Guía de ejercicios División de Trazos
|
|
|
- Ángela Vega Quiroga
- hace 8 años
- Vistas:
Transcripción
1 Fecha: Alumno: Curso: Profesor: Unidad 4: GEOMETRÍA DE PROPORCIONES 1 División de Trazos: Guía de ejercicios División de Trazos 1.- Encuentre el mayor de los trazos de un segmento AB=48 cm.si AP=: PB=5:7(28 cm.) 2.- Un punto P divide interiormente a AB=18 cm. en la razón 2:1.Determine cada trazo. (12 y 6 cm.) 3.- Un punto P divide interiormente a AB en la razón 2:7, Si AP=30cm.Determine PB y AB. (105 y 135 cm.) 4.- Encuentre la medida de un trazo AB.Si un punto P interior lo divide en la razón 3 es a 4 y el menor de los trazos mide 27cm. (63cm) 5.- Encontrar la medida de un trazo AB, si un punto P interior lo divide en la razón 2:7 y el menor de los trazos mide 30cm. (135cm) 6.- Encontrar la medida de AB, si el punto P interior lo divide en la razón 9:4, y el menor de los trazos mide 18cm. (58,5) 7.- Se tiene un trazo AB=36cm.Un punto P interior a AB es tal que AP: PB=2:/, y un punto Q interior a AB es tal que PQ:=3:4.Calcular PQ. (12cm) 8.-Se tiene un trazo AB=18cm, y un punto P exterior a AB, AB: BP=2:5.Calcular la prolongación y el trazo prolongado. (45 y 63cm) 9.-Un trazo prolongado es el trazo como 15 es a 12.Calcular la prolongación si el trazo mide 45cm. (11,25cm) 10.- Un trazo y su prolongación están en la razón 5:7. En qué razón están el trazo prolongado y su prolongación? (12:7) 11.- Un trazo y su prolongación están en la razón de 5:8; si la prolongación mide 60cm. cuánto mide el trazo? (37,5cm) 12.- Un trazo prolongado y el trazo están en la razón 5:3. En qué razón están el trazo y su prolongación? (2:3) 13.- Un trazo AB=18cm.Un punto P interior y otro punto Q exterior son tales que:ap:pb=3:5 y AB:BQ=8:7.Calcular PQ Un punto Q divide exteriormente un trazo AB en la razón AB: BQ=2:3.Si AB=50cm.Calcular el menor trazo que determina un punto P que divide al trazo AB en la misma razón. Calcular además PQ. (20 y 105cm) 15.- Dado AB =26cm.Determine MN tal que M y N dividan respectivamente a AB interior y exteriormente en la razón 5:4.Calcule AM, MB, BN, MN ( 14,11,104,105 ) Un punto D situado en la prolongación de AB=36cm,es tal que DA:DB=7:8. Cuánto mide DA y DB? (252, 288 cm) 17.- Un punto N divide interiormente a AB, tal que AN: NB=5:9.La distancia de N al punto medio de AB es 28cm.Calcular NA, NB, AB. (70, 126, 196cm) 18.- Un punto N divide interiormente a CD tal que NC:ND=5:9.Su distancia al punto medio de CD es 28cm.Calcular NC,ND,si CD=196cm. (70, 126cm) 19.- Dividir AB=30cm interiormente en la razón de 3:2 (18, 12cm) 20.- Un punto P divide interiormente al trazo AB en la razón 7:2.Si el menor de los trazos equivale a 24cm. Cuánto mide el trazo? (108cm)
2 Un punto P divide interiormente a AB en la razón 9:2.Calcular la superficie del cuadrado cuyo lado equivale al menor de los trazos determinados por P, si el mayor mide 54cm. (144 cm. 2 ) 22.- Un punto P divide un trazo AB=72cm, en la razón 7:5.Calcular cada una de las superficies de las circunferencias construidas teniendo como diámetro estos trazos. (441, 225 ) 23.-En el problema anterior calcule el perímetro de las circunferencias mencionadas... (42, 30 ) 24.- Un punto P divide un trazo AB en la razón 5:6.Si el mayor de los trazos mide 60cm.Calcular la altura del triángulo equilátero construido con el otro trazo.(25 3 cm.) 25.- En el problema anterior calcule el área del triángulo equilátero construido con el mayor de los trazos. (900 3 cm 2 ) 26.