GUIÓN DE LA SESIÓN DE PRÁCTICAS Nº 1 Medida de focales.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "GUIÓN DE LA SESIÓN DE PRÁCTICAS Nº 1 Medida de focales."

Transcripción

1 GUIÓN DE LA SESIÓN DE PRÁCTICAS Nº 1 Medida de focales. Objetivos de la práctica: Medida de la distancia focal de una lente convergente por tres métodos distintos (uno de los cuales permite la localización de los planos principales también) y comparación entre ellos. Medida de la distancia focal de una lente divergente por dos métodos adicionales. Realización del experimento: A) Lente convergente. A.1) Método de Cornu. Este método se basa en el uso de la relación paraxial de Newton zz =ff (ecuación 1.3 del Trabajo Previo), que para lentes sumergidas en aire adopta la forma: zz =-f 2. Vamos a medir z y z para dos objetos diferentes, y a partir de estas medidas calcularemos dos distancias focales cuya media se toma como la distancia focal de la lente convergente. Ya que z=fo y z =F O, para medir ambos necesitamos localizar los focos objeto e imagen y también el objeto O y su imagen O. Para esto nos va a servir el microscopio de banco, pues cuando consigamos ver nítido un determinado objeto o imagen a través del microscopio de banco, éste estará a una distancia fija de dicho objeto o imagen. Como debemos localizar los focos, necesitamos un objeto adicional que esté en el infinito, y utilizaremos la reversibilidad de las trayectorias luminosas para localizar el foco objeto. Para conseguir este objeto en el infinito, el primer paso es construir un colimador con la fuente incandescente, la rendija que colocamos adosada a ella y la lente convergente. La forma de hacerlo se explica en el Trabajo Previo. Los dos objetos que vamos a utilizar (figura 1.6) son dos trazos con rotulador sobre cada una de las caras de la lente convergente L1. Llamaremos Oa al trazo azul, Or al trazo rojo. En la primera tanda de medidas, tras el colimador situaremos la lente con Oa (línea continua) por la parte del colimador, como se ve en la figura 1.6. S 1 S 2 H H Colimador Figura 1.6 1

2 La imagen de la rendija estará sobre F, y situando el microscopio de banco por la parte de Or (derecha de la lente, según el esquema), podremos localizar F, la imagen del trazo azul O a y el trazo rojo Or. Anotamos estas tres tandas de medidas (posiciones del microscopio de banco en las que a través de él vemos nítida la rendija, el trazo azul y el trazo rojo, respectivamente). Con ellas, ya que el microscopio de banco, una vez enfocado, siempre queda a una distancia fija del objeto que enfoca, podemos calcular la distancia entre O a y F (z a), y la distancia entre F y Or (z r, aplicando reversibilidad de trayectorias, pues si la luz viniera de derecha a izquierda, el foco objeto de la lente estaría justo sobre F ). Para las dos medidas que nos faltan (za y z r), necesitamos precisamente que la luz venga por la derecha, lo cual implicaría trasladar el colimador. Como esto es bastante engorroso, simplificamos utilizando de nuevo la reversibilidad de trayectorias y simplemente le damos la vuelta a la lente, con lo que Or queda del lado del colimador, que es lo que nos interesa. Tomamos ahora la segunda tanda de medidas que nos permite localizar F, Oa y O r, y medir por diferencia de posiciones za y z r. Teniendo en cuenta que z y z son de signo contrario, y reflexionando sobre el signo correcto de cada una con luz de izquierda a derecha, podemos aplicar ahora la ecuación de Newton para determinar f a partir del trazo azul (f a) y del trazo rojo (f r), con sus errores correspondientes. Veremos que ambas difieren ligeramente. La distancia focal imagen de la lente es la media de ambas. A.2) Método de Bessel Utilizamos en este método las dos posiciones de Bessel de la lente convergente utilizada en el método de Cornu. Para obtener las dos posiciones de Bessel, necesitamos que nuestro objeto (la fuente con la rendija adosada) esté lo bastante separado de la posición de su imagen a través de la lente, que vamos a recoger sobre una pantalla, ya que dicha imagen será real. Por ello, situamos entonces la pantalla bastante separada de la fuente (todo lo que nos permita la longitud del banco óptico). Entonces, situamos la lente sobre el banco y desplazándola comprobamos que hay efectivamente dos posiciones de la misma para las cuales aparece una imagen de la rendija sobre la pantalla. Una vez comprobado esto, fijamos las posiciones de rendija y pantalla y medimos sobre el banco la distancia D entre ambas. La segunda medida que necesitamos es la distancia existente entre las dos posiciones de Bessel, para lo cual situaremos la lente en una de ellas y anotaremos su posición sobre el banco (tanda de medidas), repitiendo la operación para la segunda posición. Esto nos permitirá calcular la distancia entre las dos posiciones d. La distancia focal imagen de la lente la obtendremos (según se ha deducido en las cuestiones del Trabajo Previo) como: 2 2 D d f ' = (1.7) 4D Calculamos entonces f con su correspondiente error. 2

