Tamaño: px
Comenzar la demostración a partir de la página:

Download ""

Transcripción

1 Ing. Rubén Darío Estrella, MBA Cavaliere dell ordine al Merito della Repubblica Italiana (2003) Ingeniero de Sistemas (UNIBE 1993), Administrador (PUCMM 2000), Matemático (PUCMM 2007), Teólogo (UNEV 2002) y Maestro (Salomé Uneña 1985) [email protected] / [email protected]

2

3

4 ADM-237-T MÉTODOS CUANTITATIVOS PARA NEGOCIOS II Modelos Estadísticos para la Toma de Decisiones Objetivo General: Este curso persigue desarrollar habilidades en los gerentes y futuros gerentes de negocios/proyectos que le permitan valorizar, aplicar y crear diferentes modelos matemáticos, útiles en el proceso de toma de decisiones en el mundo de los negocios, con la finalidad de optimizar los resultados a obtener en las diferentes situaciones del mundo real. Los encargados de toma de decisiones estarán mejor preparados para trabajar en este tipo de ambiente si se familiarizan con las clases más comunes de los análisis cuantitativos y con la tecnología de la computadora. Este dominio les ayudará a ser mejores críticos y usuarios de estas herramientas y, según se supone, perfeccionarán su habilidad en la toma de decisiones.

5 Distribución Muestral Decisiones. Edición Pág.100 Generalmente las poblaciones son demasiado grandes como para ser estudiadas en su totalidad. Es necesario seleccionar una muestra representativa de un tamaño más manejable. Esta muestra se utiliza luego para sacar conclusiones sobre la población. Distribución Muestral: Es una lista de todos los valores posibles para un estadístico y la probabilidad relacionada con cada valor.

6 Distribución Muestral Decisiones. Edición Pág.100 La Desviación Normal o Formula Z Número de desviaciones Z= (X - µ)/σ Z= (X' - µ)/σ Z= (X - µ)/(σ/ n) Z= (X' - µ)/(σ/ n)

7 Error de Muestreo: Es la diferencia entre el parámetro poblacional y el estadístico de la muestra para estimar el parámetro. X'-X" X'-µ Distribución Muestral Decisiones. Edición Pág.100 Parámetro: Es una medición numérica que describe alguna característica de una población. Medida descriptiva de la población completa de observaciones que tienen interés para el investigador. Estadístico: Es una medición numérica que describe alguna característica de una muestra. El estadístico se utiliza como estimador del parámetro. Al confiar en una muestra para sacar alguna conclusión o inferencia sobre la población.

8 Distribución Muestral Decisiones. Edición Pág.100 Caso I. Las ventas en miles de dólares de Electrom, S.A. durante los últimos 6 meses fueron de 70, 77, 73, 78, 85 y 80. Asumiendo que estos seis meses constituyen una población, la media claramente es µ = El director de Marketing desea estimar esta media "desconocida" tomando una muestra de tamaño n=4. Se espera que el error de muestreo que es probable que ocurra sea relativamente pequeño. Realice la distribución muestral.

9 Distribución Muestral Decisiones. Edición Pág.100 1º Podemos obtener muchas muestras de tamaño 4. Específicamente 6C4 = 15. ncr = n!/r!(n-r)! = 6!/4!(6-4)!=6!/4!*2! ncr = 6*5*4!/4!*2*1 = 30/2=15 2º Construya la tabla en base a la cantidad de muestra del primer punto, indicando los elementos muestrales (Xi), y Medias Muestrales (X ). 3º Construya la tabla con la Probabilidad de cada media muestral. 4º Calcule la media de las medias muéstrales.

10 POBLACION TABLA DE DISTRIBUCION MUESTRAL VENTAS NUMERO ELEMENTOS DE MEDIA (X') ERROR DE CUADRADO DEL MENSUALES MUESTRA LA MUESTRA (X) MUESTRAL MUESTREO (X'-X") ERROR (X'-X") MEDIA VARIANZA DESVICION MEDIA DE X' VARIANZA ERROR ESTANDAR

11 VENTAS VALORES DE CUADRADO DE MENSUALES DESVIACION X-X' VALORES DE DESV MEDIA SUMATORIA VARIANZA DESVIACION SQRT

12 Distribución Muestral Decisiones. Edición Pág.100 La Media de las Medias Muestrales: X"= X /K Varianza de la Distribución Muestral de las Medias Muestrales: σ²x'= (X'-X")²/K Error Estándar de la Muestral de las Medias Muestrales: σx'= (σ ²x )

13 NUMERO ELEMENTOS DE MEDIA (X') ERROR DE CUADRADO DEL MUESTRA LA MUESTRA (X) MUESTRAL MUESTREO (X'-X") ERROR (X'-X") MEDIA DE X' VARIANZA 2.31 ERROR ESTANDAR 1.52

14 Una aproximación cercana puede obtenerse mediante: σ²x = σ ²/ n σ x = σ/ n Distribución Muestral Decisiones. Edición Pág.100 Si el tamaño de la muestra es más del 5% de la población, n>0.05n, debe aplicarse el factor de corrección para poblaciones finitas (fpc). Error Estándar utilizando el fpc: σ x'=(σ / n) * ( (N-n/N-1)) (N-n/N-1) es el fpc.