- Un trazo AB se divide interiormente por un punto P en la razón 7:2.Si el menor de los trazos mide 40cm.Calcular el perímetro del rectángulo construido con estos trazos. (5600 y 360 cm) 27.- Un trazo AB se divide interiormente por un punto P en la razón 3:4.Si el menor de los trazos mide 21cm.Calcular la superficie y el perímetro de la circunferencia construida sobre el diámetro AB. (66.25, 49 cm) 28.- Un trazo AB se divide interiormente en la razón 7:2.En este mismo trazo se construyen dos triángulos equiláteros de modo que las alturas sean estos trazos.calcular el perímetro de la figura que se forma, si AB=50cm. ( , 3 ) Calcular la distancia entre los puntos de división armónica de un trazo AB=36cm, dividido en la razón 4:2. (30cm) 30.- Dividir AB=23 cm. en tres partes proporcionales a los números 2 ; 3 ; 5.(4,6 6,9 11,5) 31.- Dado AB=80cm.Dividirlo analíticamente en cuatro partes proporcionales a los números 3, 4, 2 y 7. (15, 20, 10 y 35cm) 32.- Un trazo AB estas dividido armónicamente por los punto I y E en la razón 7:2.Si 7 19 EA=39.2cm.Calcule AB, IA, IE. (28, 21,17 cm.) Un trazo AB=28cm se divide interior y exteriormente por los puntos I y E en la razón armónica 4:3.Calcular el área y el perímetro de la circunferencia cuyo radio equivale a la mitad del trazo armónico. (2304 cm 2, 96 cm) 34:-Hallar el segmento áureo den trazo de 200cm Un ventana rectangular tiene dimensiones áureas entre sus lados. Si el perímetro de esta es de 3,20mts. Cuánto mide el largo y el ancho? 36.- Con una moldura de 2 mts de largo se quiere construir un marco para un cuadro de modo que el largo y el ancho estén en razona áurea Qué medida deben tener estas dimensiones? 37.- El lado de un decágono regular es la razona áurea del radio de la circunferencia circunscrita al polígono. Si se inscribe un decágono en una circunferencia de 20cm de radio. Qué medida tendrá el lado? Ejercicios de aplicación: Teorema de la bisectriz interior y teorema de la bisectriz exterior de un triángulo: Otra de las aplicaciones de estos temas es el circulo de Apolonio.Circulo que se obtiene por la división de uno de los lados
3 3 interior y exteriormente por las bisectrices interior y exterior.el diámetro del circulo en cuestión es el trazo (armónico) cuyos extremos son estos puntos armónicos de división. 1.-EN LA FIGURA: AB = 20 ; AC= 16 ; CB = 18. Calcule AD y BD 2.-EN LA FIGURA: AC = 12 ; CB = 18 AB = 18. Calcule AD y BD 3.-EN LA FIGURA: AC = 15 ; CB = 17 ; AB = En la figura:ab = 6 ; BC = 9 y AC= 12. Calcule BE y AE. 5.-En la figura: AB = 4, BC = 6, AC = 8. CALCULE: BE, AE
4 4 6.-EN LA FIGURA: AB = 10, BC = 12, AC = 14. CALCULE: AE, BE 7.-EN LA FIGURA: AB = 8, BC= 10, AC= 12. CALCULE: AB BE, AE, AI, IB, IE 8.-EN LA FIGURA: AB = 4, BC= 6, AC = 8, CALCULE: AI, IB, BE, AE, IE 9.-Determine el diámetro del circulo de Apolonio construido sobre el lado c en el triangulo que se indica. AB = 4, BC= 6,AC = 8, CALCULE : AI,IB, BE, AE, IE EN LA FIGURA : AB = 8, BC= 10, AC= 12. CALCULE: AB BE, AE, AI, IB, IE, determine el área y el perímetro del circulo de Apolonio construido sobre el lado c
5 5
Se verifican las siguientes relaciones para cada caso, tal como se indica.ud puede comprobar las relaciones establecidas a modelo de ejercicio
Se verifican las siguientes relaciones para cada caso, tal como se indica.ud puede comprobar las relaciones establecidas a modelo de ejercicio Una de las aplicaciones de este tema es el circulo de Apolonio.Circulo
, correspondencia homologa. Ejemplo: SEMEJANZA DE TRIANGULOS: Se deben dar dos condiciones: Cada una como consecuencia directa de la otra.