3 A.3) Método de Davanne-Martin. Este método se basa en la localización de los planos antiprincipales y el foco imagen de un s.o. convergente sumergido en aire. Como se ha explicado en el Trabajo Previo, los planos antiprincipales son aquellos planos objeto e imagen para los cuales el aumento lateral vale -1, o sea, la imagen es invertida y del mismo tamaño que el objeto. Para localizarlos, hay que fijar la posición del sistema sobre el banco, y luego colocar el objeto en una posición cualquiera para la que haya imagen real, localizar dicha imagen y comparar su tamaño con el objeto. Se irá desplazando el objeto (y localizando sucesivamente la imagen real con la pantalla milimetrada) hasta conseguir que la imagen sea del mismo tamaño que el objeto. Ya que están entonces localizados los planos antiprincipales, se realiza la correspondiente tanda de medidas para las posiciones de los mismos. El siguiente paso (SIN DESPLAZAR EL SISTEMA ÓPTICO SOBRE EL BANCO) es la localización del foco imagen, que se realiza situando el objeto tras la fuente de iluminación y colocando una lente auxiliar a continuación que actúe como colimador, tal y como se hace en el método de Cornu. Cuando la lente actúa como colimadora, el objeto está en su foco objeto, con lo cual la lente forma su imagen en el infinito, y el sistema óptico forma la imagen secundaria del objeto en su plano focal imagen. Una vez localizado éste, se toma la correspondiente tanda de medidas. Ya que tenemos localizados el plano antiprincipal imagen y el foco imagen, sabemos que la distancia entre ambos debe ser igual a la distancia focal del sistema, con lo cual tenemos una medida indirecta de la distancia focal de nuestro sistema sin más que hallar sobre el banco la distancia entre los dos puntos medidos en el espacio imagen. Finalmente, podemos también estimar la posición de los planos principales del sistema, sin más que calcular sobre el banco la posición a la izquierda del foco imagen que queda a una distancia focal del propio foco. Esto podemos también aplicarlo en el caso del método de Cornu, que también localiza sobre el banco el foco imagen. Después de realizar la medida de la distancia focal para nuestro sistema óptico (objetivo con varias lentes), podemos aplicarlo también a la lente utilizada en el método de Cornu, y comparar el resultado obtenido con el proporcionado por los métodos de Cornu y Bessel. B) Lentes divergentes. B.1) Método de Gauss. Utilizamos en este método la relación de Gauss, que nos permite calcular f una vez conocidas a=ho y a =H O. Queremos aplicarlo a una lente divergente, pero debemos tener en cuenta que si queremos que la imagen O sea real, para poder localizarla sobre el banco, y esto sólo será posible si el objeto O es virtual y está entre la lente divergente y su foco objeto. Así pues, deberemos conseguir un objeto virtual que podamos localizar sobre el banco. La solución más inmediata es utilizar una lente auxiliar convergente, que de una imagen real de un objeto real (fuente con rendija). Esta imagen real actuará como objeto virtual cuando situemos la lente divergente convenientemente. El primer paso es, entonces, utilizar la lente convergente cuya focal hemos medido anteriormente para producir una imagen real O 1 de nuestro objeto, y localizar dicha imagen sobre el banco (tanda de medidas). Situaremos la lente divergente antes de esta posición, como muestra el esquema de la figura 1.7, con lo cual O 1 será objeto virtual. Si hemos situado 3

4 correctamente la lente divergente, de forma que O 1 quede entre el foco de la lente divergente F D y la propia lente, entonces desplazando la pantalla sobre el banco encontraremos una imagen real O 2. Anotamos la posición de la lente divergente y de la imagen O 2 (tanda de medidas). a O 1 ' F D O a' O 2 Figura 1.7 Entonces, calculamos a como la distancia entre la posición de la lente divergente y la de O 1, y a como la distancia entre la posición de la lente divergente y la de O 2. Luego, sólo nos resta calcular f (utilizando la ecuación (1.4) del Trabajo Previo, para una lente sumergida en medios extremos de igual índice) como: f aa ' ' = (1.8) a a' Es necesario tener en cuenta los signos correctos de a y a considerando que se trata de un objeto virtual. Calculamos también el error de f. B.2) Método de Galileo. Este método consiste en la construcción de un sistema afocal (anteojo de Galileo en nuestro caso) utilizando como objetivo una lente convergente de focal conocida (la lente a la cual hemos medido su focal en el apartado A) y como ocular una lente divergente cuya focal queremos conocer. Para construir el anteojo, el primer paso es montar un colimador como en los apartados A.1 y A.3. Una vez situado el objeto en el infinito, colocamos el objetivo sobre el banco, y situamos a continuación el ocular (lente divergente) y el telescopio de banco que hemos empleado antes para construir el colimador. Alineamos convenientemente todos los elementos, y desplazamos el ocular sobre el banco hasta que se forme una imagen nítida del objeto a través del telescopio de banco tras haber pasado el objeto por objetivo y ocular. Cuando veamos nítidamente el objeto a través del telescopio, si éste está bien puesto a punto, significa que la imagen que da el anteojo del objeto está en el infinito, y por tanto que objetivo y ocular están funcionando como sistema afocal, que era lo que pretendíamos al iniciar el procedimiento. Si el sistema es afocal, es porque el foco imagen del objetivo (lente convergente) coincide con el foco objeto del ocular (lente divergente). Según el esquema que se muestra en la figura 1.8, midiendo la distancia objetivo-ocular y restándole la distancia focal conocida del objetivo, podemos entonces hallar la distancia 4

5 focal del ocular, a la cual asignaremos su signo correspondiente aproximando la posición de los planos principales por la de la propia lente divergente. Una vez realizada la tanda de medidas correspondiente y obtenido el resultado, comparamos éste con el obtenido por el método de Gauss, reflexionando sobre las ventajas e inconvenientes de ambos métodos. f' D F D= F o f' o Figura 1.8 5

SESIÓN Nº 1: MEDIDA DE FOCALES.

SESIÓN Nº 1: MEDIDA DE FOCALES. Sesión nº 1: Medida de Focales. SESIÓN Nº 1: MEDIDA DE FOCALES. TRABAJO PREVIO 1. Conceptos fundamentales 2. Cuestiones 1. Conceptos fundamentales Aproximación paraxial: aproximación de ángulos con el

Más detalles

MEDIDA DE FOCALES Y RADIOS DE CURVATURA DE ESPEJOS

MEDIDA DE FOCALES Y RADIOS DE CURVATURA DE ESPEJOS SESIÓN 1 MEDIDA DE FOCALES Y RADIOS DE CURVATURA DE ESPEJOS TRABAJO PREVIO: MEDIDA DE FOCALES CONCEPTOS FUNDAMENTALES Aproximación paraxial Los ángulos con el eje óptico se aproximan por ángulos pequeños

Más detalles

COMPROBACIÓN DE RELACIONES PARAXIALES

COMPROBACIÓN DE RELACIONES PARAXIALES SESIÓN 4: COMPROBACIÓN DE RELACIONES PARAXIALES TRABAJO PREVIO CONCEPTOS FUNDAMENTALES Aproximación paraxial Aproximación de ángulos con el eje óptico pequeños (sen σ σ, tg σ σ). En aproximación paraxial

Más detalles

Práctica 3: Sistemas telescópicos. Objeto lejano.