15 NUMERO ELEMENTOS DE MEDIA (X') ERROR DE CUADRADO DEL MUESTRA LA MUESTRA (X) MUESTRAL MUESTREO (X'-X") ERROR (X'-X") MEDIA DE X' VARIANZA 2.31 ERROR ESTANDAR 1.52 ERROR ESTANDAR 1.52 FACTOR DE CORRECCION POBLACION FINITA ERROR ESTANDAR

16 VENTAS VALORES DE CUADRADO DE MENSUALES DESVIACION X-X' VALORES DE DESV MEDIA DE X VARIANZA DESVIACION 4.81

17 TABLA DE PROBABILIDADES F/K MEDIAS (X') FRECUENCIA P(X')

18 TABLA DE PROBABILIDADES F/K MEDIAS (X') FRECUENCIA P(X') SUMATORIA

19

20 Teorema del Limite Central Distribución Muestral Decisiones. Edición Pág.100 A medida que n se vuelve más grande, la distribución de las medias muestrales se aproxima a una distribución normal con una media X"=µ y un error estándar de σx'= σ/ n. A mayor n menor σx' Por tanto, incluso si la población no esta distribuida normalmente, la distribución de muestreo de las medias muestrales será normal si n es lo suficientemente grande. La regla general es que si n es por lo menos 30, el Teorema del Limite Central asegurara una distribución normal en las medias muestrales incluso si la población no es normal.

21 Distribución Muestral Decisiones. Edición Pág.100 Conclusiones: 1.- A medida que aumenta el tamaño de las muestras, la distribución de las medias de muestra se acercara a una distribución normal La media de las medias de muestra será la media de la población X"= µ. 3.- La desviación estándar de las medias de muestra será σx'= σ /n.

22 Distribución Muestral Decisiones. Edición Pág.100 Reglas prácticas de uso común: 1.- Para muestras de tamaño n mayor que 30, la distribución de las medias de muestra se puede aproximar razonablemente bien con una distribución normal. La aproximación es más exacta a medida que aumenta el tamaño de muestra n. 2.- Si la población original también esta distribuida normalmente, las medias de muestra tendrán una distribución normal para cualquier tamaño de muestra n.

23 Distribución Muestral Decisiones. Edición Pág.100 El Teorema del Limite Central indica que en el caso de muestras grandes (n > 30), la distribución de las medias de muestra es aproximadamente normal con media µ y desviación estándar σ/n. Provocando así una variación de la ecuación: Z= (X' - µ)/(σ/ n)

24 Distribución Muestral Decisiones. Edición Pág.100 Caso I. Tartus Industries cuenta con siete empleados de producción (a quienes se les considera población). En la tabla siguiente se incluyen los ingresos por hora de cada empleado. Encontrar: La media de la población. La desviación estándar de la población. La media de la distribución muestral de media con muestras de tamaño 2. La desviación estándar de la distribución muestral de medias, es decir, el error estándar de las medias. La tabla de Probabilidades. Ingresos Empleado por hora Joe 7 Sam 7 Sue 8 Bob 8 Jan 7 Art 8 Ted 9

25 Distribución Muestral Decisiones. Edición Pág.100 Caso II. Los tiempos de servicio de los ejecutivos que laboran en Standard Chemicals son los siguientes: Cuántas posibles? muestras de tamaño 2 son Elabore una lista de todas las muestras posibles de 2 ejecutivos de la población y calcule las medias. Organice las medias en una distribución muestral. Compare la media poblacional y la media de las medias de las muestras. Compare la dispersión en la población con la dispersión de la distribución muestral de la media. Construya la tabla de probabilidades. Nombre Años Snow 20 Tolson 22 Kraft 26 Irwin 24 Jones 28

26 Esté entre 145 y 150. Sea mayor que 145. Sea menor que 155. Esté entre145 y 155. Sea mayor que 155. Distribución Muestral Decisiones. Edición Pág.100 Caso VIII. Orange registró los mensajes telefónicos de sus clientes, los cuales promedian 150 segundos, con una desviación de 15 segundos, por lo que planea instalar nuevos equipos que mejorarían la eficiencia de sus operaciones. Sin embargo, antes que los ejecutivos puedan decidir si dicha inversión será eficaz en función de los costos, deben determinar la probabilidad de que la media de una muestra de n=35: Z= (X - µ)/(σ/ n) σx'= σ / n = 15/ 35 =

27 Distribución Muestral Decisiones. Edición Pág.100 Caso VIII. µ = 150 segundos σ = 15 segundos, n=35 Z= (X - µ)/(σ/ n) σx'= σ / n = 15/ 35 = Probabilidad esté entre 145 y 150.

28 Esté entre 145 y 150. Sea mayor que 145. Sea menor que 155. Esté entre145 y 155. Sea mayor que 155. Distribución Muestral Decisiones. Edición Pág.100 Caso VIII. Orange registró los mensajes telefónicos de sus clientes, los cuales promedian 150 segundos, con una desviación de 15 segundos, por lo que planea instalar nuevos equipos que mejorarían la eficiencia de sus operaciones. Sin embargo, antes que los ejecutivos puedan decidir si dicha inversión será eficaz en función de los costos, deben determinar la probabilidad de que la media de una muestra de n=35: Z= (X - µ)/(σ/ n) σx'= σ / n = 15/ 35 =

29 Distribución Muestral Decisiones. Edición Pág.100 Resolver los casos del I al VIII de la página 106 a la página 109.

30 Distribución de Proporciones Muestrales Decisiones. Edición Pág.110 Muchos asuntos de negocios tratan la proporción de la población. Una firma de marketing puede querer averiguar si un cliente (1) compra o (2) no compra el producto. Un banco con frecuencia debe determinar si un depositante (1) pedirá o (2) no pedirá un crédito para auto. Muchas firmas deben determinar la probabilidad de que un proyecto para presupuestar capital (1) generará o (2) no generará un rendimiento positivo. un cliente (1) compra (p = π) o (2) no compra el producto (q = 1 - π) un depositante (1) pedirá un crédito para auto (p = π) o (2) no pedirá un crédito para auto (q = 1 - π)

