4. APLICACIONES LINEALES
|
|
|
- José Francisco Acuña Ramos
- hace 8 años
- Vistas:
Transcripción
1 Heamientas infomáticas paa el ingenieo en el estudio del algeba lineal 4. APLICACIONES LINEALES 4.1. DEFINICION DE APLICACIÓN LINEAL 4.2. EXPRESIÓN MATRICIAL DE UNA APLICACIÓN LINEAL 4.3. NÚCLEO E IMAGEN DE UNA APLICACIÓN LINEAL 4.4. CLASIFICACIÓN DE LAS APLICACIONES LINEALES 4.5. OPERACIONES CON APLICACIONES LINEALES SUMA DE APLICACIONES LINEALES PRODUCTO DE UN ESCALAR POR UNA APLICACIÓN LINEAL PRODUCTO DE APLICACIONES LINEALES Mª Isabel Eguia Ribeo Mª José González Gómez
2 Heamientas infomáticas paa el ingenieo en el estudio del algeba lineal 4. APLICACIONES LINEALES 4.1. DEFINICION DE APLICACIÓN LINEAL Sean los espacios vectoiales ( + ) ( k + ) o ( + ) ( k + ) E,,,,, y F,,,,, o definidos sobe un cuepo k. El espacio vectoial E se llama espacio oigen o de salida de la aplicación lineal f. Po ota pate, F es el espacio final o de llegada o imagen de la aplicación lineal f. Se denomina aplicación lineal f, mofismo u homomofismo ente espacios vectoiales a toda aplicación f : E F x f x ( ) que cumple la siguiente condición: x, y E α, β k f α o x + β o y = α o f x + βo f y Esta condición es equivalente a: 1. f x + y = f x + f y 2. f α o x = αo f x ( ) ( ) condiciones que se obtienen en los casos α = β = 1 (la pimea) y β = 0 (la segunda) 4.2. EXPRESIÓN MATRICIAL DE UNA APLICACIÓN LINEAL Sean dos espacios vectoiales E y F definidos sobe un cuepo k de dimensiones dim( E) = n y dim( F) = m y f : E F una aplicación lineal. U = u, u,,u V = v, v, K, v de F, se define Dadas dos bases { K } de E y { } 1 2 n 1 2 m matiz asociada a la aplicación lineal f especto a las bases U de E y V de F, a la matiz denotada po A = f cuyos elementos son las imágenes de los vectoes de una ( ) U,V base, como la U del espacio vectoial E, calculadas especto a la base V. A = f = f u,f u,,f u ( ) ( ( 1) ( 2 ) K ( n )) U,V U,V ( f ) U,V a11 a12 L a1n a a L a L L L L a a L a n = m1 m2 mn U,V Mª Isabel Eguia Ribeo Mª José González Gómez
3 Heamientas infomáticas paa el ingenieo en el estudio del algeba lineal donde a11 a12 a1n a 21 a 22 a 2n f ( u 1), f ( u 2 ) = =, KK, f ( un ) = V V V L L L a a a n1 V n2 V mn V La columna i de la matiz A ( f ) U,V vecto f ( u i ) calculadas especto a la base V. Popiedades de las matices asociadas a una aplicación lineal = coesponde a las coodenadas del Sean los espacios vectoiales ( + ) ( k + ) o ( + ) ( k + ) E,,,,, y F,,,,, o definidos sobe un cuepo k y U, T dos bases del espacio vectoial E y V, W dos bases de F y la aplicación lineal f : E F. a) La igualdad y = f x ( ) y1 f11 f12 f13 L f1p x1 f 2 21 f22 f23 f y L 2p x2 y f 3 = 31 f32 f33 L f 3p x 3 L L L L L L L y f n n1 fn2 fn3 f np x L n = p U,V U y = f x F de un vecto x E. En notación abeviada ( y) f ( u ),f ( u ),f ( u ), KK,f ( u ) ( x) Esta igualdad pemite calcula la imagen ( ) Esta imagen es igual: al poducto de dos matices. La pimea es la matiz asociada a l aplicación lineal f ente las bases U y V, la segunda es la matiz de las componentes del vecto x especto a la base U. En notación abeviada ( y) = f ( x) = ( f ) ( x) b) ( f ) = ( V) ( f ) ( T ) T,W W U,V U ) U V V U,V U Siendo ( T la matiz de cambio de base de T a U en el espacio vectoial E y ( V ) W la matiz de de cambio de base de V a W en el espacio vectoial F. Mª Isabel Eguia Ribeo Mª José González Gómez
