puntos 123c Método de identificación de modelos de orden redcido de tres pntos 123c Víctor M. Alfaro, M.Sc. Departamento de Atomática Escela de Ingeniería Eléctrica Universidad de Costa Rica valfaro@eie.cr.ac.cr Rev:

Más detalles

Método de los Elementos Finitos para determinar las deflexiones en una viga tipo Euler-Bernoulli

Método de los Elementos Finitos para determinar las deflexiones en una viga tipo Euler-Bernoulli Preliminares Formlación del elemento inito para vigas Ejemplo Método de los Elementos Finitos para determinar las deleiones en na viga tipo Eler-Bernolli Lic. Mat. Carlos Felipe Piedra Cáceda. Estdiante

Más detalles

Figura 12. Leyes del movimiento Sistema general.

Figura 12. Leyes del movimiento Sistema general. ECUACIONES DE MOVIMIENTO (PRÁCTICA 4: LEYES DEL MOVIMIENTO) Ing. Francisco Franco Web: http://gfranciscofranco.blogspot.co/ Fuente de inforación: Trabajo de grado de Mónica A. Caacho D. y Wilson H. Ibachi

Más detalles

Regla de la cadena. Regla de la cadena y. son diferenciables, entonces: w w u w v y u y v y. y g. donde F, w w u w v x u x v x

Regla de la cadena. Regla de la cadena y. son diferenciables, entonces: w w u w v y u y v y. y g. donde F, w w u w v x u x v x Regla de la cadena Una de las reglas qe en el cálclo de na variable reslta my útil es la regla de la cadena. Dicho grosso modo, esta regla sirve para derivar na composición de fnciones, esto es, na fnción

Más detalles

RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS

RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS. Calcla los sigientes límites: sen() (a) cos() sen() (b) cos(). Calcla los sigientes límites a) e b) a) e e sen() e. Calcla los sigientes límites: tg() sen()

Más detalles

a) sen(2t) cos(2t). b) 4sent cost. c) Si una función z = f(x, y) tiene plano tangente en un punto ( )

a) sen(2t) cos(2t). b) 4sent cost. c) Si una función z = f(x, y) tiene plano tangente en un punto ( ) Diferenciabilidad de fnciones de dos variables - Sea = f(,) na fnción real de variable real, se verifica qe: a) Si f admite derivada direccional en n pnto P en calqier dirección, entonces f es diferenciable

Más detalles

IDENTIFICAR LOS ELEMENTOS DE UN VECTOR

IDENTIFICAR LOS ELEMENTOS DE UN VECTOR 8 REPSO POO OJETIVO IDENTIFICR LOS ELEMENTOS DE UN VECTOR Nombre: Crso: Fecha: Vector: segmento orientado determinado por dos pntos: (a, a ), origen del ector, y (b, b ), extremo del ector. Coordenadas

Más detalles

PROBLEMAS DE VIBRACIONES CURSO 2012/2013

PROBLEMAS DE VIBRACIONES CURSO 2012/2013 PROBLEMAS DE VIBRACIONES CURSO 2012/2013 Problea 1.-En el sistea ecánico representado en la figura adjunta, se considera la barra de longitud L rígida, y se desprecian las asas de la barra y de los resortes

Más detalles

VECTORES EN EL PLANO. el punto B el extremo. Mientras no preste confusión el vector v podemos expresarlo simplemente por v.

VECTORES EN EL PLANO. el punto B el extremo. Mientras no preste confusión el vector v podemos expresarlo simplemente por v. COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA Asignatra: FÍSICA 10º Profesor: Lic. EDUARDO DUARTE SUESCÚN TALLER DE VECTORES VECTORES EN EL PLANO Vector fijo. Es n segmento orientado. Lo representamos por

Más detalles

8º CONGRESO IBEROAMERICANO DE INGENIERIA MECANICA Cusco, 23 al 25 de Octubre de 2007

8º CONGRESO IBEROAMERICANO DE INGENIERIA MECANICA Cusco, 23 al 25 de Octubre de 2007 8º CONGRESO IBEROAMERICANO DE INGENIERIA MECANICA Csco, 3 al 5 de Octbre de 7 SISTEMA DE VISIÓN ARTIFICIAL PARA EL RECONOCIMIENTO Y MANIPULACIÓN DE OBJETOS UTILIZANDO UN BRAZO ROBOT Tafr Sotelo J.C.*,