CONGRUENCIA DE TRIANGULOS: se deben dar dos condiciones: 1.-Los lados deben ser congruentes (iguales) a=a, b=b, c=c 2.-Los ángulos deben ser congruentes (iguales)
ALGUNAS RELACIONES PARA RECORDAR:
ALGUNAS RELACIONES PARA RECORDAR: División Áurea de un trazo: Consideremos el trazo: AB AP AP PB Se dice que P divide de modo áureo al trazo AB. Es decir el mayor de los trazos es media proporcional entre
EXAMEN DE ADMISION 2008 GEOMETRÍA
EJÉRCITO DE CHILE COMANDO DE INSTITUTOS Y DOCTRINA Academia Politécnica Militar EXAMEN DE ADMISION 008 GEOMETRÍA 1. La distancia entre los puntos P1 (, -8) y P (3, 5) es: a) 13 b) 3 c) 3 d) 170 e) 170
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es
Semejanza. Razones. Teorema de Thales. Proporciones. a = b. c d
Semejanza Razones Razones y proporciones Teorema de Thales Triángulos semejantes Teoremas de semejanza Teoremas de Euclides Perímetro y Área a) Razón. Es el cuociente entre dos números (positivos). b)
Taller de Matemática Preparación PSU
octubre 01 Taller de Matemática Preparación PSU Marcar con una X la alternativa que considere correcta. 1. Cuando se divide cierto trazo armónicamente en la razón : 4, la distancia entre los puntos de
Triángulos (Parte 2)
Triángulos (Parte 2) APRENDIZAJES ESPERADOS Analizar en el triángulo rectángulo, los teoremas de Pitágoras y Euclides. Aplicar los diferentes teoremas y propiedades de los triángulos rectángulos, equiláteros
Repartido 2. Profesor Fernando Díaz Matemática II 5to cient. I.D.A.L. 2016
Repartido 2 Profesor Fernando Díaz Matemática II 5to cient. I.D.A.L. 2016 Actividad 1 Recordando al teorema de la bisectriz interior demostrado en clase, podemos decir que en el siguiente triángulo T(ABC)
Guía de ejercicios 2º medio(thales, homotecia,euclides,división interior) Nombre..
Guía de ejercicios 2º medio(thales, homotecia,euclides,división interior) Nombre.. 1) En la figura, AC // BD, entonces x mide: 2) Con respecto a la figura, donde AB // CD // EF, cuál de las siguientes
NÚMEROS ENTEROS Y RACIONALES GUÍA DE EJERCITACIÓN Teorema de Thales y división de segmentos
SGUICM0M11-A16V1 NÚMEROS ENTEROS Y RACIONALES GUÍA DE EJERCITACIÓN Teorema de Thales y división de segmentos 1 TABLA DE CORRECCIÓN TEOREMA DE THALES Y DIVISIÓN DE SEGMENTOS ÍTEM ALTERNATIVA HABILIDAD 1
EJERCICIOS ÁREAS DE REGIONES PLANAS
EJERCICIOS ÁREAS DE REGIONES PLANAS 1. En un triángulo equilátero se inscribe una circunferencia de radio R y otra de radio r tangente a dos de los lados y a la primera circunferencia, hallar el área que
TEOREMA DE THALES N 13 NOMBRE: II FECHA: / /2016
Colegio Fernando de Aragón Departamento de matemática Prof. Sergio Moreno N lista: TEOREMA DE THALES N 13 NOMBRE: II FECHA: / /2016 El concepto de semejanza está basado en las proporciones de segmentos
1. Teoremas válidos para triángulos rectángulos
1. Teoremas válidos para triángulos rectángulos Sea ABC triángulo rectángulo en C, entonces: El lado opuesto al ángulo recto, AB, es llamado HIPOTENUSA, y los lados AC y BC, CATETOS. cateto hipotenusa
Polígonos y Triángulos
7 o Básico 2015 Profesor Alberto Alvaradejo Ojeda 1. Polígono Un polígono es una figura plana cerrada formada por trazos o segmentos. Los polígonos se pueden clasificar en: Cóncavos: son los aquellos polígonos
donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos.
Polígonos regulares 1 POLIGONOS REGULARES DEFINICION: Un polígono regular es el que tiene todos sus lados y sus ángulos congruentes. DEFINICION: Un polígono esta inscrito en una circunferencia si sus vértices
TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008
TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo
PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA
CURSO PRE FACULTATIVO 1-011 PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA 1. En una circunferencia de centro O, se traza el diámetro AB y se prolonga hasta el punto C a partir del
Modulo de aprendizaje de matemática. Semejanza de figuras planas.
Modulo de aprendizaje de matemática. Semejanza de figuras planas. Concepto de semejanza. EJEMPLO. Dos polígonos convexos son semejantes si tienen la misma forma con diferentes dimensiones. Diremos que
4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud.
7 CAPÍTULO SIETE Ejercicios propuestos 7.5 Triángulos 1. Construya de ser posible los siguientes triángulos ABC. En caso de que existan, determine sus cuatro puntos característicos empleando regla y compás.