4 Heamientas infomáticas paa el ingenieo en el estudio del algeba lineal 4.3. NÚCLEO E IMAGEN DE UNA APLICACIÓN LINEAL Dados los espacios vectoiales ( + ) ( + ) o ( + ) ( + ) aplicación lineal f : E F, se definen: E,, k,,,, F,, k,,, o y la Núcleo de f al conjunto: N f = Ke f = x E / f x = 0 = f 0 1 { F} ( F ) Imagen de f al conjunto: Im f = f x F / x E = f E Consecuencias { } ( ) ( ) ( ) Sea f : E F una aplicación lineal. Entonces a) Si A es un subespacio vectoial de E ( A E ) entonces ( ) F, f ( A) F f A es subespacio de En consecuencia, como E es un espacio vectoial entonces Im ( f ) f ( E) subespacio vectoial de F. -1 b) Si B es un subespacio de F entonces ( ) 1 Puesto que N ( f ) = f ( 0 F ) y { 0F} = es un f B es subespacio vectoial de E. es un subespacio vectoial de F, entonces se cumple que N ( f ) es un subespacio vectoial de E. c) Si U es una base de del subespacio vectoial A entonces f ( U) es una base del subespacio vectoial f ( A ). En consecuencia, elegida una base U del espacio vectoial E, entonces f ( U ) es una base de f ( E) = Im ( f ). d) Si E y F son espacios vectoiales de dimensión finita: dim ( E ) = dim( F ) = n, entonces: dim N( f ) + dim Im( f ) = n. Cálculo de los subespacios núcleo e imagen de una aplicación lineal Paa calcula los subespacios vectoiales N ( f ) e Im ( f ), asociados a una aplicación lineal ente espacios vectoiales finitos, f : E F se aplican los siguientes métodos. Se eligen dos bases: U una base de E y V base de F. Se halla ( f ) U,V matiz asociada a f en las bases U y V. Cálculo de Las ecuaciones del ( ) lineales A x = 0. N f se calculan esolviendo el sistema de ecuaciones Mª Isabel Eguia Ribeo Mª José González Gómez
5 Heamientas infomáticas paa el ingenieo en el estudio del algeba lineal Una base del subespacio vectoial de soluciones de dicho sistema es una base N f. del ( ) Cuando el N ( f ) = { 0 } entonces la aplicación f es INYECTIVA. Cálculo de Im f utilizando la ecuación En pime luga se obtiene la dimensión de ( ) dimensional dim N ( f ) + dim Im ( f ) = dim( E). Una base de Im ( f ) se obtiene a pati de las columnas de ( f ) U,V, que son pecisamente las imágenes de los vectoes de una base de E: f u,f u, K,f u. Esta afimación es consecuencia del apatado 3 del 1 V 2 V n V apatado 4. Cuando la dim Im ( f ) = dim( F) SOBREYECTIVA. entonces la aplicación f es SUPRAYECTIVA o 4.4 CLASIFICACIÓN DE LAS APLICACIONES LINEALES a) Cuando E F y la aplicación lineal f es inyectiva, a f se la llama MONOMORFISMO. b) Cuando E F y la aplicación lineal f es supayectiva o sobeyectiva, a f se la llama EPIMORFISMO. c) Cuando E F y la aplicación lineal f es biyectiva, a f se la llama ISOMORFISMO. Entonces se dice que los espacios vectoiales E y F son isomofos. d) Cuando E = F y la aplicación lineal f es inyectiva o supayectiva, a f se la llama ENDOMORFISMO. e) Cuando E = F y la aplicación lineal f es biyectiva, a f se la