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 158 a 169

SOLUCIONES DE LAS ACTIVIDADES Págs. 158 a 169 TEMA. VECTORES SOLUCIONES DE LAS ACTIVIDADES Págs. 58 a 6 Página 58. Obtenemos los sigientes ectores: + Página 6. La representación es la sigiente: x - - Página 5. ( 0) (0 ) x ( ) a + b a / b y ( 6) a

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proyecto PE - Curso 008 Instituto de Física Facultad de Ingeniería UdelaR TITULO D I N Á I C A D E P A R T Í C U L A AUTORES Santiago Góez, Anthony éndez, Eduardo Lapaz INTRODUCCIÓN Analizaos

Más detalles

tecnun INDICE Volantes de Inercia

tecnun INDICE Volantes de Inercia VOLANTES DE INERCIA INDICE 7. VOLANTES DE INERCIA... 113 7.1 INTRODUCCIÓN.... 113 7. ECUACIÓN DEL MOVIMIENTO.... 113 7.3 CÁLCULO DE UN VOLANTE DE INERCIA.... 116 Eleentos de Máquinas 11 7. VOLANTES DE

Más detalles

Microeconomía I Clase/Semana 3

Microeconomía I Clase/Semana 3 Doctorado en Econoía y Maestría en T. y P. Econóica Avanzada FACES UCV Prof. Angel García Banchs contact@angelgarciabanchs.co Microeconoía I Clase/Seana 3 Problea del considor El roblea de la aiización

Más detalles

REVISIÓN DE ANÁLISIS MATEMÁTICO CONCEPTOS Y EJEMPLOS

REVISIÓN DE ANÁLISIS MATEMÁTICO CONCEPTOS Y EJEMPLOS E.T. Nº 7 - Brig. Gral. Apnte teórico TEORÍA DE LOS IRUITOS II REVISIÓN DE ANÁLISIS MATEMÁTIO ONEPTOS Y EJEMPLOS INDIE Página FUNIONES LÍMITES DERIVADAS oncepto definición Derivadas de las fnciones algeraicas

Más detalles

Movimiento Armónico Forzado

Movimiento Armónico Forzado Moviiento Arónico Forzado Estudieos ahora el oviiento de una asa soetida a una fuerza elástica, en presencia de fuerzas de arrastre y de una fuerza externa que actúa sobre la isa. Asuireos que la fora

Más detalles

Microeconomía I. Doctorado en Economía, y Maestría en T. y P. Económica Avanzada FACES, UCV. Prof. Angel García Banchs

Microeconomía I. Doctorado en Economía, y Maestría en T. y P. Económica Avanzada FACES, UCV. Prof. Angel García Banchs Doctorado en Econoía y Maestría en T. y P. Econóica Avanzada FACES UCV Microeconoía I Prof. Angel García Banchs contact@angelgarciabanchs.co Clase/Seana 4 Problea del considor Foralente: Plantear el Lagrange

Más detalles

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1. es un vector unitario de la misma dirección y el mismo sentido que v.

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1. es un vector unitario de la misma dirección y el mismo sentido que v. Estdios J.Concha ( fndado en 00) ESO, BACHILLERATO y UNIVERSIDAD Departamento Bachillerato MATEMATICAS º BACHILLERATO Profesores Jaier Concha y Ramiro Froilán TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS

Más detalles

FUNCIÓN DE TRANSFERENCIA

FUNCIÓN DE TRANSFERENCIA FUNCIÓN DE TRANSFERENCIA 1. RESPUESTA IMPULSO La respuesta ipulso de un sistea lineal es la respuesta del sistea a una entrada ipulso unitario cuando las condiciones iniciales son cero. Para el caso de

Más detalles

Klingner Ejemplo de Diseño por Desempeño 11 de marzo 2007 EJEMPLO DEL DISEÑO POR DESPLAZAMIENTO INTRODUCCIÓN BORRADOR

Klingner Ejemplo de Diseño por Desempeño 11 de marzo 2007 EJEMPLO DEL DISEÑO POR DESPLAZAMIENTO INTRODUCCIÓN BORRADOR Klingner Ejeplo de Diseño por Desepeño 11 de arzo 007 EJEMPLO DEL DISEÑO POR DESPLAZAMIENTO INTRODUCCIÓN Este ejeplo de diseño con base en desplazaientos sige los pasos del borrador distribido por Richard