Práctica 3: Sistemas telescópicos. Objeto lejano. LABORATORIO DE ÓPTICA (ÓPTICA INSTRUMENTAL) CURSO 2009/10 Práctica 3: Sistemas telescópicos. Objeto lejano. 3.1 Objetivo de la práctica El objetivo de esta práctica es el conocimiento y manejo de los distintos

Más detalles

ÓPTICA GEOMÉTRICA MODELO 2016

ÓPTICA GEOMÉTRICA MODELO 2016 ÓPTICA GEOMÉTRICA MODELO 2016 1- Se desea obtener una imagen virtual de doble tamaño que un objeto. Si se utiliza: a) Un espejo cóncavo de 40 cm de distancia focal, determine las posiciones del objeto

Más detalles

Práctica 5: El telemicroscopio

Práctica 5: El telemicroscopio LABORATORIO DE ÓPTICA (ÓPTICA INSTRUMENTAL) CURSO 009/10 Práctica 5: El telemicroscopio 5.1 Objetivo de la práctica El objetivo de esta práctica es el estudio y comprensión de los fundamentos ópticos del

Más detalles

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC:

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC: ÓPTICA GEOMÉTRICA Conceptos generales: Imágenes reales. No se ven a simple vista, pero pueden recogerse sobre una pantalla. Se forman por la intersección de rayos convergentes. Imágenes virtuales. No existen

Más detalles

Junio Pregunta 5A.- a) b) Junio Pregunta 3B.- a) b) Modelo Pregunta 4A.- a) b) Septiembre Pregunta 4B.

Junio Pregunta 5A.- a) b) Junio Pregunta 3B.- a) b) Modelo Pregunta 4A.- a) b) Septiembre Pregunta 4B. Junio 2013. Pregunta 5A.- A 10 cm de distancia del vértice de un espejo cóncavo de 30 cm de radio se sitúa un objeto de 5 cm de altura. a) Determine la altura y posición de la imagen b) Construya la imagen

Más detalles

ÓPTICA GEOMÉTRICA DIOPTRIO PLANO

ÓPTICA GEOMÉTRICA DIOPTRIO PLANO DIOPTRIO PLANO Ejercicio 1. Junio 2.013 Un objeto se encuentra delante de un espejo plano a 70 cm del mismo. a. Calcule la distancia al espejo a la que se forma la imagen y su aumento lateral. b. Realice

Más detalles

1.- LENTES. OBJETIVOS: MATERIAL:

1.- LENTES. OBJETIVOS: MATERIAL: 1.- LENTES. OBJETIVOS: - Comprobar experimentalmente el mecanismo de formación de imágenes con una lente convergente. - Identificar en el laboratorio los conceptos básicos de la óptica geométrica: lentes,

Más detalles

Seminario de Física. 2º bachillerato LOGSE. Unidad 6. Óptica

Seminario de Física. 2º bachillerato LOGSE. Unidad 6. Óptica A) Óptica Física 1.- Un haz de luz roja penetra en una lámina de vidrio de 30 cm de espesor con un ángulo de incidencia de 45 º. a) Explica si cambia el color de la luz al penetrar en el vidrio y determina

Más detalles

Lentes delgadas Clasificación de las lentes Según su forma Lentes convergentes Lentes divergentes Según su grosor

Lentes delgadas Clasificación de las lentes Según su forma Lentes convergentes Lentes divergentes Según su grosor Lentes delgadas Una lente delgada es un sistema óptico centrado formado por dos dioptrios, uno de los cuales, al menos, es esférico, y en el que los dos medios refringentes extremos poseen el mismo índice

Más detalles

Práctica de Óptica Geométrica

Práctica de Óptica Geométrica Práctica de Determinación de la distancia focal de lentes delgadas convergentes y divergentes 2 Pre - requisitos para realizar la práctica.. 2 Bibliografía recomendada en referencia al modelo teórico 2

Más detalles

Ejercicios Repaso Tema 5: Óptica geométrica

Ejercicios Repaso Tema 5: Óptica geométrica Cuestiones y Problemas Ejercicios Repaso Tema 5: Óptica geométrica Dpto. de Física 1. Una esfera de vidrio de paredes delgadas y radio R está llena de agua. A una distancia 3R de su superficie se coloca

Más detalles

Unidad 5: Óptica geométrica

Unidad 5: Óptica geométrica Unidad 5: Óptica geométrica La óptica geométrica estudia los fenómenos luminosos utilizando el concepto de rayo, sin necesidad de considerar el carácter electromagnético de la luz. La óptica geométrica

Más detalles

Sistema óptico: sistema a través del cual puede pasar la luz y que separa dos medios de distinto índice de refracción Sistemas centrados

Sistema óptico: sistema a través del cual puede pasar la luz y que separa dos medios de distinto índice de refracción Sistemas centrados Óptica geométrica. Formación de imágenes en espejos y lentes. La longitud de onda de la luz suele ser muy peueña en comparación con el tamaño de obstáculos o aberturas ue se encuentra a su paso. Esto permite

Más detalles

Práctica Nº8. REFLEXIÓN Y REFRACCIÓN DE LA LUZ. Aplicación: índice de refracción del prisma.

Práctica Nº8. REFLEXIÓN Y REFRACCIÓN DE LA LUZ. Aplicación: índice de refracción del prisma. Práctica Nº8 REFLEXIÓN Y REFRACCIÓN DE LA LUZ. Aplicación: índice de refracción del prisma. 1 Introducción. En esta práctica estudiaremos un elemento óptico: el prisma, que nos permitirá analizar los fenómenos

Más detalles

PRÁCTICA Nº.- LENTES.