llama AUTOMORFISMO OPERACIONES CON APLICACIONES LINEALES Suma de aplicaciones lineales Sean los espacios vectoiales ( + ) ( + ) o ( + ) ( + ) E,, k,,, y F,, k,,, o una base U de E y ota V de F y las aplicaciones lineales f y g de E en F. La aplicación f + g es la aplicación lineal de E en F dada po A se le llama aplicación lineal suma de las aplicaciones lineales f y g. El conjunto ( ( ) + ) ( + ) L E, F,, k,,, o es el espacio vectoial de las aplicaciones lineales ente dos espacios vectoiales E y F. Mª Isabel Eguia Ribeo Mª José González Gómez
6 Heamientas infomáticas paa el ingenieo en el estudio del algeba lineal La matiz de la aplicación lineal suma de dos aplicaciones f y g es la suma de las matices asociadas a las aplicaciones lineales de f y de g ente las bases U y V.,,, PRODUCTO DE UN ESCALAR POR UNA APLICACIÓN LINEAL Sean los espacios vectoiales ( + ) ( + ) o ( + ) ( + ) E,, k,,, y F,, k,,, o una base U de E y ota V de F y la aplicación lineal f de E en F y sea el escala α k. Se denomina poducto del escala α po la aplicación lineal f a la aplicación lineal que a cada vecto x E hace coesponde α f ( x ) F. Esta aplicación lineal se la denota po α o f. Entonces: f ( x ) = f ( x ), x α o α E α k La matiz del poducto del escala α po la aplicación lineal f es el poducto de α po la matiz asociada a f ente las bases U y V.,, PRODUCTO DE APLICACIONES LINEALES Sean tes espacios vectoiales ( E, + ),(, +, ), o, ( F, + ),(, +, ), ( G, + ),( k, +, ), o y sean las bases U = { u 1,u 2, KK,up} E, { 1 2 n} = { KK }. Sean las aplicaciones lineales : y :, W w,w,,w G 1 2 m k k o y V = v,v, KK,v F y Se denomina composición o poducto de las aplicaciones f y g a la aplicación de E en G que a un vecto x Ε hace coesponde g f ( x ). Se debe obseva que la expesión se escibe en oden inveso a como se aplica. Pimeo se aplica al vecto x la aplicación f, dando como esultado la imagen y = f ( x) F y a esta imagen consideada como nuevo oigen, se le somete a la aplicación g esultando la imagen final h( x) = g f ( x) G. La aplicación h : x h( x) = g f ( x) ecibe el nombe de aplicación compuesta o poducto de las aplicaciones lineales. La composición o poducto de dos o vaias aplicaciones lineales es una aplicación lineal. Mª Isabel Eguia Ribeo Mª José González Gómez
7 Heamientas infomáticas paa el ingenieo en el estudio del algeba lineal Es de destaca que el poducto de aplicaciones no es conmutativo:. En la páctica puede ocui que una de las dos aplicaciones ó no exista. La matiz de un poducto de aplicaciones lineales es igual al poducto de las matices asociadas a ellas en las bases consideadas.,,., Mª Isabel Eguia Ribeo Mª José González Gómez
VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES
VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la
1. ESPACIOS VECTORIALES
Espacios Vectoiales Heamietas ifomáticas paa el igeieo e el estudio del algeba lieal. ESPACIOS VECTORIALES.. ESTRUCTURA DE ESPACIO VECTORIAL... Defiició..2. Ejemplos de espacios vectoiales..3. Popiedades
Con esta definición de grupo, es directo que el neutro es único, al igual que el inverso de. , donde es conmutativo, se denomina Abeliano.