31 Distribución de Proporciones Muestrales Decisiones. Edición Pág.110 Valor esperado (media) de la Distribución Muestra de la Proporción: E(p) = π = p/k Error estándar de la Distribución Muestra de la Proporción: σp = (π * (1- π))/n = (p*q)/n

32 Distribución de Proporciones Muestrales Decisiones. Edición Pág.110 Si el tamaño de la muestra es mas del 5% de la población, n>0.05n, debe aplicarse el factor de corrección para poblaciones finitas (fpc) (N-n/N-1). Error estándar de la Distribución Muestra de la Proporción: σp = (π * (1- π))/n = (p*q)/n

33 Distribución de Proporciones Muestrales Decisiones. Edición Pág.110 Caso I. Publicidad Sarmiento pregunta a toda la población N=4 clientes si vieron el anuncio publicitario de Sarmiento en el periódico de esta mañana. Se registro una respuesta si como éxito, y no como fracaso. Los cuatros clientes S1, N2, N3 y S4. La proporción poblacional de éxitos es = 0.5. Se tomaron muestras de tamaño n = 2, y la proporción de éxitos se registra en la siguiente tabla: p = x/n

34 4C2 = 6 S1 N2 N3 S4 Xi Núm. De éxitos p 1 S1, N S1, N S1, S N2, N3 0-5 N2, S N3, S TOTAL 3.00

35 Distribución de Proporciones Muestrales Decisiones. Edición Pág.110 Valor esperado (media) de la Distribución Muestra de la Proporción: E(p) = π = p/k = 3/6 = 0.5 Error estándar de la Distribución Muestra de la Proporción: σp = (π * (1- π))/n = (pq)/n σp = (π * (1- π))/n * (N-n/N-1) σp = 0.5*0.5/2 * (4-2/4-1) σp = * = Z = (p - π)/ σ p

36 Distribución de Proporciones Muestrales Decisiones. Edición Pág.110 Caso II. BellLabs adquiere componentes para sus teléfonos celulares en lotes de 200 de una firma en Palo Alto. El componente tiene una tasa de defectos del 10%. Una política establecida recientemente por BellLabs establece que si el siguiente envío tiene: Más del 12% de defectos, definitivamente buscará un nuevo suplidor. Entre el 10 y el 12% de defectos, considerará un nuevo proveedor. Entre el 5 y 10% de defectos, definitivamente no conseguirá un nuevo proveedor. Menos del 5% de defectos, incrementará sus pedidos. Cúal decisión es más probable que tome BellLabs?

37 Distribución de Proporciones Muestrales Decisiones. Edición Pág.110 Caso II. BellLabs adquiere componentes para sus teléfonos celulares en lotes de 200 de una firma en Palo Alto. El componente tiene una tasa de defectos del 10%. Una política establecida recientemente por BellLabs establece que si el siguiente envío tiene: Más del 12% de defectos, definitivamente buscará un nuevo suplidor. E(p) = π = 0.10 σp = 0.1*0.9/200 = P(p > 0.12): Z = (p - π)/ σ p Z = ( )/0.021 = 0.95 Z = 0.95 área de P(p > 0.12) = P(Z > 0.95) = =

38

39 Distribución de Proporciones Muestrales Decisiones. Edición Pág.110 Caso II. BellLabs adquiere componentes para sus teléfonos celulares en lotes de 200 de una firma en Palo Alto. El componente tiene una tasa de defectos del 10%. Una política establecida recientemente por BellLabs establece que si el siguiente envío tiene: Entre el 10 y el 12% de defectos, considerará un nuevo proveedor. E(p) = π = 0.10 σp = 0.1*0.9/200 = P(0.10 <= p <= 0.12): Z = (p - π)/ σ p Z = ( )/0.021 = 0.95 Z = 0.95 área de P(0.10 <= p <= 0.12) =

40

41 Distribución de Proporciones Muestrales Decisiones. Edición Pág.110 Caso II. BellLabs adquiere componentes para sus teléfonos celulares en lotes de 200 de una firma en Palo Alto. El componente tiene una tasa de defectos del 10%. Una política establecida recientemente por BellLabs establece que si el siguiente envío tiene: Entre el 5 y 10% de defectos, definitivamente no conseguirá un nuevo proveedor. E(p) = π = 0.10 σp = 0.1*0.9/200 = P(0.05 <= p <= 0.10): Z = (p - π)/ σ p Z = ( )/0.021 = Z = 2.38 área de P(0.05 <= p <= 0.10) =

42

43 Caso II. BellLabs adquiere componentes para sus teléfonos celulares en lotes de 200 de una firma en Palo Alto. El componente tiene una tasa de defectos del 10%. Una política establecida recientemente por BellLabs establece que si el siguiente envío tiene: Menos del 5% de defectos, incrementará sus pedidos. Cúal decisión es más probable que tome BellLabs? E(p) = π = 0.10 σp = 0.1*0.9/200 = P(p < 0.05): Distribución de Proporciones Muestrales Decisiones. Edición Pág.110 Z = (p - π)/ σ p Z = ( )/0.021 = Z = 2.38 área de P(p < 0.50) = =

44

45 Distribución de Proporciones Muestrales Decisiones. Edición Pág.110 Caso II. El 30% de todos los empleados de una empresa tienen capacitación avanzada. Si en una muestra de 500 empleados menos del 27% estaba preparado de forma adecuada, todos los nuevos contratos necesitarán registrarse en un programa de capacitación. Cuál es la probabilidad de que inicie el programa? Caso III. La proporción de todos los clientes de Pizza Hut que comen en el sitio es del 75%. En una muestra de 100 clientes. Cuál es la probabilidad de que menos del 20% lleven su comida a casa?

