Desafíos - Los koalindres colgantes

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Desafíos - Los koalindres colgantes"

Transcripción

1 Desafíos - Los koalindres colantes Solución de Álvaro González olinillo Antes que nada, voy a resolver varios ejemplos con un número determinado de poleas. Después obtendremos una ecuación enérica para n poleas y al final, calcularemos el resultado, utilizado límites, cuando el número de poleas tienda a infinito. áquina de Atwood con poleas De la primera polea (que cuela del techo) cuela un koalindre de masa y una seunda polea, de la cual cuelan dos koalindres de masa. Sobre cada koalindre actúan dos fuerzas. La fuerza de la ravedad hacia abajo, y la fuerza que ejerce la cuerda a la que llamaremos tensión. Aplicando la seunda ley de Newton sabemos que el sumatorio de fuerzas que actúa sobre cada koalindre debe ser iual a la masa por su aceleración. Por tanto tenemos las siuientes ecuaciones. Nota: tomaremos el eje y positivo hacia arriba T T a = a = T T a = a = T 3 T 3 a 3 = a 3 = También sabemos las relaciones entre las tensiones T = T + T 3 y como T = T 3, obtenemos T = T o lo que es lo mismo T = T Ahora vamos a obtener la relación entre las aceleraciones que sufre cada koalindre. Sabemos que la aceleración que sufre el primer koalindre a es la opuesta a la aceleración que sufre la polea número (de la cual cuelan el koalindre y 3) a la que llamaremos. Por tanto su suma vale cero. a p

2 a + a p También sabemos que la aceleración que sufre el seundo koalindre es la opuesta a la que sufre el tercero dentro del sistema de referencia de la seunda polea acelerada. A estas aceleraciones les pondremos un superíndice para distinuirlas de las aceleraciones en el sistema de referencia de la primera polea. a + a 3 Para calcular las aceleraciones relativas al sistema de referencia de la primera polea, bastará con restarles la aceleración que sufre el seundo sistema. a = a a p a = a + a a 3 = a 3 a p a 3 = a 3 + a Utilizando la expresión anterior podemos obtener la relación entre todas las aceleraciones en el sistema de referencia principal (el de la primera polea) a + a 3 a + a + a 3 + a a + a + a 3 Sustituyendo las aceleraciones por las expresiones calculadas al principio obtenemos T T T T T + + T T T + T + 3T

3 T = 3 Sustituyendo en la ecuación de la aceleración en función de la tensión obtenemos a = T 3 = = 3 Por tanto la aceleración del primer koalindre será de un tercio la aceleración de la ravedad (hacia arriba) a = 3 áquina de Atwood con 3 poleas De la primera polea (que cuela del techo) cuela un koalindre de masa y una seunda polea, de la cual cuelan un koalindre de masa y una tercera polea de la cual cuelan dos koalindres de masa. No voy a detallar los procedimientos ya que son prácticamente los mismos. Ecuaciones de aceleraciones que sufren los koalindres. T T a = a = T T a = a = T 3 T 3 a 3 = a 3 = T T a = a = Relaciones entre las tensiones T = T T 3 = T Ahora vamos a obtener la relación entre las aceleraciones que sufre cada koalindre.

4 Sabemos que la aceleración que sufre el primer koalindre a es la opuesta a la aceleración que sufre la polea número (de la cual cuelan el koalindre y la polea 3) a la que llamaremos a p. Por tanto su suma vale cero. a + a p También sabemos que la aceleración que sufre el seundo koalindre es la opuesta a la que sufre el sistema de la tercera polea dentro del sistema de referencia de la seunda polea acelerada. A estas aceleraciones les pondremos un superíndice para distinuirlas de las aceleraciones en el sistema de referencia de la primera polea. a + a p3 Por último, sabemos que la aceleración que sufre el tercer koalindre es la opuesta a la que sufre el cuarto koalindre dentro del sistema de referencia de la tercera polea. a 3 + a a 3 = a 3 a p3 a 3 = a 3 + a a = a a p3 a = a + a a 3 + a + a + a a + a 3 + a Ya tenemos las aceleraciones en el sistema de referencia de la seunda polea. Ahora solo falta calcular las aceleraciones en el sistema de referencia de la primera polea. a = a a p a = a + a a 3 = a 3 a p a 3 = a 3 + a a = a a p a = a + a a + a 3 + a

5 (a + a ) + a 3 + a + a + a a + a + a 3 + a Sustituyendo las aceleraciones por las expresiones calculadas al principio obtenemos T + T T3 T + + T + T T + + T T T + T + 8T 8 + T + T T 6 6 T = Sustituyendo en la ecuación de la aceleración en función de la tensión obtenemos a = 6 T = = 5 Por tanto la aceleración del primer koalindre será: a = 5, 55 áquina de Atwood con n poleas Siuiendo la dinámica anterior y sin entrar mucho en detalle, voy a escribir las ecuaciones para el caso enérico de n poleas. Ecuación de la aceleración para el koalindre i-ésimo T i T i a i = a i =