FICHA DE TRABAJO Nº 18
FICHA DE TRABAJO Nº 18 Nombre Nº orden Bimestre IV 3ºgrado - sección A B C D Ciclo III Fecha: - 11-12 Área Matemática Tema TRIÁNGULOS II: Líneas y Puntos Notables LINEAS y PUNTOS NOTABLES EN EL TRIANGULO
DIBUJO TÉCNICO BACHILLERATO TRABAJOS - LÁMINAS TEMA 3. POLÍGONOS. Departamento de Artes Plásticas y Dibujo
DIBUJO TÉCNICO BACHILLERATO TRABAJOS - LÁMINAS TEMA 3. POLÍGONOS. Departamento de Artes Plásticas y Dibujo 1. Construir un triángulo equilátero conocida la altura. 2. Construir un triángulo isósceles conocida
Contenidos. 1. Figuras congruentes. 2. Figuras Equivalentes. 3. Figuras semejantes. 1.1 Definición 1.2 Triángulos Congruentes
ontenidos 1. Figuras congruentes 1.1 Definición 1.2 Triángulos ongruentes 2. Figuras Equivalentes 3. Figuras semejantes 3.1 Definición 3.2 Triángulos Semejantes 3.3 Elementos homólogos 3.4 Razón entre
PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA
CURSO PRE FACULTATIVO II-01 PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA 1. En una circunferencia de centro O, se traza el diámetro AB y se prolonga hasta el punto C a partir del
COLEGIO LOS ARCOS Guía de trabajo #4 Segmentos proporcionales 9no grado
GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 4 - Segmentos proporcionales. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros, ni
a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado...
Geometría Plana 3º E.S.O. PARTE TEÓRICA 1.- Define para un triángulo los siguientes conceptos: Mediatriz: Bisectriz: Mediana: Altura: 2.- Completa las siguientes frases: a) Las mediatrices de un triángulo
La razón entre los lados homólogos es la razón de semejanza. Si dos figuras son semejantes la razón entre sus áreas es:
TEMA 7: SEMEJANZA FIGURAS SEMEJANTES Dos figuras son semejantes si sus segmentos correspondientes, u homólogos, son proporcionales y sus ángulos iguales. Es decir; o son iguales, o tienen "la misma forma"
10 ACTIVIDADES DE REFUERZO
0 ACTIVIDADES DE REFUERZO. Calcula el área de estos polígonos. a) Trapecio de bases de longitud cm y 8 cm, y altura 4,5 cm. Pentágono regular de lado 4 cm y apotema 4, cm.. Halla el área de estos polígonos.
Unidad nº 6 Figuras planas 13
Unidad nº 6 Figuras planas 13 Cuestiones 3 1 Puede ser que la suma de los ángulos de un polígono sea 40º Justifica tu respuesta. Debería cumplirse 180º (n ) = 40º, que no se cumple para ningún valor entero
Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.
EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se
Llamamos área o superficie a la medida de la región interior de un polígono. Figura Geométrica Perímetro Área. p = a + b + c 2 2.
GUÍA GEOMETRÍA PERÍMETRO Y AREA DE FIGURAS PLANAS Llamamos área o superficie a la medida de la región interior de un polígono. El perímetro corresponde a la suma de los lados del polígono. Figura Geométrica
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ÁREA Y PERÍMETRO DE FIGURAS PLANAS Y TEOREMA DE PITÁGORAS
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ÁREA Y PERÍMETRO DE FIGURAS PLANAS Y TEOREMA DE PITÁGORAS ÁREA Y PERÍMETRO DE FIGURAS PLANAS LINEA POLIGONAL: Se llama línea poligonal
GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.
GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el
PSU Matemática NM-4 Guía 14: Ángulos y Triángulos
1 Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM- Guía 1: Ángulos y Triángulos Nombre: Curso: Fecha: - Contenido: Geometría. Aprendizaje Esperado:
Cuadriláteros - Áreas cuadrangulares
3A Cuadriláteros - Áreas cuadrangulares EJERCICIOS PROPUESTOS 1. En un rombo de lado 6 cm, uno de sus ángulos mide 60º. Calcula la longitud de la diagonal menor. A. 6 cm C. 4 cm B. 5 cm D. 3 cm. En un
Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360
Triángulos Es un polígono formado por tres segmentos cuyos tres puntos de intersección no están en línea recta. Triángulo ABC A,B y C son vértices del triángulo α, β, γ s interiores. a, b y c, longitud
4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES
4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES Y EL TEOREMA DE PITÁGORAS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS 4.1.1. El teorema de Thales y consecuencias. Thales de Mileto vivió hacia
DEFINIR ELEMENTOS DEL SISTEMA DE COORDENADAS RECTANGULARES PÁGINA 4 IDENTIFICAR LAS COORDENADAS DE UN PUNTO EN EL PLANO CARTECIANO PÁGINA 4
B Lugares geométricos en el plano Evaluación diagnóstica PÁGINA R. M.. Unidad geométrica mínima. No tiene longitud, área ni volumen.. La parte de una línea recta comprendida entre los puntos A B. A B.
EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS
Colegio Ntra. Sra. de las Escuelas Pías Dpto. de Matemáticas EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS 1. Un ángulo agudo de un triángulo rectángulo mide la mitad que el otro.
LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90
LA GEOMETRÍA PLANA La geometría plana trata de aquellos elementos que solo tienen dos dimensiones y, que por lo tanto, se encuentran y operan en un plano. Los elementos básicos con los que se suele trabajar
XX OLIMPIADA NACIONAL DE MATEMÁTICA TERCERA RONDA REGIONAL - 6 DE SETIEMBRE DE NIVEL 1. Nombre y Apellido:... Puntaje:...
TERCERA RONDA REGIONAL - 6 DE SETIEMBRE DE 2008 - NIVEL 1 Nombre y Apellido:................................. Puntaje:.................... Colegio:................................... Grado:...........
GEOMETRÍA ANALÍTICA PARA LA CLASE. A (x 2 ;y 2 ) y 2. d(a,b) y 2 y 1. x 1 x 2. y 1. B (x 1 ;y 1 ) x 2. Geometría Analítica DISTANCIA ENTRE DOS PUNTOS
GEOMETRÍA ANALÍTICA La Geometría Analítica hace uso del Álgebra y la Geometría plana. Con ella expresamos y resolvemos fácilmente problemas geométricos de forma algebraica, siendo los sistemas de coordenadas
4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES
4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES Y EL TEOREMA DE PITÁGORAS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS. 4.1.1. El teorema de Thales y consecuencias. Thales de Mileto vivió hacia
4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES
4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES Y EL TEOREMA DE PITÁGORAS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 4.1.1. El teorema de Thales y consecuencias. 4.1.1. El teorema
8. POLÍGONOS Y FIGURAS CIRCULARES
8. POLÍGONOS Y FIGURAS CIRCULARES 1. Los ángulos del triángulo ABC de la siguiente gura miden: m A = 60 o, m B = 100 o. Prolongando AB tal que BD = BC, los ángulos del triángulo CBD miden: a) B 80 o, C
SOLUCIONES PRIMER NIVEL
SOLUCIONES PRIMER NIVEL 1. Los cuatro polígonos de la figura son regulares. Halla los valores de los tres ángulos, de vértice A limitados por dos lados de los polígonos dados, indicados en la figura. Solución:
Polígonos. 6 K ˆ 5ˆ 5. De 1: s alternos internos entre paralelas
Polígonos. Ilustración 14: En un paralelogramo ABCD, las bisectrices de A ) y C ) cortan las prolongaciones de BC y DA en E y F respectivamente. a.) Demostrar que AFCE es un paralelogramo. b.) Demostrar
Unidad 4Transformaciones geométricas
4.1. Dados los puntos A, B y C sobre una recta r, de manera que AB = 20 mm y BC = 20 mm, determina sobre r el punto D para que la razón doble (ABCD) = 19/14. 1. Por los puntos A y B de la recta r se trazan
Módulo 17. Capítulo 4: Cuadriláteros. 1. En las siguientes figuras (1 al 9) determine el valor de cada variable. Figura 1 Figura 2.
Módulo 17 1. En las siguientes figuras (1 al 9) determine el valor de cada variable. Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 Figura 6 210 Capítulo 4: Cuadriláteros Figura 7 Figura 8 Figura 9 2. En
27.- La diferencia entre el lado de un triangulo equilátero y su altura es 12 cm. Cuanto mide el perímetro del triangulo?
EJERCICIOS 1.- Calcular la altura a la hipotenusa de un triángulo rectángulo cuyos catetos miden 6 y 8 cm. 5 2.- En un triángulo rectángulo, un cateto mide 15 cm., y la proyección del otro sobre la hipotenusa
Guía Nº 3. CONTENIDOS: Perímetro y Área Nombre: Marque la alternativa correcta. Realice sus cálculos al costado de cada ejercicio.
SUBSECTOR : Electivo de Álgebra y Geometría NIVELES : IIIº/VIº Medio PROFESORES : Martín Andrés Martínez Santana AÑO : 017 CONTENIDOS: Perímetro y Área Nombre: Guía Nº IIIº/IV Marque la alternativa correcta.