PRÁCTICA Nº.- LENTES. PRÁCTICA Nº.- LENTES. Objetivo: Estudiar la ormación de imágenes de lentes delgadas y determinar la distancia ocal y la potencia de una lente convergente y de una lente divergente. undamento teórico: La

Más detalles

Distancia focal de una lente convergente (método del desplazamiento) Fundamento

Distancia focal de una lente convergente (método del desplazamiento) Fundamento Distancia focal de una lente convergente (método del desplazamiento) Fundamento En una lente convergente delgada se considera el eje principal como la recta perpendicular a la lente y que pasa por su centro.

Más detalles

n = 7, s 1 λ = c ν = , = 4, m

n = 7, s 1 λ = c ν = , = 4, m . (Andalucía, Jun. 206) Un rayo de luz con una longitud de onda de 300 nm se propaga en el interior de una fibra de vidrio, de forma que sufre reflexión total en sus caras. a) Determine para qué valores

Más detalles

Proyector Integrantes:

Proyector Integrantes: Proyector Integrantes: Bazán, Gabriel Edgardo. Ingeniería en Computación. Borgetto, Gianfranco. Ingeniería Electrónica. Hidalgo Enrico, Alfredo Patricio. Ingeniería en Computación. En el presente proyecto

Más detalles

Capítulo 1 SEMINARIO ÓPTICA GEOMÉTRICA

Capítulo 1 SEMINARIO ÓPTICA GEOMÉTRICA Capítulo 1 SEMINARIO 1. Un foco luminoso se encuentra situado en el fondo de una piscina de 3,00 metros de profundidadllena de agua. Un rayo luminoso procedente del foco que llega al ojo de un observador

Más detalles

Física II- Curso de Verano. Clase 7

Física II- Curso de Verano. Clase 7 Física II- Curso de Verano Clase 7 Formación de imágenes: ESPEJOS PLANOS Leyes de reflexión Imagen virtual, formada por la prolongación de los rayos Distancia imagen = distancia objeto d o =d i No invierte

Más detalles

TEMA 7. ÓPTICA GEOMÉTRICA.

TEMA 7. ÓPTICA GEOMÉTRICA. TEMA 7. ÓPTICA GEOMÉTRICA. I. CONCEPTOS BÁSICOS. La óptica geométrica es la parte de la Física que estudia la trayectoria de la luz cuando experimenta reflexiones y refracciones en la superficie de separación

Más detalles

Distancia focal de una lente divergente II (método de la lente convergente)

Distancia focal de una lente divergente II (método de la lente convergente) Distancia focal de una lente divergente II (método de la lente convergente) Fundamento Las imágenes proporcionadas por las lentes divergentes son virtuales cuando el objeto es real. La construcción geométrica

Más detalles

TÉCNICAS EXPERIMENTALES EN FÍSICA II (ÓPTICA)

TÉCNICAS EXPERIMENTALES EN FÍSICA II (ÓPTICA) CURSO ACADÉMICO 2010-11 GUÍA DOCENTE DE LA ASIGNATURA TÉCNICAS EXPERIMENTALES EN FÍSICA II (ÓPTICA) DEPARTAMENTO DE ÓPTICA. UNIVERSIDAD DE GRANADA. GUÍA DOCENTE DE LA ASIGNATURA TÉCNICAS EXPERIMENTALES

Más detalles

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2 E=hf;p=mv;F=dp/dt;I=Q/t;Ec=mv 2 /2; TEMA 6: ÓPTICA F=KQq/r 2 ;L=rxp;x=Asen(ωt+φo);v=λf c 2 =1/εoµo;A=πr 2 ;T 2 =4π 2 /GMr 3 ;F=ma; L=dM/dtiopasdfghjklzxcvbvv=dr/dt; M=rxF;sspmoqqqqqqqqqqqp=h/λ; Ejercicios

Más detalles

INTRODUCCIÓN A LA PERSPECTIVA CÓNICA OBLICUA

INTRODUCCIÓN A LA PERSPECTIVA CÓNICA OBLICUA INTRODUCCIÓN A LA PERSPECTIVA CÓNICA OBLICUA El sistema cónico se diferencia de los demás sistemas de representación estudiados (sistema diédrico y sistemas axonométricos) en el criterio de proyección

Más detalles

ÓPTICA GEOMÉTRICA Tipos de imágenes Imagen real Imagen virtual Imágenes en los espejos planos

ÓPTICA GEOMÉTRICA Tipos de imágenes Imagen real Imagen virtual Imágenes en los espejos planos ÓPTICA GEOMÉTRICA Tipos de imágenes Imagen real, es cuando está formada sobre los propios rayos. Estas imágenes se pueden recoger sobre una pantalla. Imagen virtual, es cuando está formada por la prolongación

Más detalles

IV - ÓPTICA PAU.98 PAU.98

IV - ÓPTICA PAU.98 PAU.98 1.- Dónde debe colocarse un objeto para que un espejo cóncavo forme imágenes virtuales?. Qué tamaño tienen estas imágenes?. Realiza las construcciones geométricas necesarias para su explicación PAU.94

Más detalles

La luz. Según los datos del problema se puede esbozar el siguiente dibujo:

La luz. Según los datos del problema se puede esbozar el siguiente dibujo: La luz 1. Se hace incidir sobre un prisma de 60º e índice de refracció un rayo luminoso que forma un ángulo de 45º con la normal. Determinar: a) El ángulo de refracción en el interior del prisma. b) El

Más detalles

Práctica Módulo de torsión

Práctica Módulo de torsión Práctica Módulo de torsión Objetivo eterminar el módulo de torsión de varillas de distintos materiales por los métodos estático y dinámico. Material Aparato de torsión representado en la figura, varillas

Más detalles

Laboratorio de Optica

Laboratorio de Optica Laboratorio de Optica 5. Lentes Delgadas Neil Bruce Laboratorio de Optica Aplicada, Centro de Instrumentos, U.N.A.M., A.P. 70-186, México, 04510, D.F. Objetivos Veriicar las ecuaciones que relacionan la