6 Ecuación de las tensiones en función de la tensión del primer koalindre T i = T i Relación entre las aceleraciones a n+ + n ( n i ai) Nota: la aceleración a n+ va fuera del sumatorio ya que no va multiplicada por ninuna potencia de. De todas formas cuando apliquemos límites nos dará iual. Si aplicamos la ecuación de la aceleración obtenemos T n+ + n ( n i T ) i T n + n ( T n i ) i ultiplicamos ambos lados de la ecuación por T + n n ( n i ( T i )) Separamos el sumatorio en dos T + n n ( n i T i ) n ( n i )

7 Sacamos factor común y T ( T + n ( )) n i n i ( n n i ) Resolviendo un poco más ya tenemos la expresión para la tensión koalindre, de la aceleración de la ravedad y del número de poleas del sistema. T = ( n ( n n n i ) n i+ ) + ( ) T en función de la masa del Si el sistema tuviera poleas el resultado sería 6 T = 3 a = 3, 88 Si el sistema tuviera 5 poleas el resultado sería 56 T = 7 a = 7 85, 97 Como podemos observar, el resultado parece que tiende a 0, 5 Vamos a comprobarlo. áquina de Atwood con infinitas poleas Para calcular la aceleración del primer koalindre en un sistema de infinitas poleas, vamos a calcular su tensión mediante la fórmula anterior, aplicando límites, cuando el número de poleas tiende a infinito.

8 Antes que nada, vamos a dividir por T = ( n ( n n i ) + ( ) n en el numerador y en el denominador i+ ) Ahora calculamos el límite T = lim n ( n ( n n i ) i+ ) + ( ) El numerador se convierte en la suma de una serie eométrica de primer elemento y de razón Una serie eométrica convere si y solo si su razón es menor que. Aquí vale un medio, por tanto es coverente y su suma vale S = a r Siendo a el primer elemento y r la razón S = = Por tanto el numerador tiende a cuando n tiende a infinito. Vamos con el denominador. El primer sumando sumando n 8 3 ( i+ ) n claramente tiende a 0. El seundo tiende a convertirse en una serie eométrica de esta forma

9 Serie eométrica de primer elemento y de razón, por tanto su suma vale S = = 3 Por tanto el límite vale T = lim n ( n i ) ) = 3 = i+ 3 ( n n + ( ) Ya solo queda calcular la aceleración a = T = 3 = Solución a =

DINÁMICA II - Aplicación de las Leyes de Newton

DINÁMICA II - Aplicación de las Leyes de Newton > INTRODUCCIÓN A EJERCICIOS DE FUERZAS Como ya vimos en el tema anterior, las fuerzas se producen en las interacciones entre los cuerpos. La fuerza es la magnitud física vectorial, que nos informa de esas

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Física para Ciencias: Dinámica

Física para Ciencias: Dinámica Física para Ciencias: Dinámica Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Método para resolver problemas Dibujar un diagrama sencillo del sistema y predecir la respuesta. Realizar un diagrama

Más detalles

ACELERÓMETRO DEL CELULAR

ACELERÓMETRO DEL CELULAR UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA MAESTRÍA EN ENSEÑANZA DE LAS CIENCIAS EXACTAS Y NATURALES CURSO: ENSEÑANZA DE LA FÍSICA MECÁNICA- ACELERÓMETRO DEL

Más detalles

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico.

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico. Tema: Límites de las funciones Objetivos: Comprender el concepto de límite de una función y las propiedades de los límites. Calcular el límite de una función algebraica utilizando las propiedades de los

Más detalles

HOJA Nº 15. LEYES DE NEWTON Y CANTIDAD DE MOVIMIENTO (I)

HOJA Nº 15. LEYES DE NEWTON Y CANTIDAD DE MOVIMIENTO (I) HOJA Nº 15. LEYES DE NEWTON Y CANTIDAD DE MOVIMIENTO (I) 1. Dos bueyes tiran de una roca de 1.000 kg, mediante dos cuerdas que forman un ángulo de 90º entre sí aplicando cada uno una fuerza de 2900 N.

Más detalles

Teoría y ejercicios de Matemáticas II. Análisis

Teoría y ejercicios de Matemáticas II. Análisis 9.DERIVADAS 9.. VARIACIÓN DE UNA VARIABLE Las propiedades estudiadas en los temas anteriores, límites, continuidad, etc., nos aportan inormación puntual sobre las unciones; pero no nos dicen nada sobre

Más detalles

Ejercicios de Física 4º de ESO

Ejercicios de Física 4º de ESO Ejercicios de Física 4º de ESO 1. Sobre un cuerpo actúan dos fuerzas de la misma dirección y sentidos contrarios de 36 y 12 N Qué módulo tiene la fuerza resultante? Cuál es su dirección y su sentido? R

Más detalles

ASOCIACIÓN DE POLEAS

ASOCIACIÓN DE POLEAS ASOCIACIÓN DE POLEAS Dos objetos de masas m 1 y m 2 cuelgan de un conjunto de poleas combinadas de dos formas distintas (asociación A y B). Calcula en qué condiciones el conjunto se encuentra en equilibrio.calcula

Más detalles

Física e Química 1º Bach.