Más detalles

ALGEBRA Y GEOMETRÍA VECTORIAL EN R 2 Y EN R 3

ALGEBRA Y GEOMETRÍA VECTORIAL EN R 2 Y EN R 3 ALGEBRA Y GEOMETRÍA VECTORIAL EN R Y EN R Los ectores se peden representar mediante segmentos de recta dirigidos, o flechas, en R o en R. Se denotan por letras minúsclas negritas Pnto inicial del ector

Más detalles

Resuelve. Unidad 7. Vectores. BACHILLERATO Matemáticas I. Descomposición de una fuerza. Página 171

Resuelve. Unidad 7. Vectores. BACHILLERATO Matemáticas I. Descomposición de una fuerza. Página 171 Resele Página 171 Descomposición de na ferza I. Una cerda de 10 m de larga celga de dos escarpias, A y B, sitadas a la misma altra y a m de distancia entre sí. De ella se celga na pesa de 0 kg de masa

Más detalles

SISTEMAS NO INERCIALES

SISTEMAS NO INERCIALES SISTEMAS NO INECIALES 1 - En el piso de un colectivo está apoyado un paquete de asa. El colectivo parte del reposo con una aceleración constante, a. Decir cuáles son las fuerzas aplicadas sobre el paquete,

Más detalles

LÍMITES, CONTINUIDAD Y DERIVADAS

LÍMITES, CONTINUIDAD Y DERIVADAS LÍMITES, CONTINUIDAD Y DERIVADAS ÍNDICE. Concepto de límite. Propiedades de los límites 3. Definición de continidad 4. Tipos de continidad 5. Concepto de derivada 6. Tabla de derivadas 7. Crecimiento y

Más detalles

VECTORES EN EL PLANO.

VECTORES EN EL PLANO. VECTORES EN EL PLNO. Introdcción: Magnitdes escalares ectoriales. Ha ciertas magnitdes físicas, tales como la masa, la presión, el olmen, la energía, la temperatra, etc., qe qedan completamente definidas

Más detalles

ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS

ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS JUAN ALFONSO OAXACA LUNA, MARÍA DEL CARMEN VALDERRAMA BRAVO Introducción Uno de los conceptos centrales en el

Más detalles

1. Encontrar la pendiente de la recta tangente a la curva de intersección de la superficie: z = y con el plano y=2, en el punto (2,1, 6 )

1. Encontrar la pendiente de la recta tangente a la curva de intersección de la superficie: z = y con el plano y=2, en el punto (2,1, 6 ) PROBLEMAS RESUELTOS 1. Encontrar la pendiente de la recta tangente a la cra de intersección de la sperficie: z = 1 con el plano =, en el pnto (,1, 6 Solción La pendiente bscada es: z 1 (,1 1 z (,1 6 (,1.

Más detalles

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Dinámica I: fuerza y leyes de Newton

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Dinámica I: fuerza y leyes de Newton SOLUCIONARIO GUÍA ÉCNICO PROFESIONAL Dináica I: fuerza y leyes de Newton SGUICC016C3-A16V1 Solucionario guía Dináica I: fuerza y leyes de Newton Íte Alternativa Habilidad 1 C Reconociiento A Aplicación

Más detalles

DIBUJO Y SISTEMAS DE REPRESENTACIÓN. Agrimensura Civil Mecánica Metalurgia Extractiva Minas

DIBUJO Y SISTEMAS DE REPRESENTACIÓN. Agrimensura Civil Mecánica Metalurgia Extractiva Minas DEPARTAMENTO DE MATEMÁTICA DIBUJO Y SISTEMAS DE REPRESENTACIÓN Agrimensra Civil Mecánica Metalrgia Extractiva Minas Unidad X: Sistema de Proyección Acotada Dibjo y Sistemas de Representación UNIDAD X -

Más detalles

14 Corte por Fricción

14 Corte por Fricción 14 Corte por Fricción CONSIDERCIONES GENERLES Cando se pblicó el docmento CI 318-83, el artíclo 11.7 fe rescrito completamente para ampliar el concepto de corte por fricción de manera qe inclyera aplicaciones

Más detalles

Métodos y técnicas de integración

Métodos y técnicas de integración Métodos y técnicas de integración (º) Integración por sstitción o cambio de variable En mchas ocasiones, cando la integración directa no es tan obvia, es posible resolver la integral simplemente con hacer