EDUCACIÓN PLÁSTICA Y VISUAL. Trabajo de Recuperación de Pendientes Para 3º ESO. Geometría. IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1
EDUCACIÓN PLÁSTICA Y VISUAL Trabajo de Recuperación de Pendientes Para 3º ESO Geometría IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1 TEOREMA DE THALES El Teorema de Thales sirve para dividir un segmento
EGRESADOS. Matemática PROGRAMA. Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano. Ejercicios PSU
PROGRAMA EGRESADOS Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano Ejercicios PSU 1. Si P(3, 4) y Q(8, 2), entonces el punto medio de PQ es A) (11, 2) D) (5, 2) B) ( 5 2, 3 ) E)
SGUICEG024MT22-A16V1. SOLUCIONARIO Ubicación de puntos, distancia y longitudes en el plano cartesiano
SGUICEG04MT-A16V1 SOLUCIONARIO Ubicación de puntos, distancia longitudes en el plano cartesiano 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA UBICACIÓN DE PUNTOS, DISTANCIA Y LONGITUDES EN EL PLANO CARTESIANO Ítem
MATEMÁTICA Semejanza Guía Nº 4
MATEMÁTICA Semejanza Guía Nº 4 APELLIDO: Prof. Karina G. Rizzo. Las figuras tienen la misma forma pero distinto tamaño. No son iguales; son SEMEJANTES. 2. a) Cuando se indica construir hay que trabajar
Ejercicios Resueltos: Geometría Plana y del Espacio
Ejercicios Resueltos: Geometría Plana y del Espacio 1. Determine el valor del ángulo en el triángulo de la figura: Ejercicios extraídos de pruebas parciales. Roberto Vásquez B. x x 4x x x 180º 1x 180º
unidad 9 Problemas métricos en el plano
unidad 9 Problemas métricos en el plano Propiedades de los ángulo en los polígonos Página 1 Los ángulos de un triángulo suman 180. Los ángulos de un polígono de n lados suman 180 (n 2), pues se puede descomponer
Clasificación de polígonos según sus lados
POLÍGONOS Polígonos Un polígono es la región del plano limitada por tres o más segmentos. Elementos de un polígono Lados Son los segmentos que lo limitan. Vértices Son los puntos donde concurren dos lados.
open green road Guía Matemática tutora: Jacky Moreno .co
Guía Matemática PERÍMETRO Y ÁREA tutora: Jacky Moreno.co 1. Perímetro y área de figuras planas Los registros más antiguos que se tienen del campo de la geometría corresponden a la cultura mesopotámica,
Fundación Uno. 2. En la figura, BD es una altura del triángulo ABC. Cuál es el valor de b a?
ENCUENTRO # 51 TEMA: Semejanza de triángulo. CONTENIDOS: 1. Razones y proporciones(teorema de Tales). 2. Criterios de Semejanza. 3. Ejercicios de aplicación. Ejercicio Reto 1. Examen de la UNI 2014 En
Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA
Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA ASIGNATURA: Cálculo Diferencial e Integral I PROFESOR: José Alexander Echeverría Ruiz CUATRIMESTRE: Segundo TÍTULO DE LA
Construcción de formas poligonales. Polígonos en la cúpula gótica de la catedral de Burgos (ISFTIC. Banco de imágenes).
UNIDAD 2 Construcción de formas poligonales Polígonos en la cúpula gótica de la catedral de Burgos (ISFTIC. Banco de imágenes). E n esta Unidad se presentan construcciones de triángulos a partir de datos
I) Resuelve y encierra en un círculo la alternativa correcta.
entro Educacional San arlos de ragón. oordinación cadémica Enseñanza Media. Sector: Matemática. Prof.: Ximena Gallegos H. 1 Guía Nº 8 PSU Matemática NM : Áreas y Perímetros Nombre: urso: Fecha: ontenido:
open green road Guía Matemática SEMEJANZA tutora: Jacky Moreno .cl
Guía Matemática SEMEJANZA tutora: Jacky Moreno.cl 1. Semejanza En el lenguaje que manejamos en nuestro diario vivir utilizamos la palabra semejanza para referirnos a que dos cosas comparten algunas características
ELEMENTOS DE GEOMETRÍA
LONGITUDES Y ÁREAS. 1. Perímetro y área. 1.1. Medidas del rectángulo. 1.2. Medidas del cuadrado. 1.3. Medidas del rombo. 1.4. Medidas del romboide. 1.5. Medidas de un paralelogramo cualquiera. 1.6. Medidas
CUADERNILLO RECUPERACIÓN DE PENDIENTES
Cuadernillo de recuperación. ª Evaluación Curso 017/018 CUADERNILLO RECUPERACIÓN DE PENDIENTES CURSO 017/018 MATEMÁTICAS ORIENTADAS A LAS ENSEÑANZAS APLICADAS 3º E.S.O. ª EVALUACIÓN Los ejercicios deben
Guía College Board 2012 Rev 28 Página 48 de 120. NOTA: La figura no está dibujada a escala.