Física e Química 1º Bach. Física e Química 1º Bach. Dinámica 15/04/11 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Resuelve dos de los siguientes Problemas 1. Un cuerpo de 2,0 kg de masa reposa sobre un plano inclinado 30º unido por

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA PRIMERA EVALUACIÓN DE FÍSICA A DICIEMBRE 4 DE 013 SOLUCIÓN Pregunta 1 ( puntos) Mencione un

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2017 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2017 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 017 Problemas (Dos puntos por problema). Problema 1: Un barco enemigo está en el lado este de una isla montañosa como se muestra en la figura.

Más detalles

Dinámica Planificación de Unidad Física PSI

Dinámica Planificación de Unidad Física PSI Dinámica Planificación de Unidad Física PSI Objetivos Equilibrio estático (primera ley) 1) Los alumnos deberán ser capaces de analizar situaciones en las cuales una partícula permanece quieta o se mueve

Más detalles

Examen Dinámica 1º Bach Nombre y Apellidos:

Examen Dinámica 1º Bach Nombre y Apellidos: Examen Dinámica 1º Bach Nombre y Apellidos: 1. Sobre una masa m actúa una fuerza F produciéndole una aceleración a. Dos fuerzas F, formando un ángulo de 90º, actúan sobre la misma masa y le producen una

Más detalles

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente:

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente: INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Crecimiento de una Función en un Intervalo Tasa de Variación Media (T.V.M.) Se llama tasa de variación media (T.V.M.) de una función y f() en un intervalo

Más detalles

Examen de Física-1, 1 Ingeniería Química Primer parcial. Diciembre de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Primer parcial. Diciembre de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Primer parcial. Diciembre de 2012 Problemas (Dos puntos por problema). Problema 1: Un palo saltador de niño almacena energía en un resorte de constante k 2, 5 10

Más detalles

1. Matrices. Operaciones con matrices

1. Matrices. Operaciones con matrices REPASO MUY BÁSICO DE MATRICES. Matrices. Operaciones con matrices.. Introducción Las matrices aparecieron por primera vez hacia el año 850, introducidas por el inglés J. J. Sylvester. Su desarrollo se

Más detalles

PROBLEMAS PROPUESTOS. TEMAS 5 Y 6 SOLUCIONES

PROBLEMAS PROPUESTOS. TEMAS 5 Y 6 SOLUCIONES Grado en Ingeniería Mecánica Teoría de Sistemas PROBLEMAS PROPUESTOS. TEMAS 5 Y 6 SOLUCIONES Transformada Z. Función de transferencia discreta. Modelado de sistemas discretos. PROBLEMA 1. Sistema discreto

Más detalles

Tema 1. Leyes de Newton

Tema 1. Leyes de Newton Tema 1. Leyes de Newton Tercera parte: Sistemas de masa variable Los sistemas de masa variable, es decir, sistemas en los que la masa que se encuentra en movimiento depende del tiempo, no conservan la

Más detalles

Tema 4: Ecuaciones y sistemas de ecuaciones.

Tema 4: Ecuaciones y sistemas de ecuaciones. Tema : Ecuaciones y sistemas de ecuaciones.. Ecuaciones de º grado Ejemplo Resuelve las siguientes ecuaciones de º grado:. 0 x x a Ecuación de º grado completa con La fórmula es x b b ac a 9 9 0 b c 0

Más detalles

Tema 5: Funciones. Límites de funciones

Tema 5: Funciones. Límites de funciones Tema 5: Funciones. Límites de funciones 1. Concepto de función Una aplicación entre dos conjuntos y es una transformación que asocia a cada elemento del conjunto un único elemento del conjunto. Una función

Más detalles

Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez.

Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez. Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez. Comprobar que la familia de funciones del seno y la del coseno de la forma: Estando definidas entre 0 y L y donde son familias ortogonales por sí

Más detalles

GUIA DE PROBLEMAS Nº 2 FISICA 4 AÑO 2013

GUIA DE PROBLEMAS Nº 2 FISICA 4 AÑO 2013 FUERZAS 1- Expresar en Newton el módulo de una fuerza de 50 kgf. Expresar en kgf el módulo de una fuerza de 294 N. 2- Calcular la masa de un cuerpo cuyo peso es: a) 19,6 N; b) 1960 dy; c) 96 kgf. 3- Un

Más detalles

Universidad de Atacama. Física 1. Dr. David Jones. 14 Mayo 2014

Universidad de Atacama. Física 1. Dr. David Jones. 14 Mayo 2014 Universidad de Atacama Física 1 Dr. David Jones 14 Mayo 2014 Fuerzas de arrastre Cuando un objeto se mueve a través de un fluido, tal como el aire o el agua, el fluido ejerce una fuerza de resistencia

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final Enero de 01 Problemas (Dos puntos por problema) Problem (Primer parcial): Un pescador desea cruzar un río de 1 km de ancho el cual tiene una corriente

Más detalles

Física: Dinámica Conceptos básicos y Problemas

Física: Dinámica Conceptos básicos y Problemas Física: Dinámica Conceptos básicos y Problemas Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Mecánica Cinemática Descripción del movimiento. Cómo se mueve? Dinámica Causas del movimiento. Por

Más detalles

La forma de una ecuación de primer grado puede ser de la siguiente:

La forma de una ecuación de primer grado puede ser de la siguiente: Primer Grado La forma de una ecuación de primer grado puede ser de la siguiente: a b a b a b a b La solución de una inecuación no va a ser un número concreto, sino un intervalo, es por lo que, debemos

Más detalles

Dinámica de los sistemas de partículas

Dinámica de los sistemas de partículas Dinámica de los sistemas de partículas Definiciones básicas Supongamos un sistema compuesto por partículas. Para cada una de ellas podemos definir Masa Posición Velocidad Aceleración Fuerza externa Fuerza

Más detalles

Solución al Examen parcial I, Curso de Física I Universidad Nacional Autónoma de México

Solución al Examen parcial I, Curso de Física I Universidad Nacional Autónoma de México Solución al Examen parcial I, Curso de Física I Universidad Nacional Autónoma de México Grupo 14 27 de octubre de 2006 1. Un jugador de béisbol golpea la pelota de modo que ésta adquiere una velocidad

Más detalles

Si el producto de dos números es cero

Si el producto de dos números es cero Matemáticas I, 2012-I Si el producto de dos números es cero Empezamos con un acertijo: Silvia tiene dos números. Si los multiplica sale 0 y si los suma sale 256. Cuáles son estos dos números que tiene

Más detalles

1 Imagen extraída de: E. Egaña, M. Berruti y Alejandro González. Interacciones, fuerzas y energía. Editorial: Contexto. Año: Uruguay.

1 Imagen extraída de: E. Egaña, M. Berruti y Alejandro González. Interacciones, fuerzas y energía. Editorial: Contexto. Año: Uruguay. Propiedades de la fuerza: - Una fuerza siempre es aplicada por un objeto material a otro. - Una fuerza se caracteriza por su módulo, dirección y sentido. - Cuando un objeto A ejerce una fuerza sobre un

Más detalles

Límite de una función

Límite de una función Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es decir el valor al que tienden

Más detalles

TEMA 7 SISTEMAS DE ECUACIONES

TEMA 7 SISTEMAS DE ECUACIONES TEMA 7 SISTEMAS DE ECUACIONES 7.1 Ecuaciones lineales con dos incógnitas Actividades página 111 1. Obtén dos soluciones de cada ecuación y representa las rectas correspondientes. b) x y Esto se lee como

Más detalles

Ejemplo 1 Dibujar la siguiente parábola, calculando previamente todos sus elementos. 0=2 +2 4

Ejemplo 1 Dibujar la siguiente parábola, calculando previamente todos sus elementos. 0=2 +2 4 Ejemplo 1 Dibujar la siguiente parábola, calculando previamente todos sus elementos. =2 +2 4 Sabemos que es una parábola porque nuestra función es un polinomio de segundo grado. Lo primero que se calcula

Más detalles

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE Un movimiento periódico es aquel que describe una partícula cuando las variables posición, velocidad y aceleración de su movimiento toman los mismos valores después de

Más detalles

LEYES DEL MOVIMIENTO DE NEWTON

LEYES DEL MOVIMIENTO DE NEWTON Universidad de Oriente Núcleo Bolívar Curso Básico Matemática IV Sección: 01 LEYES DEL MOVIMIENTO DE NEWTON Profesor: Bachilleres: Cristian Castillo Javier Abreu C.I: 14.517.875 Jesús Sigala C.I: 17.045.285

Más detalles

Momento angular de una partícula. Momento angular de un sólido rígido

Momento angular de una partícula. Momento angular de un sólido rígido Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular

Más detalles

Sistemas de Ecuaciones Lineales. Método de Reducción.

Sistemas de Ecuaciones Lineales. Método de Reducción. Sistemas de Ecuaciones Lineales. Método de Reducción. 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Introducción a los Sistemas de Ecuaciones Lineales... 4 1.1 Tipos de sistemas

Más detalles

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,

Más detalles

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces, Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.