Más detalles

Práctica 6: Redes de difracción F2 ByG 2º Cuat 2005

Práctica 6: Redes de difracción F2 ByG 2º Cuat 2005 Práctica 6: Redes de difracción F2 ByG 2º Cuat 2005 Objetivos: Se propone medir el espectro de una lámpara de sodio utilizando redes de difracción. Se propone determinar los límites del espectro visible

Más detalles

TEMA 3. LUGARES GEOMÉTRICOS

TEMA 3. LUGARES GEOMÉTRICOS TEMA 3. LUGARES GEOMÉTRICOS LA HERRAMIENTA LUGAR GEOMÉTRICO Para construir un lugar geométrico necesitaremos dos objetos: un punto que será el que describirá el lugar geométrico, y otro que será el punto

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u)

Más detalles

Practica nº n 5: Fenómenos de Difracción.

Practica nº n 5: Fenómenos de Difracción. Facultad de Farmacia Universidad de Granada Departamento de Química Física Practica nº n 5: Fenómenos de Difracción. OBJETIVOS 1.Observar los fenómenos de difracción Rendija simple Rendija doble 2.Calcular

Más detalles

Ejercicio 1. y el ángulo de refracción será:

Ejercicio 1. y el ángulo de refracción será: Ejercicio 1 Un rayo de luz que se propaga en el aire entra en el agua con un ángulo de incidencia de 45º. Si el índice de refracción del agua es de 1,33, cuál es el ángulo de refracción? Aplicando la ley

Más detalles

Seminario 4: Óptica Geométrica

Seminario 4: Óptica Geométrica Seminario 4: Óptica Geométrica Fabián Andrés Torres Ruiz Departamento de Física,, Chile 7 de Abril de 2007. Problemas. (Problema 5, capitulo 36,Física, Raymond A. Serway, V2, cuarta edición) Un espejo

Más detalles

Problemas de Óptica. PAU (PAEG)

Problemas de Óptica. PAU (PAEG) 1. (Junio 09 ) Observamos una pequeña piedra que esta incrustada bajo una plancha de hielo, razona si su profundidad aparente es mayor o menor que su profundidad real. Traza un diagrama de rayos para justificar

Más detalles

PRÁCTICA - I DETERMINACION DE LOS ELEMENTOS CARDINALES DE UN SISTEMA ÓPTICO

PRÁCTICA - I DETERMINACION DE LOS ELEMENTOS CARDINALES DE UN SISTEMA ÓPTICO PRÁCTICA - I DETERMINACION DE LOS ELEMENTOS CARDINALES DE UN SISTEMA ÓPTICO 1- OBJETIVO Y FUNDAMENTO TEORICO A efectos de cálculo, el comportamiento paraxial de un sistema óptico puede resumirse en el

Más detalles

LAS LENTES Y SUS CARACTERÍSTICAS

LAS LENTES Y SUS CARACTERÍSTICAS LAS LENTES Y SUS CARACTERÍSTICAS Las lentes son cuerpos transparentes limitados por dos superficies esféricas o por una esférica y una plana, las lentes se emplean a fin de desviar las rayos luminosos

Más detalles

INTRODUCCIÓN A LA PERSPECTIVA CÓNICA FRONTAL

INTRODUCCIÓN A LA PERSPECTIVA CÓNICA FRONTAL INTRODUCCIÓN A LA PERSPECTIVA CÓNICA FRONTAL El sistema cónico se diferencia de los demás sistemas de representación estudiados (sistema diédrico y sistemas axonométricos) en el criterio de proyección

Más detalles

TEMA IV EL OJO EMÉTROPE. VI - Tamaño de la imagen sobre la retina de un objeto extenso

TEMA IV EL OJO EMÉTROPE. VI - Tamaño de la imagen sobre la retina de un objeto extenso TEMA IV EL OJO EMÉTRO I - Concepto de ojo emétropre II - Punto remoto III - La ecuación de Gauss en el ojo emétrope IV - Imagen de un punto enfocado V - El círculo de desenfoque VI - Tamaño de la imagen

Más detalles

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático Análisis Matemático Unidad 4 - Límite de una función en un punto Límite de una función en un punto El límite de una función para un valor de x es el valor al que la función tiende en los alrededores de

Más detalles

10. Óptica geométrica (I)

10. Óptica geométrica (I) 10. Óptica geométrica (I) Elementos de óptica geométrica Centro de curvatura: centro de la superficie esférica a la que pertenece el dioptrio esférico Radio de curvatura: radio de la superficie esférica

Más detalles

Resolución del cubo de 4x4x4. Ibero Rubik

Resolución del cubo de 4x4x4. Ibero Rubik Resolución del cubo de 4x4x4 Ibero Rubik Índice 0. Introducción 3 1. Centros 3 2. Aristas 6 3. Cruz, esquinas y aristas de la segunda capa 8 4. Cruz de la capa superior 9 5. Paridad. Colocación de esquinas

Más detalles

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un rayo de luz de frecuencia 5 10¹⁴ Hz incide con un ángulo de incidencia de 30 sobre una lámina de vidrio de caras plano-paralelas de espesor

Más detalles

PRÁCTICA Nº3 REFLEXIÓN Y REFRACCIÓN

PRÁCTICA Nº3 REFLEXIÓN Y REFRACCIÓN PRÁCTICA Nº3 REFLEXIÓN Y REFRACCIÓN 1.- Equipamiento y montaje Componentes del equipo Los accesorios necesarios para la realización de la presente práctica se enumeran a continuación: 1. Caja de Almacenamiento

Más detalles

Física 2 Biólogos y Geólogos - Curso de Verano 2006 Turno: Tarde

Física 2 Biólogos y Geólogos - Curso de Verano 2006 Turno: Tarde Física 2 Biólogos y Geólogos - Curso de Verano 2006 Turno: Tarde Serie 2: Objetos. Formación de imágenes. Imágenes. Dioptras esféricas y planas. Espejos esféricos y planos. Lentes delgadas, sistemas de