Teoría de Grupos Definiciones Básicas Definición 5 (Grupo) Sea una estructura algebraica con una ley de composición interna. Decimos que es un grupo si: 1. es asociativa. 2. tiene neutro. 3. toda tiene
LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS
LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS Sea una estructura formada por un conjunto A, sobre cuyos elementos se ha definido una operación o ley interna, comúnmente denotada por " * ", que
ÁLGEBRA LINEAL I LISTA DE EJERCICIOS 3. Página para el curso:
ÁLGEBRA LINEAL I LISTA DE EJERCICIOS 3 DANIEL LABARDINI FRAGOSO DANIEL BALAM CRUZ HUITRÓN Página paa el cuso: www.matem.unam.mx/labadini/teaching.html A lo lago de los siguientes ejecicios, seá un campo.
ESPACIOS VECTORIALES. VARIEDADES LINEALES, APLICACIONES ENTRE ESPACIOS VECTORIALES. TEOREMAS DE ISOMORFIA.
ESPACIOS VECTORIALES. VARIEDADES LINEALES, APLICACIONES ENTRE ESPACIOS VECTORIALES. TEOREMAS DE ISOMORFIA. Índice de contenido 1. Espacio vectorial....2 Estructura de espacio vectorial...2 Subespacios
GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia
Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones
FÍSICA I TEMA 0: INTRODUCCIÓN
FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg
MAGNITUDES ESCALARES Y VECTORIALES
C U R S O: FÍSIC Mención MTERIL: FM-01 MGNITUDES ESCLRES VECTORILES Sistema intenacional de medidas En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales.
Tema 4: Aplicaciones lineales
Águeda Mata y Miguel Reyes, Dpto de Matemática Aplicada, FI-UPM 1 Tema 4: Aplicaciones lineales Ejercicios 1 Estudia la linealidad de las siguientes aplicaciones: (a) f : R R 3, definida por f(x, y) =
. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2.
1 Sean los vectoes: v 1 ( 1, 1, 1) v (,, ) y v (, 1, ) Compueba que foman una base de V. Halla las coodenadas especto de dicha base de los vectoes u ( 1,, ) y w ( 1,, 1). Paa ve si son linealmente independientes
200. Hallar la ecuación de la simetría ortogonal respecto de la recta:
Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto
Estructuras Algebraicas
Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos
1. ESPACIOS DE HILBERT Y OPERADORES
1. ESPACIOS DE HILBERT Y OPERADORES 1. DEFINICIÓN, PROPIEDADES Y EJEMPLOS Definición. Sea H un espacio vectorial sobre el cuerpo C de los números complejos, un producto escalar sobre H es una aplicación
Transformaciones lineales
Semana 8 [1/62] 8 de septiembre de 27 Definiciones básicas Semana 8 [2/62] Definición Transformación lineal U, V dos espacios vectoriales sobre el mismo cuerpo Ã. T : U V es una transformación (o función)
Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO
Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales
Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que
Matemáticas Empresariales I. Funciones y concepto de ĺımite
Matemáticas Empresariales I Lección 3 Funciones y concepto de ĺımite Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales I 1 / 22 Concepto de función Función de
( ) y ( ) = CAMPOS: OPERADOR NABLA ( ) ( )
CAMPOS: OPERADOR NABLA Repesenta los campos vectoiales A i + j, B i j. Halla la divegencia el otacional de cada uno de ellos eplica el significado físico de los esultados obtenidos. Solución: I.T.I., 3,
1 Aplicaciones lineales
UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Aplicaciones lineales y diagonalización. El objetivo principal de este tema será la obtención de una matriz diagonal
A continuación obligamos, aplicando el producto escalar, a que los vectores:
G1.- Se sabe que el tiángulo ABC es ectángulo en el vétice C, que petenece a la ecta intesección de los planos y + z = 1 e y 3z + 3 = 0, y que sus otos dos vétices son A( 2, 0, 1 ) y B ( 0, -3, 0 ). Halla
Tema 2: Espacios Vectoriales
Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.
Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio
Pofeso: Miguel Ángel Baeza Alba (º Bachilleato) Matemáticas II Hoja 6: Puntos, ectas y planos en el espacio Ejecicio : a) Halla el punto de cote ente el plano 6x y + z y la ecta que pasa po el punto P
TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA
TALLER GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 0- Pofeso: Jaime Andés Jaamillo González ([email protected]) Pate del mateial ha sido tomado de documentos
9. NÚMEROS COMPLEJOS EN FORMA POLAR
Númeos Complejos en Foma Pola 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta
9. NÚMEROS COMPLEJOS EN FORMA POLAR
9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta gáficamente mediante un
Tema 0 Conocimientos previos al curso de Física
Tema 0 Conocimientos pevios al cuso de Física Conocimientos básicos de matemáticas Geometía y tigonometía Álgeba vectoial Conocimientos básicos de física Magnitudes y unidades físicas. Sistema Intenacional
EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO
EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina
Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen
Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen 1. Teorema de la representación matricial de una transformación
Clase 8 Matrices Álgebra Lineal
Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas
TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES
TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o
Tema 1: Espacios vectoriales
PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina
Cinemática del Sólido Rígido (SR)
Cinemática del Sólido Rígido (SR) OBJETIVOS Intoduci los conceptos de sólido ígido, taslación, otación y movimiento plano. Deduci la ecuación de distibución de velocidades ente puntos del SR y el concepto
520142: ALGEBRA y ALGEBRA LINEAL
520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición
IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014
IES Fco Ayala de Ganada Junio de 014 (Modelo 1) Soluciones Gemán-Jesús Rubio Luna Opción A Ejecicio 1 opción A, modelo_1 Junio 014 Sea f : R R definida po f(x) x + ax + bx + c. [1 7 puntos] Halla a, b
CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero
Fundamento Científico del Currículum de Matemáticas en Enseñanza Secundaria CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero ESPACIOS VECTORIALES DEFINICIÓN... 1 PROPIEDADES DE
Aplicaciones Lineales
Aplicaciones Lineales Ejercicios resueltos Ximo Beneyto PROBLEMAS RESUELTOS APLICACIONES LINEALES 1.Dada la aplicación f : ú 3 6 ú² / f(x, y, z) = (x+y-z, 2x+3z): 1.1. Probar que f es una aplicación lineal.
Puntos, rectas y planos en el espacio. Problemas métricos en el espacio
1. Estudia la posición elativa de las ectas y s: x = 2t 1 x + 3y + 4z 6 = 0 : ; s : y = t + 1 2x + y 3z + 2 = 0 z = 3t + 2 Calcula la distancia ente ambas ectas (Junio 1997) Obtengamos un vecto diecto
El Espacio Afín. I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas
I. E. S. Siete Colinas (Ceuta) Depatamento de Matemáticas Matemáticas de º de Bachilleato El Espacio Afín Po Javie Caoquino CaZas Catedático de matemáticas del I.E.S. Siete Colinas Ceuta 005 El Espacio
2.2 TIPOS DE EVENTOS, excluyentes y no excluyentes; complementarios, dependientes e independientes.
2.2 TIPOS DE EVENTOS, excluyentes y no excluyentes; complementaios, dependientes e independientes. Expeimento aleatoio. Espacio muestal asociado. Concepto de expeimento aleatoio. Definición: Un fenómeno
Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE
LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.
Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21
Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.