Más detalles

Límites y continuidad de funciones

Límites y continuidad de funciones Límites y continuidad de funciones 1 Definiciónde límite Llamamos LÍMITE de una función f en un punto x=a al valor al que se aproximan los valores de la función cuando x se aproxima al valor de a. lím

Más detalles

METODO DE LA BOLSA DE GATOS

METODO DE LA BOLSA DE GATOS - 1 - METODO DE LA BOLSA DE GATOS Este método sirve para calcular la aceleración de un sistema sin tener que hacer los diagramas de cuerpo libre. Este método dice lo siguiente : La aceleración de un sistema

Más detalles

27/01/2011 TRIGONOMETRÍA Página 1 de 7

27/01/2011 TRIGONOMETRÍA Página 1 de 7 β 27/01/2011 TRIGONOMETRÍA Página 1 de 7 Notación en un triángulo: En un triángulo cualquiera llamaremos a, b y c a sus lados y A, B y C a sus vértices de forma que A sea el vértice formado por los lados

Más detalles

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo

Más detalles

Propiedades más importantes de los logaritmos: El logaritmo de una multiplicación es igual el logaritmo de la suma. log =log +log

Propiedades más importantes de los logaritmos: El logaritmo de una multiplicación es igual el logaritmo de la suma. log =log +log Para empezar a tratar el tema de los logaritmos tenemos que tener en muy en cuenta, la definición de logaritmo, así como las tres propiedades más importantes de los logaritmos. Definición de logaritmo:

Más detalles

a) Trazamos el diagrama del sólido libre correspondiente a todo el sistema y aplicamos la ecuación fundamental de la Dinámica: N C m g

a) Trazamos el diagrama del sólido libre correspondiente a todo el sistema y aplicamos la ecuación fundamental de la Dinámica: N C m g 1. res bloques A, B y C de masas 3, 2 y 1 kg se encuentran en contacto sobre una superficie lisa sin rozamiento. a) Qué fuerza constante hay que aplicar a A para que el sistema adquiera una aceleración

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyecto PMME - Curso 7 Facultad de Ineniería UdelaR Maquina de Atwood doble Mathías Möller José Oscar Silva Francisco Paroli INRODUCCION: Este trabajo trata de aplicar las leyes de Newton

Más detalles

I. Determinar los siguientes límites, aplicando las propiedades. lim =

I. Determinar los siguientes límites, aplicando las propiedades. lim = Ejercicios resueltos I. Determinar los siguientes límites, aplicando las propiedades ) 3 + 2 4 3 + 2 4 = (2) 3 + 2 (2) 2 - (2) - 4 Sustituir la por el 2 = 8 + 8-2 - 4 = 0 Aplicar límite a cada término

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 8 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio,

Más detalles

Problemas resueltos del libro de texto. Tema 8. Geometría Analítica.

Problemas resueltos del libro de texto. Tema 8. Geometría Analítica. Problemas resueltos del libro de texto Tema 8 Geometría Analítica Combinación lineal de vectores 9- Es evidente que sí es combinación lineal de estos dos vectores, ya que -4 y permiten escribir z como

Más detalles

matemáticas 4º ESO exponenciales y logaritmos

matemáticas 4º ESO exponenciales y logaritmos coleio martín códa departamento de matemáticas matemáticas º ESO eponenciales logaritmos eponenciales una eponencial es cualquier epresión de la forma: a donde a (que se denomina base) es un número distinto

Más detalles

Ejercicios de Funciones, límites y continuidad.

Ejercicios de Funciones, límites y continuidad. Matemáticas 2ºBach CNyT. Ejercicios Funciones: Límites, Continuidad.. Pág 1/10 Ejercicios de Funciones, límites y continuidad. 1. Observa la gráfica de esta función f(x) y calcular estos límites. 2. Calcular

Más detalles

SISTEMAS DE ECUACIONES 2 X 2 MÉTODO POR DETERMINANTES

SISTEMAS DE ECUACIONES 2 X 2 MÉTODO POR DETERMINANTES SISTEMAS DE ECUACIONES 2 X 2 MÉTODO POR DETERMINANTES Tenemos estas dos ecuaciones y debemos encontrar el valor de x así como el de y ya que no son de la misma especie (no son la misma letra) y no se pueden

Más detalles

Problema de Valor Inicial (PVI):

Problema de Valor Inicial (PVI): Problema de Valor Inicial (PVI): Con frecuencia nos interesan problemas en los que se busca la solución y () de una ecuación diferencial de modo que y () satifaga condiciones adicionales impuestas a la

Más detalles

XIII.- TEOREMA DEL IMPULSO pfernandezdiez.es

XIII.- TEOREMA DEL IMPULSO pfernandezdiez.es XIII.- TEOREMA DEL IMPULSO XIII.1.- REACCIÓN DE UN FLUIDO EN MOVIMIENTO SOBRE UN CANAL GUÍA El cálculo de la fuerza ejercida por un fluido en movimiento sobre el canal que forman los álabes de una bomba