Conceptos de geometría Las figuras que acompañan a los ejercicios en la prueba tienen el propósito de proveerle información útil para resolver los problemas. Las figuras están dibujadas con la mayor precisión
ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2.
1. Resolver las siguientes ecuaciones en Q. ARITMÉTICA a) b) 3. x + 1 = 3 83 3,90x x = 3 31 c) 0,x + x 4,16 = 6 d) ( x ) ( x ) + 3 1 = + 1 4 e) f) g) x x + = 0,3 0, 6x 3 0, 6 1x + 6x = 0,3 8 0,86x 0,73
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #3
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #3 ÁREA Y PERÍMETRO DE FIGURAS PLANAS LINEA POLIGONAL: Se llama línea poligonal a la gura formada por la unión de segmentos de
2. De acuerdo a lo determinado en el numeral anterior, alguno de los polígonos es simple?. Justifique su respuesta.
8.16 EJERCICIOS PROPUESTOS Temas: Poligonal. Polígonos. Cuadriláteros convexos. 1. En las figuras siguientes B está entre A y C; K, está entre S y M; D, H, V, T son colineales. O está entre P y Q y O está
Semejanza de ejercicio. Eduardo Armienta
Semejanza de ejercicio Eduardo Armienta Un triangulo tiene como medidas de sus lados 27 metros, 32 metros y 40 metros y un dibujo a escala de lados 135 metros, 160 metros y 200 metros. Son semejantes estos
Soluciones Nota nº 1
Soluciones Nota nº 1 Problemas Propuestos 1- En el paralelogramo ABCD el ángulo en el vértice A es 30º Cuánto miden los ángulos en los vértices restantes? Solución: En un paralelogramo, los ángulos contiguos
XXI OLIMPIADA NACIONAL DE MATEMÁTICA
TERCERA RONDA REGIONAL - 22 DE AGOSTO DE 2009 - NIVEL 1 Nombre y Apellido:................................. Puntaje:.................... Colegio:................................... Grado:........... Sección:..........
9-1 Cómo desarrollar fórmulas para triángulos y cuadriláteros (págs )
Vocabulario ángulo central de un polígono regular.... 601 apotema............................... 601 centro de un círculo..................... 600 centro de un polígono regular........... 601 círculo.................................
Matemática. Guía: Un segmento también se puede dividir GUINV006M2-A17V1
Matemática Guía: Un segmento también se puede dividir GUINV006M2-17V1 Matemática - Segundo Medio Sección 1 Me concentro Objetivo Establecer relaciones proporcionales entre segmentos. Dividir un segmento
MATEMÁTICAS-FACSÍMIL N 12
MATEMÁTICAS-FACSÍMIL N 12 1. Se define A) B) C) E) 1 1 9 1 6 21 9 49 2 m p m p 2 1 =, luego = s t s t 5 2 2. En la figura ABC es equilátero y DCB es recto. Cuál(es) de las siguientes afirmaciones es(son)
Areas y perímetros de triángulos.
Areas y perímetros de triángulos. Teorema de Pitágoras. Propiedades de las medidas de los lados de todo triángulo. Area de un triángulo rectángulo y cualquiera. Perímetro y semiperímetro de un triángulo
MATEMÁTICA-PRIMER AÑO REVISIÓN INTEGRADORA. A) Reproduce la siguiente figura, luego trace las bisectrices de los ángulos ACD y BCD.
Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA-PRIMER AÑO REVISIÓN INTEGRADORA Construcciones con regla no graduada y compás A) Reproduce la siguiente figura, luego trace las
SGUICES029MT22-A17V1. Bloque 22 Guía: Teorema de Thales y división de segmentos
SGUICES09MT-A17V1 Bloque Guía: Teorema de Thales y división de segmentos TABLA DE CORRECCIÓN TEOREMA DE THALES Y DIVISIÓN DE SEGMENTOS N Clave Dificultad estimada 1 C Comprensión Media B Comprensión Media