46 Distribución de Proporciones Muestrales Decisiones. Edición Pág.110 Webster: Ejercicios 9 al 12 - Pág. 157 Webster: Ejercicios 13 al 17 - Pág. 160 Webster: Ejercicios 18 al 46 - Pág Investigar los siguientes Métodos de Muestreo y dar dos Ejemplos: Valor 2 adicionales a los 100. Muestreo Aleatorio Simple. Muestreo Sistemático. Muestreo Estratificado. Muestreo por Conglomerados. Muestreo de Conveniencia.

Técnicas de Muestreo Métodos

Técnicas de Muestreo Métodos Muestreo aleatorio: Técnicas de Muestreo Métodos a) unidad muestral elemental: a.1) muestreo aleatorio simple a.2) muestreo (seudo)aleatorio sistemático a.3) muestreo aleatorio estratificado b) unidad

Más detalles

Teoría de la decisión

Teoría de la decisión Unidad 7.. Definiciones. Muestreo aleatorio y estadístico. Estadísticos importantes. Técnica de muestreo. Transformación integral Muestreo: selección de un subconjunto de una población ) Representativo

Más detalles

Juan Carlos Colonia DISTRIBUCIONES MUESTRALES

Juan Carlos Colonia DISTRIBUCIONES MUESTRALES Juan Carlos Colonia DISTRIBUCIONES MUESTRALES POBLACIÓN Es el conjunto de individuos u objetos que poseen alguna característica común observable y de la cual se desea obtener información. El número de

Más detalles

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10 Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,

Más detalles

Febrero 2016 Ing. Rubén Darío Estrella, MBA Cavaliere dell ordine al Merito della Repubblica Italiana (2003) Ingeniero de Sistemas (UNIBE 1993), Administrador (PUCMM 2000), Matemático (PUCMM 2007), Teólogo

Más detalles

Muestreo de variables aleatorias

Muestreo de variables aleatorias Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

PROBABILIDAD Y ESTADÍSTICA. Sesión 6 (A partir de tema 5.9)

PROBABILIDAD Y ESTADÍSTICA. Sesión 6 (A partir de tema 5.9) PROBABILIDAD Y ESTADÍSTICA Sesión 6 (A partir de tema 5.9) 5.9 Muestreo: 5.9.1 Introducción al muestreo 5.9.2 Tipos de muestreo 5.10 Teorema del límite central 5.11 Distribución muestral de la media 5.12

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07 TEMA 2: Estimadores y distribuciones en el muestreo 1) Introducción 2) Tipos de muestreos 3) Estadísticos INDICE 4) Estimadores y propiedades 5) Distribución muestral 6) Teorema Central del Límite 7) Distribuciones

Más detalles

TEOREMA DEL LÍMITE CENTRAL

TEOREMA DEL LÍMITE CENTRAL Material de clase n 2 Domingo 13 Junio TEOREMA DEL LÍMITE CENTRAL A medida que n se vuelve más grande, la distribución de las medias muestrales se aproxima a una distribución normal con una media x = µ

Más detalles

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................

Más detalles

Tema 6: Introducción a la inferencia estadística

Tema 6: Introducción a la inferencia estadística Tema 6: Introducción a la inferencia estadística Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 6: Introducción a la inferencia estadística

Más detalles

Estadística Inferencial. Sesión 2. Distribuciones muestrales

Estadística Inferencial. Sesión 2. Distribuciones muestrales Estadística Inferencial. Sesión 2. Distribuciones muestrales Contextualización. Toda cantidad que se obtiene de una muestra con el propósito de estimar un parámetro poblacional se llama estadístico muestral

Más detalles

1 CÁLCULO DE PROBABILIDADES

1 CÁLCULO DE PROBABILIDADES 1 CÁLCULO DE PROBABILIDADES 1.1 EXPERIENCIAS ALEATORIAS. SUCESOS 1.1.1 Definiciones Experiencia aleatoria: experiencia o experimento cuyo resultado depende del azar. Suceso aleatorio: acontecimiento que

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Mag. María del Carmen Romero 2014 [email protected] Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo

Más detalles

Estimación de Parámetros. Jhon Jairo Padilla A., PhD.

Estimación de Parámetros. Jhon Jairo Padilla A., PhD. Estimación de Parámetros Jhon Jairo Padilla A., PhD. Inferencia Estadística La inferencia estadística puede dividirse en dos áreas principales: Estimación de Parámetros Prueba de Hipótesis Estimación de

Más detalles

Estimación de Parámetros. Jhon Jairo Padilla A., PhD.

Estimación de Parámetros. Jhon Jairo Padilla A., PhD. Estimación de Parámetros Jhon Jairo Padilla A., PhD. Inferencia Estadística La inferencia estadística puede dividirse en dos áreas principales: Estimación de Parámetros Prueba de Hipótesis Estimación de

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

UNIVERSIDAD ALONSO DE OJEDA ESTADISTICA II

UNIVERSIDAD ALONSO DE OJEDA ESTADISTICA II UNIVERSIDAD ALONSO DE OJEDA ESTADISTICA II UNIDAD I MUESTREO Y ESTIMACION DE PARAMETROS (GUIA DE ESTUDIO) DR. DENY GONZALEZ MAYO 2016 La Estadística es un conjunto de métodos para la toma de decisiones

Más detalles

Notas de clase Estadística R. Urbán R.