Espacios Vectoriales, Valores y Vectores Propios
, Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas
Una operación interna: Suma Una operación externa: Multiplicación por un escalar
El conjunto R n Es el conjunto de las n-adas formadas por el producto cartesiano RRR.R, donde R es el conjunto de los números reales. Así pues, dos elementos X y Y de R n serán iguales si y solo si tienen
Espacios vectoriales
Espacios vectoriales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Concepto de espacio vectorial y propiedades 1.1 Definición Se llama espacio vectorial sobre K (IR o C a toda terna
Transformaciones lineales y matrices
CAPíTULO 5 Transformaciones lineales y matrices 1 Matriz asociada a una transformación lineal Supongamos que V y W son espacios vectoriales de dimensión finita y que T : V W es una transformación lineal
PAUTA ACTIVIDADES: COMENZANDO CON EL LENGUAJE ALGEBRAICO
PAUTA ACTIVIDADES: COMENZANDO CON EL LENGUAJE ALGEBRAICO Joaquín ha comenzado a utiliza letas paa epesenta distintas situaciones numéicas. Obseve lo que ealiza con el siguiente enunciado: A Matías le egalaon
Objetivos formativos de Álgebra
Objetivos formativos de Álgebra Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera como objetivo
Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ).
ALGEBRA La primera parte del presente libro está dedicada a las estructuras algebraicas. En esta parte vamos a iniciar agregándole a los conjuntos operaciones. Cuando las operaciones tienen determinadas
Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1
Matrices José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 1- Matrices 1 Introducción Por qué estudiar las matrices? Son muchas las situaciones de la vida real en las que
Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.
Tema 2. Grupos. 1 Grupos Definición 1 Un grupo es una estructura algebraica (G, ) tal que la operación binaria verifica: 1. * es asociativa 2. * tiene elemento neutro 3. todo elemento de G tiene simétrico.
Matrices, Determinantes y Sistemas Lineales.
12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión
MAGNITUDES VECTORIALES:
Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de
Espacios vectoriales
CAPíTULO 2 Espacios vectoriales 1. Definiciones básicas En lo que sigue k denotará un cuerpo arbitrario: e.g. el cuerpo de los números reales R, el cuerpo de los números racionales Q, el cuerpo de los
como el número real que resulta del producto matricial y se nota por:
Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,
Álgebra Lineal V: Subespacios Vectoriales.
Álgebra Lineal V: Subespacios Vectoriales. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: [email protected]
TEMAS DE MATEMATICAS (Oposiciones de Secundaria)
TEMAS DE MATEMATICAS (Oposiciones de Secundaia) TEMA 47 GENERACIÓN DE CURVAS COMO ENVOLVENTES.. Intoducción.. Envolvente... Definición de Envolvente... Existencia de Envolvente en el Plano..3. Deteminación
b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A
APENDICE Relaciones y Operaciones Compatibles 1 Definición: a) Sea A un conjunto y una relación entre elementos de A. Decimos que es una relación de equivalencia si es: i Reflexiva: a A, a a. ii Simétrica:
Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21
Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)
Funciones y Cardinalidad
Funciones y Cardinalidad Definición 1 Llamaremos función f entre dos conjuntos A y B a una relación que verifica las siguientes propiedades: i) Dom(f) = A ii) Si (a, b), (a, c) f entonces b = c Dicho de
TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...
TEMA : MATRICES Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas a a a... a n a a a... an A... am am am... amn A los números reales a ij se les llama elementos
TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL
EMA 3 MOIMIENO CICULA Y GAIACIÓN UNIESAL El movimiento cicula unifome (MCU) Movimiento cicula unifome es el movimiento de un cuepo que tiene po tayectoia una cicunfeencia y descibe acos iguales en tiempos
Autovalores y autovectores Diagonalización y formas canónicas
Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores.propiedades Sea V un espacio vectorial sobre K y f End(V ). Fijada una base de V, existirá una matriz cuadrada A,
ECUACIONES DE LA RECTA
Tema 6 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos
Pregunta 1 Es correcta esta definición? Por qué?