Más detalles

4. Dioptrios. Vamos a estudiar dioptrios esféricos con rayos paraxiales. La ecuación de un dioptrio esférico para rayos paraxiales

4. Dioptrios. Vamos a estudiar dioptrios esféricos con rayos paraxiales. La ecuación de un dioptrio esférico para rayos paraxiales 4. Dioptrios. Un dioptrio es la superficie de separación entre dos medios con distinto índice de refracción, pero isótropos, homogéneos y transparente. Un rayo paraxial es aquel que forma un ángulo muy

Más detalles

TEMA 11 : ÓPTICA GEOMÉTRICA

TEMA 11 : ÓPTICA GEOMÉTRICA . INTRODUCCIÓN A LA ÓPTICA GEOMÉTRICA Las leyes sobre las que se estructura la óptica geométrica son: Ley de propagación rectilínea de la luz Ley de independencia de los rayos luminosos. Cada rayo es independiente

Más detalles

TEMA 10: INSTRUMENTOS ÓPTICOS.

TEMA 10: INSTRUMENTOS ÓPTICOS. TEMA 10: INSTRUMENTOS ÓPTICOS. 10.1. El ojo humano. De forma muy simplificada, podemos considerar que el ojo humano está constituido por una lente (formada por la córnea y el cristalino) y una superficie

Más detalles

Capítulo 23. Microscopios

Capítulo 23. Microscopios Capítulo 23 Microscopios 1 Aumento angular El aumento angular m (a) de una lente convergente viene dado por: m (a) = tan θ rmim tan θ ob = q 0.25 (d + q )p en donde d es la separación entre la lente y

Más detalles

3.3.6 Introducción a los Instrumentos Ópticos

3.3.6 Introducción a los Instrumentos Ópticos GUÍA DE ESTUDIO Complemento a la Unidad 3.3 LUZ 3.3.6 Introducción a los Instrumentos Ópticos. Instrumentos de Lente.. Imágenes Reales... El Proyector Opera con el objeto (diapositiva) muy cerca de la

Más detalles

Lentes Clasificación Se clasifican en dos grupos convergentes (positivas) y divergentes (negativas), las cuales a su vez pueden adoptar formas

Lentes Clasificación Se clasifican en dos grupos convergentes (positivas) y divergentes (negativas), las cuales a su vez pueden adoptar formas Lentes Clasificación Se clasifican en dos grupos convergentes (positivas) y divergentes (negativas), las cuales a su vez pueden adoptar formas distintas. Estas geometrías de lentes tienen las siguientes

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas V: imágenes en espejos y lentes

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas V: imágenes en espejos y lentes SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas V: imágenes en espejos y lentes SGUICES027CB32-A16V1 Solucionario guía Ondas V: imágenes en espejos y lentes Ítem Alternativa Habilidad 1 A Reconocimiento 2 D Reconocimiento

Más detalles

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ 1 ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ INTRODUCCIÓN TEÓRICA: La característica fundamental de una onda propagándose por un medio es su velocidad (v), y naturalmente, cuando la onda cambia

Más detalles

TEST DE RAZONAMIENTO NUMÉRICO. Consejos generales

TEST DE RAZONAMIENTO NUMÉRICO. Consejos generales TEST DE RAZONAMIENTO NUMÉRICO Consejos generales 1 I. INTRODUCCIÓN En lo relativo a los cálculos de porcentajes, es fundamental tener en cuenta que los porcentajes, en realidad, son referencias abstractas,

Más detalles

Cuadratura de Newton-Cotes

Cuadratura de Newton-Cotes Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación INTEGRACION NUMERICA Ayudante: Rodrigo Torres Aguirre INTEGRACION

Más detalles

Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 10: División de Polinomios Dra. Noemí L. Ruiz Limardo 009 Objetivos de la lección Al finalizar esta lección los estudiantes: Dividirán polinomios de dos o más términos por polinomios de uno y dos

Más detalles

Calculo del Centro de Gravedad de un aeromodelo

Calculo del Centro de Gravedad de un aeromodelo Calculo del Centro de Gravedad de un aeromodelo Previamente a todo lo que vamos a ver, sería interesante reflexionar sobre Qué es el centro de gravedad y por qué es tan importante? Cuatro son fundamentalmente

Más detalles

Sistemas de ecuaciones lineales dependientes de un parámetro

Sistemas de ecuaciones lineales dependientes de un parámetro Vamos a hacer uso del Teorema de Rouché-Frobenius para resolver sistemas de ecuaciones lineales de primer grado. En particular, dedicaremos este artículo a resolver sistemas de ecuaciones lineales que

Más detalles

ÓPTICA GEOMÉTRICA 1. Conceptos básicos. 2. Espejos planos. 3. Espejos esféricos. 4. Dioptrios. 5. Lentes delgadas. 6. La visión.

ÓPTICA GEOMÉTRICA 1. Conceptos básicos. 2. Espejos planos. 3. Espejos esféricos. 4. Dioptrios. 5. Lentes delgadas. 6. La visión. ÓPTICA GEOMÉTRICA 1. Conceptos básicos. 2. Espejos planos. 3. Espejos esféricos. 4. Dioptrios. 5. Lentes delgadas. 6. La visión. Física 2º bachillerato Óptica geométrica 1 ÓPTICA GEOMÉTRICA La óptica geométrica

Más detalles

Solucionario Cuaderno Estrategias y Ejercitación Ondas IV: espejos y lentes

Solucionario Cuaderno Estrategias y Ejercitación Ondas IV: espejos y lentes Solucionario Cuaderno Estrategias y Ejercitación Ondas IV: espejos y lentes Física Técnico Profesional Intensivo SCUACTC014TC82-A16V1 Solucionario cuaderno Ondas IV: espejos y lentes Ítem Alternativa Habilidad

Más detalles

SESIÓN Nº 10: ANILLOS DE NEWTON.