Más detalles

Apéndice I Capa límite

Apéndice I Capa límite Apéndice I Capa límite Capa límite. Aproimadamente hasta antes de 860, el interés de la ingeniería por la mecánica de flidos se limitaba casi eclsivamente al fljo del aga. La complejidad de los fljos viscosos,

Más detalles

Ley de Faraday. Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA CAMPOS Y ONDAS

Ley de Faraday. Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA CAMPOS Y ONDAS Ley de Faraday Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA Ley de Faraday En electrostática el campo eléctrico es conservativo, por lo tanto pede ser descripto por

Más detalles

1. Respecto de la fuerza de atracción gravitacional entre la Tierra y la Luna, y considerando que m T

1. Respecto de la fuerza de atracción gravitacional entre la Tierra y la Luna, y considerando que m T 1 Ciencias Básicas Física Prograa Estándar Intensivo Cuaderno Estrategias y Ejercitación Dináica II: ley de gravitación, fuerza de roce CUACES007CB82-A16V1 Estrategias? PSU Pregunta PSU 1. Respecto de

Más detalles

INCERTIDUMBRE EN LA CALIBRACIÓN DE CALIBRADORES TIPO VERNIER

INCERTIDUMBRE EN LA CALIBRACIÓN DE CALIBRADORES TIPO VERNIER CENTRO NACIONAL DE METROLOGÍA INCERTIDUMBRE EN LA CALIBRACIÓN DE CALIBRADORES TIPO VERNIER Héctor González Mñoz Nota: El presente ejercicio ha sido desarrollado bajo aspectos didácticos y llea por esto

Más detalles

En el cálculo de los límtes se utilizarán los siguientes resultados: 1,siendoa una constante real distinta de cero.

En el cálculo de los límtes se utilizarán los siguientes resultados: 1,siendoa una constante real distinta de cero. En el cálclo de los límtes se tilizarán los sigientes resltados: I) II) III) IV) sin 1 sina a a a sin a a 1 sink a k a 1,siendoa na constante real distinta de cero. 1, siendo k na constante real distinta

Más detalles

Solemne 1 - Ecuaciones Diferenciales. Para cada uno de los siguientes problemas, resuelva ordenadamente y justifique sus respuestas.

Solemne 1 - Ecuaciones Diferenciales. Para cada uno de los siguientes problemas, resuelva ordenadamente y justifique sus respuestas. Universidad Diego Portales Facultad de Ingeniería Instituto de Ciencias Básicas Carrera: Ingeniería Civil Prier seestre de 013. Solene 1 - Ecuaciones Diferenciales Para cada uno de los siguientes probleas,

Más detalles

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor.

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor. Física para iencias e Ingeniería ÁLGEBRA ETORIAL 7.2- Introdcción A lo largo del estdio de la Física srgen na serie de propiedades, tanto de magnitdes escalares como vectoriales, qe se epresan por medio

Más detalles

Estrategias de medición y valoración de la exposición a ruido (II): tipos de estrategias

Estrategias de medición y valoración de la exposición a ruido (II): tipos de estrategias 95 Estrategias de edición y valoración de la exposición a rido (II): tipos de estrategias Strategies for easring and assessing noise exposre (II): Types of strategies Stratégies por esrer et évaler l exposition

Más detalles

Trabajo de una Fuerza. Trabajo y Energía. Observaciones: Trabajo de una Fuerza. Trabajo de una Fuerza. Trabajo y Energía

Trabajo de una Fuerza. Trabajo y Energía. Observaciones: Trabajo de una Fuerza. Trabajo de una Fuerza. Trabajo y Energía Trabajo y Energía Trabajo de una Fuerza Es una anera diferente de resolver probleas de dináica en los que la fuerzas son funciones de la posición y no del tiepo. F r Observaciones: Sólo cuenta la coponente

Más detalles

2.3. Plano tangente a una superficie paramétrica. Sea la superficie paramétrica S determinada por la función vectorial

2.3. Plano tangente a una superficie paramétrica. Sea la superficie paramétrica S determinada por la función vectorial .3. Plano tanente a na sperficie paramétrica. Sea la sperficie paramétrica S determinada por la fnción ectorial ( ) R R en el pnto P, cyo ector posición 3 : /, x,, y,, z, es (, ). Si se mantiene a constante

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyecto PMME - Curso 7 Facultad de Ineniería UdelaR Maquina de Atwood doble Mathías Möller José Oscar Silva Francisco Paroli INRODUCCION: Este trabajo trata de aplicar las leyes de Newton