Notas de clase Estadística R. Urbán R. Inferencia estadística Sabemos que una población puede ser caracterizada por los valores de algunos parámetros poblacionales, por ello es lógico que en muchos problemas estadísticos se centre la atención

Más detalles

Muestreo y. Distribuciones Muestrales

Muestreo y. Distribuciones Muestrales Muestreo y Distribuciones Muestrales Muestreo Muestreo POBLACION muestra Inferencia Estadística Conteos rápidos, preferencias electorales, etc. Tipos de Muestreo Muestreo No Probabilístico No aplican las

Más detalles

Ms. C. Marco Vinicio Rodríguez

Ms. C. Marco Vinicio Rodríguez Ms. C. Marco Vinicio Rodríguez [email protected] http://mvrurural.wordpress.com/ Uno de los objetivos de la estadística es saber acerca del comportamiento de parámetros poblacionales tales como:

Más detalles

DISEÑO Y CÁLCULO DE TAMAÑO DE MUESTRA PARA SU APLICACIÓN A LOS ESTUDIOS DE INVESTIGACIÓN. FACILITADOR: JOSÉ CRISTO NOVA

DISEÑO Y CÁLCULO DE TAMAÑO DE MUESTRA PARA SU APLICACIÓN A LOS ESTUDIOS DE INVESTIGACIÓN. FACILITADOR: JOSÉ CRISTO NOVA DISEÑO Y CÁLCULO DE TAMAÑO DE MUESTRA PARA SU APLICACIÓN A LOS ESTUDIOS DE INVESTIGACIÓN. FACILITADOR: JOSÉ CRISTO NOVA INTRODUCCIÓN Los profesionales y docentes del área de la metodología de investigación

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 10 Estadísticos muestrales y sus aplicaciones Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir las propiedades de los estadísticos muestrales.

Más detalles

TH. DE CHEBYSHEV DISTRIB. NORMAL.

TH. DE CHEBYSHEV DISTRIB. NORMAL. f ( x) 1 2 2 ( x) e 2 2 TH. DE CHEBYSHEV DISTRIB. NORMAL El Desvío Estándar y el Teorema de Chebyshev Es conocida en el área de la probabilidad y estadística, la desigualdad de Chebyshev, matemático Ruso

Más detalles

Teorema del límite central

Teorema del límite central TEMA 6 DISTRIBUCIONES MUESTRALES Teorema del límite central Si se seleccionan muestras aleatorias de n observaciones de una población con media y desviación estándar, entonces, cuando n es grande, la distribución

Más detalles

EJERCICIOS DISTRIBUCIONES MUESTRALES

EJERCICIOS DISTRIBUCIONES MUESTRALES EJERCICIOS DISTRIBUCIONES MUESTRALES 1. Se desea tomar una muestra aleatoria de tamaño n = 200 de la población estudiantil de la FES-C, que vamos a suponer asciende a N = 12000 estudiantes, con el objeto

Más detalles

Capítulo 8 Métodos de Muestreo y el Teorema de Límite Central

Capítulo 8 Métodos de Muestreo y el Teorema de Límite Central Capítulo 8 Métodos de Muestreo y el Teorema de Límite Central Objetivos: Al terminar este capítulo podrá: 1. Explicar por qué una muestra es la única forma posible de tener conocimientos acerca de una

Más detalles

Teoría de muestras 2º curso de Bachillerato Ciencias Sociales

Teoría de muestras 2º curso de Bachillerato Ciencias Sociales TEORÍA DE MUESTRAS Índice: 1. Introducción----------------------------------------------------------------------------------------- 2 2. Muestras y población-------------------------------------------------------------------------------

Más detalles

Unidad Temática 2: Unidad 5 Estadística Inferencial Temas 10 y 11

Unidad Temática 2: Unidad 5 Estadística Inferencial Temas 10 y 11 Unidad Temática 2: Unidad 5 Estadística Inferencial Temas 10 y 11 Distribución de Probabilidad Recordamos conceptos: Variable aleatoria: es aquella que se asocia un número o un dato probabilístico, como

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales 1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución

Más detalles

Estimación de Parámetros

Estimación de Parámetros Estimación de Parámetros Jhon Jairo Padilla A., PhD. Inferencia Estadística La inferencia estadística puede dividirse en dos áreas principales: p Estimación de Parámetros Prueba de Hipótesis Estimación

Más detalles

CAPITULO 8 MUESTRAS ALEATORIAS Y NUMEROS ALEATORIOS

CAPITULO 8 MUESTRAS ALEATORIAS Y NUMEROS ALEATORIOS Teoría elemental de muestreo CAPITULO 8 TEORIA DE MUESTREO La teoría de muestreo es el estudio de las relaciones existentes entre una población y las muestras extraídas de ella. Es de gran utilidad en

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel UNIVERSIDAD DE MANAGUA Al más alto nivel Estadística Inferencial Encuentro #9 Tema: Estimación puntual y por Intervalo de confianza Prof.: MSc. Julio Rito Vargas A. Grupos: CCEE y ADMVA /2016 Objetivos:

Más detalles

TEMA 2: EL PROCESO DE MUESTREO

TEMA 2: EL PROCESO DE MUESTREO 2.5. Determinación del tamaño de la muestra para la estimación en muestreo aleatorio estratificado TEMA 2: EL PROCESO DE MUESTREO 2.1. Concepto y limitaciones 2.2. Etapas en la selección de la muestra

Más detalles

Técnicas de investigación cuantitativas: Tema 4: MUESTREO PROBABILÍSTICO

Técnicas de investigación cuantitativas: Tema 4: MUESTREO PROBABILÍSTICO Técnicas de investigación cuantitativas: Tema 4: MUESTREO PROBABILÍSTICO Grado en Criminología Curso 2014/2015 Técnicas de investigación cualitativa y cuantitativa Diseño muestral Recordemos (Tema 3):

Más detalles

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2 PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2 UNIDAD II: DISTRIBUCIONES MUESTRALES OBJ. 2.1 2.2 2.3 2.4 1.- Un plan de muestreo para aceptar un lote, para

Más detalles

SECUENCIA DIDÁCTICA. Nombre de curso: Probabilidad y Estadística Clave de curso: MAT0802A21. Módulo II Competencia de Módulo:

SECUENCIA DIDÁCTICA. Nombre de curso: Probabilidad y Estadística Clave de curso: MAT0802A21. Módulo II Competencia de Módulo: SECUENCIA DIDÁCTICA Nombre de curso: Probabilidad y Estadística Clave de curso: MAT0802A21 Antecedente: Ninguno Clave de antecedente: Ninguna Módulo II Competencia de Módulo: Desarrollar programas de cómputo

Más detalles

Teorema Central del Límite. Cálculo Numérico y Estadística. Grado en Química. U. de Alcalá. Curso F. San Segundo.