TEORÍA DE CONJUNTOS. En un libro de COU de 1975 puede leerse la siguiente definición de conjunto: Un conjunto es una colección de objetos, cualquiera que sea su naturaleza. Pregunta 1 Es correcta esta
El Espacio Vectorial ú 3 (ú)
I. E. S. Siete Colinas (Ceuta) Depatamento de Matemáticas Matemáticas de º de Bachilleato El Espacio Vectoial ú (ú) Po Javie Caoquino CaZas Catedático de matemáticas del I.E.S. Siete Colinas Ceuta 004
UN CACHITO DE LA ALHAMBRA
UN CACHITO DE LA ALHAMBRA Se llama mosaico a todo ecubimiento del plano mediante piezas llamadas teselas que no pueden supeponese, ni puede deja huecos sin ecubi y en el que los ángulos que concuen en
Una matriz es un arreglo rectangular de elementos. Por ejemplo:
1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con
ALGEBRA. Escuela Politécnica Superior de Málaga
ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.
Tema 3: Espacios vectoriales
Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación
Matrices y determinantes
Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna
. Esta segunda función es posible que no pueda explicitarse: no pueda encontrarse la fórmula y f (x)
1 FUNCIONES DE DOS VARIABLES DERIVACIÓN IMPLÍCITA (Tangente a una cuva de nivel); FUNCIONES HOMOGÉNEAS Deivación implícita ecta tangente a una cuva de nivel Si (a, b) es un punto que cumple la ecuación
Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa:
PROLMS CMPO LÉCTRICO. FÍSIC CHILLRTO. Pofeso: Féli Muñoz Jiménez Poblema 1 Detemina la caga de una peueña esfea cagada de 1, mg ue se encuenta en euilibio en un campo eléctico unifome de 000 N /C diigido
Guía Regla de la Cadena(1 er Orden)
UNIVERSIDAD DE CHILE CÁLCULO EN VARIAS VARIABLES PROFESOR: MARCELO LESEIGNEUR AUXILIARES: ALFONSO TORO - SEBASTIÁN COURT Guía Regla de la Cadena1 e Oden 1. Sean f : R R y g : R R dos funciones difeenciables.
ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República
ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto
Tema 1. Espacios Vectoriales Definición de Espacio Vectorial
Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.
Guía de Ejercicios: Funciones
Guía de Ejercicios: Funciones Área Matemática Resultados de aprendizaje Determinar dominio y recorrido de una función. Analizar funciones: inyectivas, sobreyectivas y biyectivas. Determinar la función
www.fisicaeingenieria.es Vectores y campos
www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que
ELECTROSTATICA. La electrostática es la parte de la física que estudia las cargas eléctricas en equilibrio. Cargas eléctricas
ELECTROSTTIC La electostática es la pate de la física que estudia las cagas elécticas en equilibio. Cagas elécticas Existen dos clases de cagas elécticas, llamadas positiva y negativa, las del mismo signo
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la
Física 2º Bacharelato
Física º Bachaelato Gavitación 19/01/10 DEPARAMENO DE FÍSICA E QUÍMICA Nombe: 1. Calcula la pimea velocidad obital cósmica, es deci la velocidad que tendía un satélite de óbita asante.. La masa de la Luna
Tema 1: MATRICES. OPERACIONES CON MATRICES
Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos
Conjunto R 3 y operaciones lineales en R 3
Conjunto R 3 y operaciones lineales en R 3 Objetivos. Definir el conjunto R 3 y operaciones lineales en R 3. Requisitos. Conjunto de los números reales R, propiedades de las operaciones aritméticas en
Sistemas de coordenadas
Electicidad Magnetismo - Gpo. Cso / Tema : Intodcción Concepto de campo Repaso de álgeba vectoial Sistemas de coodenadas Catesiano Cvilíneas genealiadas: cilíndico esféico. Opeadoes vectoiales. Gadiente
CAPÍTULO II LEY DE GAUSS
Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio
Espacios vectoriales
Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación
Es claro que es una relación de equivalencia. Para ver que tener la misma cardinalidad y la cardinalidad están bien definidas queremos ver que
Capítulo II Cardinalidad Finita II.1. Cardinalidad Definimos I n para n N como I n = {k N : 1 k n}. En particular I 0 =, puesto que 0 < 1. Esto es equivalente a la definición recursiva { si n = 0 I n =