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Ecuaciones de primer grado º ESO - 3º ESO Definición, elementos y solución de la ecuación de primer grado Una ecuación de primer grado es una igualdad del tipo a b donde a y b son números reales conocidos,

Más detalles

EJERCICIOS Y PROBLEMAS RESUELTOS

EJERCICIOS Y PROBLEMAS RESUELTOS Ecuaciones de Segundo Grado -- página 1 EJERCICIOS Y PROBLEMAS RESUELTOS Ejercicio 1: Indica si son ecuaciones de segundo grado las siguientes ecuaciones: a) 5 + 8 + b) + + ( )( + ) c) + 1 a) El primer

Más detalles

= +1. A la hora de representar funciones tenemos que tener en cuenta los siguientes puntos.

= +1. A la hora de representar funciones tenemos que tener en cuenta los siguientes puntos. Ejemplo 1 Dibujar la función: = +1 A la hora de representar funciones tenemos que tener en cuenta los siguientes puntos. Dominio Puntos de corte con los ejes Simetría Asíntotas Crecimiento decrecimiento/máximos

Más detalles

Semana 07[1/21] Sumatorias. 12 de abril de Sumatorias

Semana 07[1/21] Sumatorias. 12 de abril de Sumatorias Semana 07[/] de abril de 007 Semana 07[/] Progresiones aritméticas Progresión aritmética Es una sumatoria del tipo (A + d) es decir, donde a A + d, para valores A, d Ê. Utilizando las propiedades de sumatoria,

Más detalles

TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD.

TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD. TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD. 1.LÍMITE DE UNA FUNCIÓN EN UN PUNTO El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes por f de puntos x, cuando los originales

Más detalles

UNIDAD 1 NUMEROS COMPLEJOS

UNIDAD 1 NUMEROS COMPLEJOS UNIDAD 1 NUMEROS COMPLEJOS El conjunto de los números complejos fue creado para poder resolver algunos problemas matemáticos que no tienen solución dentro del conjunto de los números reales. Por ejemplo

Más detalles

Z= f( X, Y ) = 15 X + 5 Y + 120

Z= f( X, Y ) = 15 X + 5 Y + 120 Funciones Multivariadas. Ecuación de la Recta. Ejemplo. Del ejemplo de Pepe y su novia, que van al cine, considere que después del cine Pepe le invita comer un hotdog, el cual tiene un precio de $5 cada

Más detalles

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una

Más detalles

SISTEMAS DE ECUACIONES 2 X 2 MÉTODO POR SUSTITUCIÓN. Paso 1- Nombrar las ecuaciones, para esto las nombremos como la ecuación 1 y la ecuación 2.

SISTEMAS DE ECUACIONES 2 X 2 MÉTODO POR SUSTITUCIÓN. Paso 1- Nombrar las ecuaciones, para esto las nombremos como la ecuación 1 y la ecuación 2. SISTEMAS DE ECUACIONES 2 X 2 MÉTODO POR SUSTITUCIÓN Tenemos estas dos ecuaciones y debemos encontrar el valor de x así como el de y ya que no son de la misma especie (no son la misma letra) y no se pueden

Más detalles

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes Matemáticas. Tercero ESO. Curso 0-03. Exámenes . 9 de octubre de 0 Ejercicio. Calcular: 3 5 4 + 3 0 3 7 8 5 3 5 4 + 3 0 5 + 6 0 3 0 3 7 8 5 3 56 0 3 8 0 84 74 5 5 5 Ejercicio. Calcular: 5 6 [ ( 3 3 3 )]

Más detalles

EXPRESIONES ALGEBRAICAS RACIONALES

EXPRESIONES ALGEBRAICAS RACIONALES Epresiones Algebraicas Racionales EXPRESIONES ALGEBRAICAS RACIONALES Llamaremos epresiones algebraicas racionales a las de la forma A() donde A() y B() son B() polinomios de variable, y B() 0. Por ejemplo,

Más detalles

Primera Ley: En ausencia de una fuerza externa neta, todo cuerpo permanece en reposo o en movimiento con velocidad constante.

Primera Ley: En ausencia de una fuerza externa neta, todo cuerpo permanece en reposo o en movimiento con velocidad constante. Leyes de Newton Primera Ley: En ausencia de una fuerza externa neta, todo cuerpo permanece en reposo o en movimiento con velocidad constante. Sistema Inercial de Referencia Es uno donde se cumple la primera

Más detalles

Fricción. Fricción estática y cinética. Si las superficies en contacto presentan o no movimiento relativo, las fuerzas friccionales son diferentes.