Más detalles

CAPITULO 2 MARCO TEÓRICO

CAPITULO 2 MARCO TEÓRICO CAPITULO 2 MARCO TEÓRICO 1 CAPITULO 2 MARCO TEÓRICO El análisis del proyecto detallado en el capítlo 1 se hará con respecto a factores importantes qe se detallan a continación y se complementará con cálclos

Más detalles

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa NOMBRE: VECTORES EN EL PLANO Ángel de la Llave Canosa 1 VECTORES EN EL PLANO VECTOR FIJO Un vector fijo AB es n segmento orientado, qe está definido por dos pntos: Un pnto origen y n pnto extremo. Los

Más detalles

Formulación del elemento de barra unidimensional.

Formulación del elemento de barra unidimensional. Modelización Mecánica de Elementos Estrctrales Formlación del elemento de barra nidimensional. Viana. Gadalpe Sárez Carmelo Militello Militello Departamento de Ingeniería Indstrial Área de Mecánica Escela

Más detalles

Problemas propuestos sobre Dinámica

Problemas propuestos sobre Dinámica 1 Universidad de ntioquia Instituto de ísica Probleas propuestos sobre Dináica Nota: Si se encuentra algún error en las respuestas, le agradeceos reportarlo a su profesor de Teoría de ísica I. para ser

Más detalles

Módulo de Potencia de Control de Motores LQSE-4M-D Controlador de Motor CA de 4 Salidas. Unidad de modulo de potencia. Botonera seetouchr QS

Módulo de Potencia de Control de Motores LQSE-4M-D Controlador de Motor CA de 4 Salidas. Unidad de modulo de potencia. Botonera seetouchr QS LUTRON Módlo de Potencia de Control de Motores LE-4M-D Controlador de Motor CA de 4 Salidas Módlo de Potencia de Control de Motores El módlo de potencia de control de motores es na interfaz qe proporciona

Más detalles

FLUJO EN MEDIOS POROSOS PRINCIPIO DE TERZAGHI

FLUJO EN MEDIOS POROSOS PRINCIPIO DE TERZAGHI Capítlo FLUJO EN MEDIOS POROSOS PRINCIPIO DE TERZGHI Problemas de Geotecnia y Cimientos 34 Capítlo - Fljo en Medios Porosos Principio de Teraghi PROLEM.1 El permeámetro de carga constante, cyo esqema se

Más detalles

Determinación de los Parámetros para el Servomotor NXT LEGO Mindstoms con Técnicas de Identificación de Sistemas

Determinación de los Parámetros para el Servomotor NXT LEGO Mindstoms con Técnicas de Identificación de Sistemas Deterinación de los Paráetros para el Servootor NXT LEGO Mindstos con Técnicas de Identificación de Sisteas Ing. María Luisa Pinto Salaanca, MSc. Giovanni Rodrigo Berúdez Bohórquez RESUMEN Se presenta

Más detalles

VII.- TEORÍA ELEMENTAL DE LA CAPA LIMITE BIDIMENSIONAL

VII.- TEORÍA ELEMENTAL DE LA CAPA LIMITE BIDIMENSIONAL VII.- TEORÍA EEMENTA DE A CAPA IMITE BIDIMENSIONA http://libros.redsace.net/ VII..- CAPA IMITE AMINAR Y TURBUENTA EN FUJO SOBRE PACA PANA En el oviiento de flidos sobre na placa plana, la Hidrodináica

Más detalles

1 Composición de funciones

1 Composición de funciones Composición de fnciones La composición de fnciones o la fnción de fnción es na operación qe aparece natralmente en varias sitaciones. En esta nota, presentaremos (sin demostración) algnos de los resltados

Más detalles

Estructura de Computadores. 1. Ejercicios Resueltos 1.1.