SESIÓN Nº 10: ANILLOS DE NEWTON. Sesión nº 10: Anillos de Newton. SESIÓN Nº 10: ANILLOS DE NEWTON. TRABAJO PREVIO 1. Conceptos fundamentales 2. Cuestiones 1. Conceptos fundamentales Interferencia óptica: Cuando dos haces de luz se cruzan

Más detalles

ds = ds = 4πr2 Kq r 2 φ = q ε

ds = ds = 4πr2 Kq r 2 φ = q ε 1 El teorema de Gauss. Supongamos una superficie que es atravesada por las líneas de fuerza de un campo eléctrico. Definimos flujo de dicho campo eléctrico a través de la superficie como φ = E S = E S

Más detalles

EXCEL Ejercicios paso a paso Excel Practica 02

EXCEL Ejercicios paso a paso Excel Practica 02 EXCEL 2010 Ejercicios paso a paso Excel Practica 02 Referencias: Relativas. Operaciones basicas con celdas. Mi primera funcion. Suma. Trabajando en uns segunda hoja del mismo libro. Seleccionar rango,

Más detalles

Bolilla 12: Óptica Geométrica

Bolilla 12: Óptica Geométrica Bolilla 12: Óptica Geométrica 1 Bolilla 12: Óptica Geométrica Los contenidos de esta bolilla están relacionados con los principios primarios que rigen el comportamiento de los instrumentos ópticos. La

Más detalles

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio,

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio, PROBLEMAS ÓPTICA 1. Una de las frecuencias utilizadas en telefonía móvil (sistema GSM) es de 900 MHz. Cuántos fotones GSM necesitamos para obtener la misma energía que con un solo fotón de luz violeta,

Más detalles

Trataremos de familiarizarnos con la medida de las distancias relativas entre estrellas y ver su aplicación en el estudio de cúmulos abiertos.

Trataremos de familiarizarnos con la medida de las distancias relativas entre estrellas y ver su aplicación en el estudio de cúmulos abiertos. ANTARES OBSERVATORIO VIRTUAL PRÁCTICA 1: MEDIDA DE DISTANCIAS ENTRE ESTRELLAS Objetivos Introducción Material Distancias entre estrellas del cúmulo Tamaño de las nebulosas de reflexión La expansión del

Más detalles

Curso Completo de Electrónica Digital. 3.7. Simplificación de funciones booleanas

Curso Completo de Electrónica Digital. 3.7. Simplificación de funciones booleanas CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez Capítulo 3 ALGEBRA DE BOOLE Continuación...

Más detalles

Sesión 1. Por qué usamos anteojos? Formando una imagen con una lupa. Lentes

Sesión 1. Por qué usamos anteojos? Formando una imagen con una lupa. Lentes Guía del Estudiante Física Cómo Mejorar nuestra Visión? Nombre: Fecha: Curso: Sesión 1 Por qué usamos anteojos? Observa el objeto digital, [Página 1. Qué Sabemos?] y responde la siguiente pregunta: Por

Más detalles

TEMA IV.- PRINCIPIOS ÓPTICOS

TEMA IV.- PRINCIPIOS ÓPTICOS Master en Optometría y Ciencias de la Visión ª Edición (99-0) TEMA IV.- PRINCIPIOS ÓPTICOS En este tema, vamos a describir las principales características de los instrumentos ópticos más utilizados, como

Más detalles

Porqué es útil estudiar los espejos y las lentes como elementos ópticos? A qué se le conoce como distancia focal de una lente o espejo?

Porqué es útil estudiar los espejos y las lentes como elementos ópticos? A qué se le conoce como distancia focal de una lente o espejo? Porqué es útil estudiar los espejos y las lentes como elementos ópticos? A qué se le conoce como distancia focal de una lente o espejo? Cómo depende la distancia focal del material que forma un espejo?

Más detalles

lím lím Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en 1: x 1 (3x2 )-lím 8 x 1 =2 x 1 x)2 -lím x 1 8 =

lím lím Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en 1: x 1 (3x2 )-lím 8 x 1 =2 x 1 x)2 -lím x 1 8 = LÍMITES LECCIÓN 7 Índice: Cálculo de ites en un punto. Epresión indeterminada L/0. Epresión indeterminada 0/0. Algunos ites de funciones irracionales. Otras técnicas básicas para el cálculo de ites. Problemas..-

Más detalles

superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ. El índice de refracción del aceite de linaza es 1,48.

superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ. El índice de refracción del aceite de linaza es 1,48. EJERCICIOS OPTICA GEOMÉTRICA. 2.- El rayo de luz que se muestra en la Figura 2, forma un ángulo de 20 0 con la normal NN a la superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ.

Más detalles

Problemas de Óptica II. Óptica geométrica 2º de bachillerato. Física

Problemas de Óptica II. Óptica geométrica 2º de bachillerato. Física 1 Problemas de Óptica II. Óptica geométrica 2º de bachillerato. Física 1. Los índices de refracción de un dioptrio esférico cóncavo, de 20,0 cm de radio, son 1,33 y 1,54 para el primero y el segundo medios.

Más detalles

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS 1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias

Más detalles

Formación de imágenes

Formación de imágenes ormación de imágenes Espejos esféricos: Cóncavos Convexos Lentes Convergentes Divergentes Salir Espejos esféricos cóncavos ormación de imágenes en el espejo esférico. a mayor distancia que el centro de

Más detalles

ÓPTICA GEOMÉTRICA. Es el fenómeno que se observa cuando un rayo de luz incide sobre una superficie y se refleja. Su estudio se basa en dos leyes:

ÓPTICA GEOMÉTRICA. Es el fenómeno que se observa cuando un rayo de luz incide sobre una superficie y se refleja. Su estudio se basa en dos leyes: ONDAS LUMINOSAS La luz que nos llega del sol (luz blanca), está compuesta por rayos de luz de diferentes colores. Este conjunto de rayos constituye lo que se llama espectro visible, el cual, es una zona

Más detalles

Curvas y transformaciones proyectivas. Curvas cónicas (II). Tangencias e intersecciones

Curvas y transformaciones proyectivas. Curvas cónicas (II). Tangencias e intersecciones Curvas y transformaciones proyectivas. Curvas cónicas (II). Tangencias e intersecciones En el tema anterior hemos estudiado las propiedades de las curvas cónicas, aprendiendo su trazado a partir de distintos

Más detalles

Solucionario de las actividades propuestas en el libro del alumno FORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO

Solucionario de las actividades propuestas en el libro del alumno FORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO Solucionario de las actividades propuestas en el libro del alumno.. FORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO Página 53. En la imagen que se forma en un espejo plano de un objeto se invierten la izquierda

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Laboratorio de Física II (ByG) 2do cuat Guía 2 y 3: Lentes e instrumentos ópticos.