Fricción. Fricción estática y cinética. Si las superficies en contacto presentan o no movimiento relativo, las fuerzas friccionales son diferentes. Fricción. Cuando dos superficies se tocan se ejercen fuerzas entre ellas. La fuente primordial de estas fuerzas superficiales o de contacto es la atracción o repulsión eléctrica entre las partículas cargadas

Más detalles

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN Diremos que una función y f () tiene por ite L cuando la variable independiente tiende a, y se nota por f ( ) L, cuando al acercarnos

Más detalles

S2: Polinomios complejos

S2: Polinomios complejos S: Polinomios complejos Un polinomio complejo de grado n es un polinomio de la forma: p x = a 0 + a 1 x + a x + + a n x n Donde los a i C se llaman coeficientes y a n 0. Observa que como R C los coeficientes

Más detalles

ϭ Σ F y PROBLEMAS RESUELTOS y se requiere encontrar F T1 La tensión de la cuerda 1 es igual al peso del cuerpo que cuelga de ella.

ϭ Σ F y PROBLEMAS RESUELTOS y se requiere encontrar F T1 La tensión de la cuerda 1 es igual al peso del cuerpo que cuelga de ella. EQUILIBRIO BAJO LA ACCIÓN DE FUERZAS CONCURRENTES 4 CAPÍTULO 4: EQUILIBRIO BAJO LA ACCIÓN DE FUERZAS CONCURRENTES 45 LAS FUERZAS CONCURRENTES son todas las fuerzas cuyas líneas de acción pasan a través

Más detalles

Fracción: Una fracción consta de dos números enteros dispuestos de esta forma:

Fracción: Una fracción consta de dos números enteros dispuestos de esta forma: TEMAS 3 Y 4: FRACCIONES Y DECIMALES Fracción: Una fracción consta de dos números enteros dispuestos de esta forma: a es el numerador e indica las partes que se toman. b es el denominador e indica las partes

Más detalles

Definiciones I. Una solución de una ecuación son aquellos valores que al sustituirlos en la ecuación hacen que la igualdad sea cierta.

Definiciones I. Una solución de una ecuación son aquellos valores que al sustituirlos en la ecuación hacen que la igualdad sea cierta. Ecuaciones Definiciones I Una ecuación es una igualdad algebraica que se verifica únicamente para un conjunto determinado de valores de las variables o indeterminadas que forman la ecuación. a + b 2 =

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago Guía dinámica. En general, los problemas de dinámica se resuelven aplicando 3 pasos: 1º Dibuje un diagrama de cuerpo libre para cada cuerpo involucrado en el sistema. Es decir, identifique todas las fuerzas

Más detalles

t si t 2. x 2 + xy + y 3 = 1 8.

t si t 2. x 2 + xy + y 3 = 1 8. CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E000 () Una pelota se deja caer desde un edificio. La posición de la pelota en cualquier instante t (medido en segundos) está dada por s(t).5

Más detalles

Tema 2 Polinomios y fracciones algebraicas 1

Tema 2 Polinomios y fracciones algebraicas 1 Tema Polinomios y fracciones algebraicas 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS EJERCICIO 1 : Desarrolla y simplifica: b) 4 1 a) 1 5 5 4 c) 1 4 1 d) 1 6 1 1 5 4 4 5 4 a) 1 5 1 5 5 6 5 4 4 5 4 4 b)

Más detalles

Marzo 2012

Marzo 2012 Marzo 2012 http:///wpmu/gispud/ Para determinar la carga transferida a través del tiempo a un elemento, es posible hacerlo de varias formas: 1. Utilizando la ecuación de carga, evaluando en los tiempos

Más detalles

( ) 2 = 0,3125 kg m 2.

( ) 2 = 0,3125 kg m 2. Examen de Física-1, 1 Ingeniería Química Examen final Enero de 2014 Problemas (Dos puntos por problema) Problema 1: Un bloque de masa m 1 2 kg y un bloque de masa m 2 6 kg están conectados por una cuerda

Más detalles

Parciales Matemática CBC Parciales Resueltos - Exapuni.

Parciales Matemática CBC Parciales Resueltos - Exapuni. Parciales Matemática CBC 2012 Parciales Resueltos - Exapuni www.exapuni.com.ar Compilado de primeros parciales del 2012 Parcial 1 1) Sea. Hallar todos los puntos de la forma, tales que la distancia entre

Más detalles

OPCIÓN A. 1. (1 punto) Representa en la recta real el conjunto de valores reales x tales que 2 x y determínala mediante un intervalo.