Teorema Central del Límite. Cálculo Numérico y Estadística. Grado en Química. U. de Alcalá. Curso F. San Segundo. Teorema Central del Límite. Cálculo Numérico y Estadística. Grado en Química. U. de Alcalá. Curso 2014-2015. F. San Segundo. Variables de Bernouilli. Una de las familias de variables aleatorias más básicas

Más detalles

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO.

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO. DISTRIBUCIÓN t Con frecuencia intentamos estimar la media de una población cuando se desconoce la varianza, en estos casos utilizamos la distribución de t de Student. Si el tamaño de la muestra es suficientemente

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA

ANALISIS DE FRECUENCIA EN HIDROLOGIA ANALISIS DE FRECUENCIA EN HIDROLOGIA Luis F. Carvajal Julián D. Rojo Universidad Nacional de Colombia Facultad de Minas Escuela de Geociencias y Medio Ambiente Introducción 1. Los eventos hidrológicos

Más detalles

CALCULO DE INCERTIDUMBRE DE LAS MEDICIONES DE ENSAYOS

CALCULO DE INCERTIDUMBRE DE LAS MEDICIONES DE ENSAYOS Gestor de Calidad Página: 1 de 5 1. Propósito Establecer una guía para el cálculo de la incertidumbre asociada a las mediciones de los ensayos que se realizan en el. Este procedimiento ha sido preparado

Más detalles

CURSO DE MÉTODOS CUANTITATIVOS I

CURSO DE MÉTODOS CUANTITATIVOS I CURSO DE MÉTODOS CUANTITATIVOS I TEMA VI: INTRODUCCIÓN AL MUESTREO Ing. Francis Ortega, MGC Concepto de Población y Muestra POBLACIÓN (N) Es el conjunto de todos los elementos de interés en un estudio

Más detalles

Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio

Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio En ocasiones en que no es posible o conveniente realizar un censo (analizar a todos los elementos de una población),

Más detalles

Fundamentos para la inferencia. Unidad 3 Parte II Estadísca Prof. Tamara Burdisso

Fundamentos para la inferencia. Unidad 3 Parte II Estadísca Prof. Tamara Burdisso Fundamentos para la inferencia Estadísca 017 - Prof. Tamara Burdisso 1 Distribución muestral de la varianza muestral Hasta aquí nos ocupamos de hacer inferencia sobre la media y/o la proporción de una

Más detalles

Estadística Inferencial

Estadística Inferencial Estadística Inferencial 1 Sesión No.2 Nombre: Distribuciones muestrales Contetualización Toda cantidad que se obtiene de una muestra con el propósito de estimar un parámetro poblacional se llama estadístico

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Juan Carlos Colonia INFERENCIA ESTADÍSTICA

Juan Carlos Colonia INFERENCIA ESTADÍSTICA Juan Carlos Colonia INFERENCIA ESTADÍSTICA PARÁMETROS Y ESTADÍSTICAS Es fundamental entender la diferencia entre parámetros y estadísticos. Los parámetros se refieren a la distribución de la población

Más detalles

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN En este artículo, se trata de explicar una metodología estadística sencilla y sobre todo práctica, para la estimación del tamaño de muestra

Más detalles

Muestreo y Distribuciones en el Muestreo

Muestreo y Distribuciones en el Muestreo Muestreo y Distribuciones en el Muestreo Departamento de Estadística-FACES-ULA 03 de Abril de 2013 Introducción al Muestreo En algunas ocaciones es posible y práctico examinar a cada individuo en el Universo

Más detalles

Especialización en Métodos Estadísticos (EME) CURSO PROPEDÉUTICO ESTADÍSTICA BÁSICA

Especialización en Métodos Estadísticos (EME) CURSO PROPEDÉUTICO ESTADÍSTICA BÁSICA Especialización en Métodos Estadísticos (EME) CURSO PROPEDÉUTICO ESTADÍSTICA BÁSICA Enrique Rosales Ronzón, Patricia Díaz Gaspar, mayo 2015 Estadística??? Ciencia, Técnica, Arte Reunir, Organizar, presentar,

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A.

ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A. ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A. 1 PROBABILIDAD Probabilidad de un evento es la posibilidad relativa de que este ocurra al realizar el experimento Es la frecuencia de que algo ocurra dividido

Más detalles

Distribución Muestral.