1. En la siguiente figura, asocie un término del lado izquierdo con los nombres del lado derecho.
TALLER # 3 DE GEOMETRÍA: CIRCUNFERENCIAS Y POLIGONOS PROFESOR: MANUEL J. SALAZAR JIMENEZ 1. En la siguiente figura, asocie un término del lado izquierdo con los nombres del lado derecho. a) OE 1. Radio
Geometría Plana y Trigonometría (SEP-INAOE)
xamen -Nov-008 Geometría Plana y Trigonometría (SP-IN) Nombre completo: Nombre instructor: No. de grupo: alificación: 1.- Los radios de dos circunferencias son 10 y 16 cm. Hallar la distancia entre los
CICLO ESCOLAR: SEMESTRE: ENERO JUNIO 2018 ACTIVIDAD DE INTEGRADORA ETAPA 2 DE MATEMÁTICAS II FECHA: MARZO 2018
UANL UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN CICLO ESCOLAR: 2017 2018 SEMESTRE: ENERO JUNIO 2018 ACTIVIDAD DE INTEGRADORA ETAPA 2 DE MATEMÁTICAS II FECHA: MARZO 2018 ELABORÓ: ACADEMIA DE MATEMÁTICAS SEGUNDO
Segmentos proporcionales
Septiembre Diciembre 2008 INAOE 9/1 Hallar las razones directas e inversas de los segmentos a y b, sabiendo que: (1) a = 18 m, b = 24 m (3) a = 25 cm, b = 5 cm (5) a = 2.5 dm, b = 50 cm (7) a = 5 Hm, b
Malas Identifíquese con un número secreto de cuatro dígitos en la carátula del examen y en la Tarjeta de Respuestas.
CÓDIGO: PUNTAJE EJÉRCITO DE CHILE COMANDO DE INSTITUTOS Y DOCTRINA Academia Politécnica Militar NOTA EXAMEN DE ADMISIÓN 010 GEOMETRÍA I.- GENERALIDADES: A.- OBJETIVO Determinar si el oficial postulante
MATEMÁTICA-PRIMER AÑO REVISIÓN INTEGRADORA. A) Reproduce la siguiente figura, luego trace las bisectrices de los ángulos ACD y BCD.
Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA-PRIMER AÑO REVISIÓN INTEGRADORA Construcciones con regla no graduada y compás A) Reproduce la siguiente figura, luego trace las
Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:
3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-
SOLUCIONARIO Unidad 3Proporcionalidad, semejanza y escalas
3.1. Por los puntos M y N dados, traza dos rectas m y n de tal manera que la recta r, también dada, sea la bisectriz de ambas. 1. Se determina el punto M simétrico de M respecto de la recta r: por M se
La Geometría del triángulo TEMA 6
La Geometría del triángulo TEMA 6 Diana Barredo Blanco Profesora de Matemáticas I.E.S. Luis de Camoens (CEUTA) En este tema vamos a ver algunas aplicaciones y ejemplos de los teoremas vistos en los dos
Polígonos IES BELLAVISTA
Polígonos IES BELLAVISTA Polígonos: definiciones Un polígono es la porción de plano limitada por rectas que se cortan. Polígono regular: el que tiene todos los lados y ángulos iguales. Polígono irregular:
8 GEOMETRÍA DEL PLANO
8 GEOMETRÍ DEL PLNO EJERIIOS PR ENTRENRSE Ángulos y triángulos 8.6 Halla la medida del ángulo p en el siguiente triángulo. 6 4 180 6 p 4 p 180 6 4 11 8.7 alcula la suma de los ángulos interiores de un
1 Ángulos en las figuras planas
Unidad 11. Elementos de geometría plana 1 Ángulos en las figuras planas Página 139 1. Cinco de los ángulos de un heágono irregular miden 147, 101, 93, 1 y 134. Halla la medida del seto ángulo. Los seis
D) ( 2 5, ) 1 r = entonces está ubicado. x Q. Sesión 7. Unidad IV Conceptos básicos.
Sesión 7 Unidad IV Conceptos básicos. A. Geometría unidimensional (segmentos dirigidos y razón de división)..- La longitud de PQ es cero y P(-8/). La coordenada de Q es: /8 B) -8/ 8/ PQ.- Si un segmento
PERÍMETRO Y ÁREA DE UN POLÍGONO
PERÍMETRO Y ÁREA DE UN POLÍGONO - Área y perímetro del triángulo - Cálculo del perímetro Es la longitud de su contorno ó la suma de sus lados. P = a + b + c Recuerda: - El perímetro de un triángulo escaleno
FICHA DE TRABAJO Nº 14
Nombre FICHA DE TRABAJO Nº 14 Nº orden Bimestre IV 3ºgrado - sección A B C D Ciclo III Fecha: - 10-1 Área Matemática Tema SEGMENTOS ELEMENTOS FUNDAMENTALES DE LA GEOMETRÍA La geometría se basa en tres