Estructura de Computadores. 1. Ejercicios Resueltos 1.1. Estrctra de Comptadores Tema. La nidad de memoria II. La memoria virtal Localidad de referencia. Definición de memoria cache. Estrategias de mapeado: directo, asociativo y asociativo por conjntos. Algoritmos

Más detalles

EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES

EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES RESOLVER ECUACIONES LINEALES EN UNA VARIABLE RESOLVER ECUACIONES CUADRATICAS EN UNA VARIABLE RESOLVER PROBLEMAS

Más detalles

1. Idea intuitiva del concepto de derivada de una función en un punto.

1. Idea intuitiva del concepto de derivada de una función en un punto. Tema : Derivadas. Idea intitiva del concepto de derivada de na fnción en n pnto. Comencemos pensando en na fnción f () t, donde t represente el tiempo y f la evolción de na cantidad calqiera a lo largo

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 5 Nota Auxiliar B RELACIÓN ENTRE EL COMPORTAMIENTO TEMPORAL Y RESPUESTA EN FRECUENCIA DE SISTEMAS EN LAZO CERRADO

CONTROL DE PROCESOS FACET UNT TEMA 5 Nota Auxiliar B RELACIÓN ENTRE EL COMPORTAMIENTO TEMPORAL Y RESPUESTA EN FRECUENCIA DE SISTEMAS EN LAZO CERRADO TEMA 5 Nota Axiliar B RESPUESTA EN FRECUENCIA EN LAZO ABIERTO Considérese n lazo de control típico con los elementos qe se consignan en la Figra 1. Se han rellenado los bloqes correspondientes a elementos

Más detalles

VECTORES EN EL PLANO

VECTORES EN EL PLANO VECTORES EN EL PLANO.- PRIMERO DE BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 VECTORES EN EL PLANO Vector fijo. Es n segmento orientado. Lo representamos por AB o por. El pnto A es el origen y el pnto B

Más detalles

MOVIMIENTOS OSCILATORIOS. EL OSCILADOR ARMÓNICO - RESUMEN

MOVIMIENTOS OSCILATORIOS. EL OSCILADOR ARMÓNICO - RESUMEN Dpto. Física y Quíica MOVIMINTOS OSCITORIOS. OSCIDOR RMÓNICO - RSUMN. Moviientos Oscilatorios.. Moviiento rónico Siple. Un oviiento es periódico cuando se repiten cada cierto tiepo algunas de las agnitudes

Más detalles

Anexo 3.1 Sistema Por Unidad

Anexo 3.1 Sistema Por Unidad ELC-30514 Sistemas de Potencia I Anexo 3.1 Prof. Francisco M. González-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/sp.htm Ejemplo Considere el sistema de potencia de la Figra sigiente.

Más detalles

SOLICITACIONES EN LOSAS 1. HORMIGÓN I (74.01 y 94.01) SOLICITACIONES EN LOSAS

SOLICITACIONES EN LOSAS 1. HORMIGÓN I (74.01 y 94.01) SOLICITACIONES EN LOSAS HORMIGÓN I (74.01 94.01) SOLICITACIONES EN LOSAS TEMARIO DE LA CLASE 74.01 94.01 - HORMIGON I SOLICITACIONES EN LOSAS FLEXION CORTE TORSION COMPATIBILIZACIÓN DE APOYOS Losa crzada Losa crzada Losa crzada

Más detalles

22 Zapatas y Cabezales de Pilotes

22 Zapatas y Cabezales de Pilotes Zapatas y Cabezales de Pilotes ACTUALIZACIÓN PARA EL CÓDIGO 00 El artíclo 11.1.3 presenta reqisitos revisados para la armadra de corte de las zapatas, cyo objetivo es mejorar la segridad contra la falla

Más detalles

, las que se muestran en la siguiente figura (P 2. es punto medio entre la Tierra y la Luna). P 2 P 1

, las que se muestran en la siguiente figura (P 2. es punto medio entre la Tierra y la Luna). P 2 P 1 Convenio Nº Guía práctica Ley de gravitación y fuerza de roce Ejercicios PSU Para esta guía considere que la agnitud de la aceleración de gravedad (g) es 10 s 2. 1. Un grupo de científicos necesita poner

Más detalles

DETERMINACIÓN DE LA VISCOSIDAD DE UN LÍQUIDO

DETERMINACIÓN DE LA VISCOSIDAD DE UN LÍQUIDO UNIVERSIDAD CATÓLICA DE VALPARAÍSO INSTITUTO DE FÍSICA OBJETIVO DETERMINACIÓN DE LA VISCOSIDAD DE UN LÍQUIDO En este experiento se deterinará el coeficiente de viscosidad del aceite de otor. INTRODUCCIÓN

Más detalles

3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2

3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2 34 CAPÍTULO 3 Vectores en R R 3 ais sqare a=ais; ais([min(a([1,3])),ma(a([,4])),min(a([1,3])),ma(a([,4]))]) % hold off Una ez qe se haa escrito la fnción en n archio con nombre lincomb.m, dé el comando

Más detalles

Mecánica I Tema 5. Manuel Ruiz Delgado. 1 de diciembre de 2010

Mecánica I Tema 5. Manuel Ruiz Delgado. 1 de diciembre de 2010 Mecánica I Tema 5 Dinámica del sólido rígido Manel Ri Delgado 1 de diciembre de 010 eometría de masas Centro de masas de gravedad............................................... 4 Tensor de inercia.........................................................