Distribución Muestral. Distribución Muestral [email protected] Uno de los objetivos de la Estadística es tratar de inferir el valor real de los parámetros de la población Por ejemplo Cómo podríamos asegurar que una empresa

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Teoría del muestreo. Tipos de muestras

Teoría del muestreo. Tipos de muestras Teoría del muestreo El total de un grupo de datos de llama población o universo, y una porción representativa de este grupo se llama muestra. Las muestras desempeñan un papel muy importante en los trabajos

Más detalles

Diseño de experimentos Hugo Alexer Pérez Vicente

Diseño de experimentos Hugo Alexer Pérez Vicente Diseño de experimentos Hugo Alexer Pérez Vicente Recuerdo que Conceptos estadísticos Población y muestra Población es una colección de posibles individuos, especímenes, objetos o medidas de interés sobre

Más detalles

Tema 3: Estimación estadística de modelos probabilistas. (primera parte)

Tema 3: Estimación estadística de modelos probabilistas. (primera parte) Tema 3: Estimación estadística de modelos probabilistas. (primera parte) Estructura de este tema: 1. 2 Estimación por intervalos de confianza. 3 Contrastes de hipótesis. Planteamiento del problema Inconveniente:

Más detalles

DISTRIBUCIÓN DE ESTADÍSTICOS MUESTRALES

DISTRIBUCIÓN DE ESTADÍSTICOS MUESTRALES Ensayo de Rendimiento DISTRIBUCIÓN DE ESTADÍSTICOS MUESTRALES Muestreo Laura A. Gonzalez Objetivo: conocer características de una población a partir de una muestra Características Parámetros Los estadísticos

Más detalles

Cuál es el campo de estudio de la prueba de hipótesis?

Cuál es el campo de estudio de la prueba de hipótesis? ESTIMACIÓN Establecer generalizaciones acerca de una población a partir de una muestra es el campo de estudio de la inferencia estadística. La inferencia estadística se divide en estimación y prueba de

Más detalles

Intervalos de Confianza

Intervalos de Confianza Intervalos de Confianza Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Intervalo de Confianza Se puede hacer una estimación puntual de

Más detalles

UNIVERSIDAD MARÍA AUXILIADORA UMA

UNIVERSIDAD MARÍA AUXILIADORA UMA CARRERA PROFESIONAL DE ENFERMERIA SÍLABO DE BIOESTADÍSTICA I. DATOS GENERALES: 1.1. Carreras profesionales : Enfermería 1.2. Semestre académico : 2015 - I 1.3. Ciclo : III 1.4. Pre-requisito : Matemática

Más detalles

Tema 7: Introducción a la Teoría sobre Estimación

Tema 7: Introducción a la Teoría sobre Estimación Tema 7: Introducción a la Teoría sobre Estimación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 7: Introducción a la Teoría sobre Estimación

Más detalles

ESTIMACION INFERENCIA ESTADISTICA

ESTIMACION INFERENCIA ESTADISTICA P M INFERENCIA ESTADISTICA Desde nuestro punto de vista, el objetivo es expresar, en términos probabilísticos, la incertidumbre de una información relativa a la población obtenida mediante la información

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN PRUEBA N 3 Profesor: Hugo S. Salinas. Segundo Semestre 200. Se investiga el diámetro

Más detalles

Ms. C. Marco Vinicio Rodríguez

Ms. C. Marco Vinicio Rodríguez Ms. C. Marco Vinicio Rodríguez [email protected] http://mvrurural.wordpress.com/ Un estimador es una regla que establece cómo calcular una estimación basada en las mediciones contenidas en una muestra

Más detalles

Discretas. Continuas

Discretas. Continuas UNIDAD 0. DISTRIBUCIÓN TEÓRICA DE PROBABILIDAD Discretas Binomial Distribución Teórica de Probabilidad Poisson Normal Continuas Normal Estándar 0.1. Una distribución de probabilidad es un despliegue de

Más detalles

ESTADÍSTICA BASICA EN CONTROL DE CALIDAD

ESTADÍSTICA BASICA EN CONTROL DE CALIDAD ESTADÍSTICA BASICA EN CONTROL DE CALIDAD El control estadístico de la calidad, aplica la teoría del muestreo estadístico, al estudio de las características de calidad. Pretende determinar la variabilidad,

Más detalles

Prof. Angel Zambrano ENERO 2009 Universidad de Los Andes Escuela de Estadística

Prof. Angel Zambrano ENERO 2009 Universidad de Los Andes Escuela de Estadística Prof. Angel Zambrano ENERO 009 Universidad de Los Andes Escuela de Estadística Muestreo: Es una metodología que apoyándose en la teoría estadística y de acuerdo a las características del estudio, indica

Más detalles

INDICE Capítulo I: Conceptos Básicos Capitulo II: Estadística Descriptiva del Proceso

INDICE Capítulo I: Conceptos Básicos Capitulo II: Estadística Descriptiva del Proceso INDICE Capítulo I: Conceptos Básicos 1.- Introducción 3 2.- Definición de calidad 7 3.- Política de calidad 10 4.- Gestión de la calidad 12 5.- Sistema de calidad 12 6.- Calidad total 13 7.- Aseguramiento

Más detalles

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: ESTADISTICA DE LA PROBABILIDAD DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD

Más detalles

Verificación de una hipótesis sobre una media

Verificación de una hipótesis sobre una media Sesión 14 Verificación de una hipótesis sobre una media Verificación de una hipótesis sobre una media Procedimiento de verificación de una hipótesis si el parámetro de interés es una media poblacional.