Laboratorio de Física II (ByG) 2do cuat Guía 2 y 3: Lentes e instrumentos ópticos. Objetivos Laboratorio de Física II (ByG) 2do cuat. 2016 Guía 2 y 3: Lentes e instrumentos ópticos. Estudiar sistemas ópticos simples. Caracterizar una lente convergente estudiando la formación de imágenes

Más detalles

Optica PAU 18,3 10. La potencia de la lente es P 54,6 dp

Optica PAU 18,3 10. La potencia de la lente es P 54,6 dp 01. Ya que estamos en el Año Internacional de la Cristalografía, vamos a considerar un cristal muy preciado: el diamante. a) Calcula la velocidad de la luz en el diamante. b) Si un rayo de luz incide sobre

Más detalles

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN Diremos que una función y f () tiene por ite L cuando la variable independiente tiende a, y se nota por f ( ) L, cuando al acercarnos

Más detalles

4. Resolución de indeterminaciones: la regla de L Hôpital.

4. Resolución de indeterminaciones: la regla de L Hôpital. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Funciones y derivada. 4. Resolución de indeterminaciones: la regla de L Hôpital. Sean f y g dos funciones derivables en un intervalo abierto I R y sea

Más detalles

PREPARACION OLIMPIADA MATEMATICA CURSO

PREPARACION OLIMPIADA MATEMATICA CURSO Comenzaremos recordando algunos conocimientos matemáticos que nos son necesarios. Para ello veamos el concepto de factorial de un número natural. Es decir, es un producto decreciente desde el número que

Más detalles

UN SISTEMA PARA RESOLVER PROBLEMAS DE ÓPTICA. Guillermo Becerra Córdova. Universidad Autónoma Chapingo. Dpto. de Preparatoria Agrícola.

UN SISTEMA PARA RESOLVER PROBLEMAS DE ÓPTICA. Guillermo Becerra Córdova. Universidad Autónoma Chapingo. Dpto. de Preparatoria Agrícola. UN SISTEMA PARA RESOLVER PROBLEMAS DE ÓPTICA Guillermo Becerra Córdova Universidad Autónoma Chapingo Dpto. de Preparatoria Agrícola Área de Física E-mail: gllrmbecerra@yahoo.com Resumen Dentro de los cursos

Más detalles

TEMA 3 NÚMEROS DECIMALES

TEMA 3 NÚMEROS DECIMALES TEMA 3 NÚMEROS DECIMALES Criterios De Evaluación de la Unidad 1. Identificar el significado de número decimal. 2. Ordenar y representar números decimales. 3. Pasar correctamente de fracción a decimal y

Más detalles

Espejos CAPÍTULO 4. Editorial Contexto - - Canelones Espejos planos, imágenes

Espejos CAPÍTULO 4. Editorial Contexto -  - Canelones Espejos planos, imágenes APÍTULO 4 interacciones campos y ondas / física 1º b.d. ESPEJOS apítulo 4 43 Espejos Espejos planos, imágenes En la figura 1 representamos un fuente puntual de luz ubicada en A y un espejo plano. En ella

Más detalles

RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse)

RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse) RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse) 1. LUGARES GEOMÉTRICOS Definición: Se llama lugar geométrico a la figura que forman un conjunto de puntos que cumplen una determinada

Más detalles

UNIVERSIDAD NACIONAL DE MISIONES

UNIVERSIDAD NACIONAL DE MISIONES OPTICA GEOMÉTRICA PROBLEMAS PROPUESTOS 1: Un rayo que se propaga por el aire incide en la superficie de un bloque de hielo transparente (n h =1,309) formando un ángulo de 40º con la normal a dicha superficie.

Más detalles

CÓMO HALLAR LA LATITUD DE UN LUGAR? Ederlinda Viñuales Atrévete con el Universo

CÓMO HALLAR LA LATITUD DE UN LUGAR? Ederlinda Viñuales Atrévete con el Universo CÓMO HALLAR LA LATITUD DE UN LUGAR? Ederlinda Viñuales Atrévete con el Universo La latitud de un lugar de observación puede determinarse tanto de día como de noche y además por varios caminos. En este

Más detalles

Prácticas de Topografía Prof. Emilio Ramírez Juidías 2009

Prácticas de Topografía Prof. Emilio Ramírez Juidías 2009 1.- Una determinada empresa nos contrata con el fin de calcular las coordenadas X, Y, Z de un punto G, para lo cual nos especifica que nos tenemos que basar en las coordenadas conocidas de un punto A establecido

Más detalles

Tema 5: Semejanza. 1.- Introducción: Concepto de Escala y Teorema de Pitágoras.

Tema 5: Semejanza. 1.- Introducción: Concepto de Escala y Teorema de Pitágoras. Tema 5: Semejanza. En este tema nos dedicaremos al estudio de los triángulos y polígonos, y dedicaremos un apartado a un famoso teorema, que nos será de utilidad para entender la semejanza entre ellos:

Más detalles

Tema 7: Derivada de una función

Tema 7: Derivada de una función Tema 7: Derivada de una función Antes de dar la definición de derivada de una función en un punto, vamos a introducir dos ejemplos o motivaciones iniciales que nos van a dar la medida de la importancia

Más detalles