Más detalles

Automá ca. Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Autoáca Capítulo5.Estailidad JoséRaónLlataGarcía EstherGonzálezSaraia DáasoFernándezPérez CarlosToreFerero MaríaSandraRolaGóez DepartaentodeTecnologíaElectrónica eingenieríadesisteasyautoáca Estailidad

Más detalles

Mecánica de las Estructuras II. Ejercicios de Láminas de Revolución

Mecánica de las Estructuras II. Ejercicios de Láminas de Revolución - Tanque Cilíndrico ecánica de las Estructuras II Ejercicios de Láinas de Revolución Se trata de un tanque cilíndrico de horigón arado epotrado en la base y soetido a presión hidrostática. Se busca deterinar

Más detalles

CONVECCION. Para el diseño de Intercambiadores de calor necesitamos el coeficiente global de transferencia, U

CONVECCION. Para el diseño de Intercambiadores de calor necesitamos el coeficiente global de transferencia, U CONVECCION Para el diseño de Intercambiadores de calor necesitamos el coeficiente global de transferencia, U U está formado por resistencias conectias condctias. Las conectias dependen del coeficiente

Más detalles

UNIVERSIDAD DE GUADALAJARA

UNIVERSIDAD DE GUADALAJARA UIVERSIDAD DE GUADALAJARA CETRO UIVERSITARIO DE CIECIAS EXACTAS E IGEIERÍAS SECRETARÍA ACADÉMICA DIVISIÓ DE IGEIERÍAS DEPARTAMETO DE IGEIERÍA IDUSTRIAL Prograa de estdio: Análisis contable SISTEMA DE CREDITOS

Más detalles

Física II: Termodinámica, ondas y fluidos

Física II: Termodinámica, ondas y fluidos Física II: Terodináica, ondas y fluidos Índice 5 - MOVIMIENTO PERIÓDICO... 5.1 OSCILACIÓN: DESCRIPCIÓN Y DEFINICIÓN... 5. MOVIMIENTO ARMÓNICO SIMPLE (MAS)... 4 Ej. 5.1 Resorte sin fricción... 6 5.3 DESPLAZAMIENTO,

Más detalles

ANÁLISIS DE LOS CRITERIOS DE FALLA APLICADOS A LOS

ANÁLISIS DE LOS CRITERIOS DE FALLA APLICADOS A LOS ANÁLISIS DE LOS CRITERIOS DE FALLA APLICADOS A LOS LAMINADOS COMPUESTOS Ator: Matías Molinier Instrctor: Alejandro Verri Kozlowski Serie de monografías en Mecánica de Laminados Compestos. Facltad de Ingeniería

Más detalles

Sólido de Lagrange. Mecánica II Tema 11. Manuel Ruiz Delgado. Escuela Técnica Superior de Ingenieros Aeronáuticos Universidad Politécnica de Madrid

Sólido de Lagrange. Mecánica II Tema 11. Manuel Ruiz Delgado. Escuela Técnica Superior de Ingenieros Aeronáuticos Universidad Politécnica de Madrid Sólido de Lagrange p. 1/22 Sólido de Lagrange Mecánica II Tema 11 Manel Riz Delgado Escela Técnica Sperior de Ingenieros Aeronáticos Universidad Politécnica de Madrid Sólido de Lagrange Sólido de Lagrange

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAPÍTULO 3 Aplicaciones de prier orden 3.6 Mecánica El paracaidiso es uno de los deportes extreos que día a día cuenta con ayor núero de adeptos. Los que practican este deporte se tiran desde un avión

Más detalles

Dr. Ing. Claudio E. Jouglard

Dr. Ing. Claudio E. Jouglard 8QYHUVGD 7HQROJ DRQDO )DXOWD 5HJRQD %XHQR $UHV CURSO DE ESPECIAIZACIÓN QWURGX D pwrg G (OHPHQWR )QWRV &RQHSWR G HiQ G OR 6OGRV Dr. Ing. Cladio E. Joglard Notas del Crso dictado en el º catrimestre de QGH