Más detalles

UNIVERSIDAD ABIERTA PARA ADULTOS (UAPA) Maestría en Dirección Financiera. Asignatura: Método Cuantitativo Empresarial

UNIVERSIDAD ABIERTA PARA ADULTOS (UAPA) Maestría en Dirección Financiera. Asignatura: Método Cuantitativo Empresarial UNIVERSIDAD ABIERTA PARA ADULTOS (UAPA) Maestría en Dirección Financiera Asignatura: Método Cuantitativo Empresarial CLAVE: PDF-421 Prerrequisitos: Licenciatura No. de Créditos: 03 I. PRESENTACION El método

Más detalles

Problemas resueltos Muestreo Vicente Manzano-Arrondo, 2013

Problemas resueltos Muestreo Vicente Manzano-Arrondo, 2013 Problemas resueltos Muestreo Vicente Manzano-Arrondo, 201 1 En todos los casos vamos a suponer que las muestras se obtienen siguiendo un muestreo aleatorio simple desde poblaciones de tamaño prácticamente

Más detalles

2. Distribuciones de Muestreo

2. Distribuciones de Muestreo 2. Distribuciones de Muestreo Conceptos básicos Para introducir los conceptos básicos consideremos el siguiente ejemplo: Supongamos que estamos interesados en determinar el número medio de televisores

Más detalles

Estadística en acción

Estadística en acción Muestreo aleatorio sistemático En algunos estudios, el procedimiento de muestreo aleatorio simple resulta complicado. Por ejemplo, suponga que la división de ventas de Computer Graphic, Inc., necesita

Más detalles

LECTURA 03: DISTRIBUCIÓN T STUDENT Y DISTRIBUCIÓN CHICUADRADO TEMA 6: DISTRIBUCION T STUDENT. MANEJO DE TABLAS ESTADISTICAS.

LECTURA 03: DISTRIBUCIÓN T STUDENT Y DISTRIBUCIÓN CHICUADRADO TEMA 6: DISTRIBUCION T STUDENT. MANEJO DE TABLAS ESTADISTICAS. LECTURA 3: DISTRIBUCIÓN T STUDENT Y DISTRIBUCIÓN CHICUADRADO TEMA 6: DISTRIBUCION T STUDENT MANEJO DE TABLAS ESTADISTICAS 1 INTRODUCCION Se dice que una variable aleatoria T tiene una distribución t de

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

CAPITULO 6 DISTRIBUCIONES MUESTRALES

CAPITULO 6 DISTRIBUCIONES MUESTRALES CAPITULO 6 DISTRIBUCIONES MUESTRALES MUESTRAS ALEATORIAS PARA DEFINIR UNA MUESTRA ALEATORIA, SUPONGAMOS QUE x ES UNA VARIABLE ALEATORIA CON DISTRIBUCIÓN DE PROBABILIDADA f(x). EL CONJUNTO DE n OBSERVACIONES

Más detalles

ESTADISTICA DESCRIPTIVA Y PROBABILIDAD

ESTADISTICA DESCRIPTIVA Y PROBABILIDAD ESTADISTICA DESCRIPTIVA Y PROBABILIDAD CODIGO 213543 (COMPUTACION) 223543 (SISTEMAS) 253443 (CONTADURIA) 263443( ADMINISTRACION) 273443 (GRH) HORAS TEORICAS HORAS PRACTICAS UNIDADES CREDITO SEMESTRE PRE

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos INDICE Prefacio VII 1. Introducción 1 1.1. Qué es la estadística moderna? 1 1.2. El crecimiento y desarrollo de la estadística moderna 1 1.3. Estudios enumerativos en comparación con estudios analíticos

Más detalles

Curso: 2º Grupo: B Día: 18 - IV CURSO

Curso: 2º Grupo: B Día: 18 - IV CURSO 3ª EVALUACIÓN Curso: º Grupo: B Día: 18 - IV - 008 CURSO 007-08 EJERCICIO 1 (1.75 puntos) Sea la población {1, 5, 7}. Escriba todas las muestras de tamaño, mediante muestreo aleatorio simple, y calcule

Más detalles

FISCALIZACIÓN DE ENCUESTAS ELECTORALES. Luis Antonio Capcha Gálvez David Mendoza Villavicencio

FISCALIZACIÓN DE ENCUESTAS ELECTORALES. Luis Antonio Capcha Gálvez David Mendoza Villavicencio FISCALIZACIÓN DE ENCUESTAS ELECTORALES Luis Antonio Capcha Gálvez David Mendoza Villavicencio DEFINICIÓN DE ENCUESTA: El Diccionario de Marketing de Cultural S.A. define el término encuesta como la actividad

Más detalles

Estimación de Parámetros.

Estimación de Parámetros. Estimación de Parámetros. Un estimador es un valor que puede calcularse a partir de los datos muestrales y que proporciona información sobre el valor del parámetro. Por ejemplo la media muestral es un

Más detalles

Estimación. Introducción. Sea X la variable aleatoria poblacional con distribución de probabilidad f θ donde. es el parámetro poblacional desconocido

Estimación. Introducción. Sea X la variable aleatoria poblacional con distribución de probabilidad f θ donde. es el parámetro poblacional desconocido Tema : Introducción a la Teoría de la Estimación Introducción Sea X la variable aleatoria poblacional con distribución de probabilidad f θ (x), donde θ Θ es el parámetro poblacional desconocido Objetivo:

Más detalles

Distribuciones muestrales. Distribución muestral de Medias

Distribuciones muestrales. Distribución muestral de Medias Distribuciones muestrales. Distribución muestral de Medias TEORIA DEL MUESTREO Uno de los propósitos de la estadística inferencial es estimar las características poblacionales desconocidas, examinando

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 2000-2.001 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro

Más detalles

Tema 1: Distribuciones en el muestreo

Tema 1: Distribuciones en el muestreo Tema 1: Distribuciones en el muestreo 1 (transparencias de A. Jach http://www.est.uc3m.es/ajach/) Muestras aleatorias Estadísticos Concepto de distribución muestral Media muestral Distribución muestral

Más detalles

Muestreo e intervalos de confianza

Muestreo e intervalos de confianza Muestreo e intervalos de confianza Intervalo de confianza para la media (varianza desconocida) Intervalo de confinza para la varianza Grados en Biología y Biología sanitaria M. Marvá. Departamento de Física

Más detalles