OPCIÓN A. 1. (1 punto) Representa en la recta real el conjunto de valores reales x tales que 2 x y determínala mediante un intervalo. EXAMEN: TEMAS 1 y BCT 1º 30/11/010 OPCIÓN A 1. (1 punto) Representa en la recta real el conjunto de valores reales x tales que x 1 3 1 y determínala mediante un intervalo. En primer lugar, desarrollamos

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

E J E R C I C I O S R E S U E L T O S D E S U C E S I O N E S

E J E R C I C I O S R E S U E L T O S D E S U C E S I O N E S E J E R C I C I O S R E S U E L T O S D E S U C E S I O N E S EJERCICIO : Halla el término general de cada una de las siguientes sucesiones: a), 8 7, 5, 5,... b) 7, 7, 5 7, 7,... c),5, 0, 7 5,... a), 8

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago Estática A Fuerzas Si sobre un cuerpo actúan solo dos fuerzas en la misma línea, y el cuerpo está en reposo o moviéndose con velocidad constante, las fuerzas son iguales pero de sentidos contrarios. Si

Más detalles

DINÁMICA. Física 1º bachillerato Dinámica 1

DINÁMICA. Física 1º bachillerato Dinámica 1 DINÁMICA 1. Fuerzas. 2. Principios de la dinámica. 3. Momento lineal (o cantidad de movimiento). 4. Impulso mecánico. 5. Interacción gravitatoria. 6. Fuerza centrípeta. 7. Fuerza elástica. 8. Fuerza de

Más detalles

Polinomios y Fracciones Algebraicas

Polinomios y Fracciones Algebraicas Polinomios y Fracciones Algebraicas UNIDAD DIDÁCTICA 2 1 o de Bachillerato CCSS Diana Barredo Blanco 1 1 Profesora de Matemáticas 1 o Bachiller (CCSS) 1. POLINOMIOS 1. POLINOMIOS Polinomio: Un polinomio

Más detalles

F 28º 1200 N ESTÁTICA Y DINÁMICA

F 28º 1200 N ESTÁTICA Y DINÁMICA COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA Asignatura: ISICA 11º Profesor: Lic. EDUARDO DUARTE SUESCÚN TALLER DE ESTÁTICA SITUACIÓN PROBLEMA Cuando un barco de gran tamaño entra a un puerto o atraviesa

Más detalles

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito OPERACIONES CON INFINITO Sumas con infinito Infinito más un número Infinito más infinito Infinito menos infinito Productos con infinito Infinito por un número Infinito por infinito Infinito por cero Cocientes

Más detalles

EXPERIMENTO A TRAVÉS DEL SISTEMA DE POLEAS. (Aplicando las Leyes de Newton)

EXPERIMENTO A TRAVÉS DEL SISTEMA DE POLEAS. (Aplicando las Leyes de Newton) República bolivariana de Venezuela Ministerio del poder popular para la educación universitaria Universidad nacional experimental de los llanos occidentales Ezequiel Zamora Guasdualito Distrito Alto Apure

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un

TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un elemento de masa dm que gira a una distancia r del eje de

Más detalles

UNA FUERZA es un empujón o jalón que actúa sobre un objeto. Es una cantidad vectorial que tiene magnitud y dirección.

UNA FUERZA es un empujón o jalón que actúa sobre un objeto. Es una cantidad vectorial que tiene magnitud y dirección. LA MASA de un objeto es una medida de su inercia. Se le llama inercia a la tendencia de un objeto en reposo a permanecer en este estado, y de un objeto en movimiento a continuarlo sin cambiar su velocidad.

Más detalles

1. Estudio de la caída de un puente.

1. Estudio de la caída de un puente. 1 1. Estudio de la caída de un puente. A. Introducción Las oscilaciones de un puente bajo la acción de una fuerza externa pueden estudiarse a partir de la resolución de una ecuación a derivadas parciales

Más detalles

FÍSICA I: FUERZA EN 1D GUÍA DE PROBLEMAS 2015

FÍSICA I: FUERZA EN 1D GUÍA DE PROBLEMAS 2015 UNSL ENJPP 5 AÑO B1 Y B2 FÍSICA I: FUERZA EN 1D GUÍA DE PROBLEMAS 2015 1. Un ascensor de 1500 kg se mueve hacia arriba y hacia abajo sostenido por un cable. Calcula la tensión en el cable para los siguientes

Más detalles

Tema 3: Expresiones algebraicas

Tema 3: Expresiones algebraicas .1 Polinomios Tema : Expresiones algebraicas Determina cuáles de las siguientes expresiones son polinomios. Cuando lo sean, dí cuáles son sus monomios(términos), su grado, término principal, término independiente,

Más detalles

PALABRAS CLAVE: Mecánica, Newton, fuerza, aceleración, masa, simulación.

PALABRAS CLAVE: Mecánica, Newton, fuerza, aceleración, masa, simulación. Experiencias de bachillerato a distancia Aplicaciones de la Seunda Ley de Newton *Guillermo Becerra Córdova Resumen En los cursos de Física, donde se incluya a la Mecánica, la Dinámica es parte esencial

Más detalles

Tema 4: Funciones. Límites de funciones

Tema 4: Funciones. Límites de funciones Tema 4: Funciones. Límites de funciones 1. Concepto de función Una aplicación entre dos conjuntos A y B es una transformación que asocia a cada elemento del conjunto A un único elemento del conjunto B.

Más detalles

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto

Más detalles