Más detalles

Evaluación de la Incertidumbre de Algunos Factores de Influencia en la Determinación del Contenido de Humedad en Granos

Evaluación de la Incertidumbre de Algunos Factores de Influencia en la Determinación del Contenido de Humedad en Granos Siposio de Metrología 008 Santiago de Qerétaro, México, al 4 de Octbre Evalación de la Incertidbre de Algnos Factores de Inflencia en la Deterinación del Contenido de Hedad en Granos Enriqe Martines L,

Más detalles

Cómo determinar el valor que la gente otorga a las cosas? El valor debe proceder de la utilidad que deriva de esas cosas Deberíamos medir utilidad

Cómo determinar el valor que la gente otorga a las cosas? El valor debe proceder de la utilidad que deriva de esas cosas Deberíamos medir utilidad CAP. 3: MEDICIÓN DEL BIENESTAR EN CONDICIONES DE EQUILIBRIO PARCIAL Segios: Antelo (), Ca. y Antelo (3), Ca. 3 Ca. : De f obteníaos f.d.. de bienes (Pendiente: Medir tilidad y cabios de tilidad?) Cóo deterinar

Más detalles

OSCILADOR ARMÓNICO ÍNDICE

OSCILADOR ARMÓNICO ÍNDICE ÍNDICE OSCILDOR RMÓNICO 1. Moviiento periódico. Moviiento arónico siple (MS) 3. Cineática del MS 4. uerza y energía del MS 5. Ecuación básica del MS 6. Oscilaciones aortiguadas 7. Oscilaciones forzadas

Más detalles

Aproximación al MEF en el cálculo de estructuras: Resolución paso a paso de una estructura sencilla desde las funciones de forma.

Aproximación al MEF en el cálculo de estructuras: Resolución paso a paso de una estructura sencilla desde las funciones de forma. º COGRESO EMIE 8-9 Jlio ETSIE, Universidad Politécnica de Valencia Aproimación al MEF en el cálclo de estrctras: Resolción paso a paso de na estrctra sencilla desde las fnciones de forma. Enriqe David

Más detalles

INFORME SEMESTRAL. Curso: Mecánica Cuántica Semestre Profesor: M. en C. Angel G. Figueroa Soto Diciembre de 2012

INFORME SEMESTRAL. Curso: Mecánica Cuántica Semestre Profesor: M. en C. Angel G. Figueroa Soto Diciembre de 2012 INFORME SEMESTRAL Curso: Mecánica Cuántica Seestre 13-1 Profesor: M. en C. Angel G. Figueroa Soto Diciebre de 1 OBJETIVO. Presentar al aluno el foraliso de la ecánica cuántica REQUISITOS. El aluno deberá

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Métodos multivariantes en control estadístico de la calidad

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Métodos multivariantes en control estadístico de la calidad UNIVERIDAD NACIONAL MAYOR DE AN MARCO FACULTAD DE CIENCIA MATEMÁTICA E.A.P. DE ETADÍTICA Métodos ultivariantes en control estadístico de la calidad Capítulo III. Gráficos de control T de Hotelling TRABAJO

Más detalles

ScandSorb C. Sistema de filtro de carbón de cartucho rellenable

ScandSorb C. Sistema de filtro de carbón de cartucho rellenable ScandSorb C Sistema de filtro de carbón de cartcho rellenable ScandSorb C Sistema de filtro de carbón de cartcho rellenable APLICACIONES Aire limpio Generación de energía Salas limpias Indstria HECHOS

Más detalles

INTEGRALES DE SUPERFICIE.

INTEGRALES DE SUPERFICIE. INTEGALE DE UPEFICIE. 31. Encontrar el área de la sperficie definida como intersección del plano x + y + z 1 con el sólido x + y 1. olción La sperficie dada se pede parametrizar por x cos v : y (/ ) sen

Más detalles

3 INVESTIGACIONES 10%

3 INVESTIGACIONES 10% Práctica Vibración de sisteas PARTICIPACION 5% de un grado de PRESENTACIÓN 10% libertad con 3 INVESTIGACIONES 10% aortiguaiento CÁLCULOS Y DIAGRAMAS 15% NOMBRE RESULTADOS 30% MATRICULA CONCLUSIONES 5%

Más detalles