Recta de Euler en cuadriláteros. Mario Dalcín Instituto de Profesores Artigas Uruguay

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Recta de Euler en cuadriláteros. Mario Dalcín Instituto de Profesores Artigas Uruguay"

Transcripción

1 Recta de Euler en cuadriláteros Mario Dalcín Instituto de Profesores rtigas Uruguay Resumen El circuncentro (), baricentro (G) y ortocentro () de todo triángulo están alineados en la recta de Euler y verifican la relación mg = 2 mg. En el presente artículo se define baricentro (G) y ortocentro () de un cuadrilátero inscriptible de circuncentro () y se demuestra que dichos puntos están alineados y verifican la relación mg = 3 mg. Palabras clave: recta de Euler, cuadriláteros, medianas, circuncentro, baricentro, ortocentro. Revista Digital Matemática, Educación e Internet ( volumen 7, número Introducción En los Elementos (Libro IV, Proposición 5) de Euclides ya figura la concurrencia de las mediatrices de los lados de un triángulo en el circuncentro. Es en obras de rquímedes donde aparece la concurrencia de medianas (El equilibrio de los planos, Proposición 13) y alturas de un triángulo (Libro de los Lemas, Proposición 5) en baricentro y ortocentro respectivamente. Durante 2000 años estos puntos tuvieron una existencia independiente uno del otro. abría que esperar a Leonard Euler ( = 1783) para reparar en que dichos puntos estaban alineados y por si fuera poco que la distancia del baricentro al ortocentro era el doble de la distancia del circuncentro al baricentro. El presente artículo busca responder a la siguiente interrogante: uál será la situación de estos puntos en un cuadrilátero?. Para ello tendremos que generalizar la idea de baricentro, circuncentro y ortocentro y buscar definirlos en un cuadrilátero. Empecemos por señalar que sólo tendrá sentido hablar de circuncentro de un cuadrilátero en el caso en que este sea inscriptible. 1

2 2. Recta de Euler en triángulos Proposición 1 El circuncentro (), baricentro (G) y ortocentro () de un triángulo están alineados y verifican la relación mg = 2.mG. G M E Figura 1: G = 0.50 cm G = 1.00 cm G Figura 2: Demostración quí E el simétrico de respecto de, es perpendicular a por ser altura de, E es perpendicular a por ser E diámetro de, por lo que es paralela a E; del mismo modo es paralela a E. El cuadrilátero E es paralelogramo por lo que sus diagonales y E se cortan en su punto medio M por lo que M es mediana de y además mediana de E. omo es punto medio de E el segmento es mediana de E por lo que el punto G de intersección de y M es baricentro de E de donde usando la propiedad de las medianas de un triángulo que demostraremos a continuación podemos afirmar que, G, están alineados y mg = 2 mg. 2

3 3. aricentro de un cuadrilátero Entendiendo como baricentro de un segmento a su punto medio, definimos las medianas de un triángulo como los segmentos que unen cada vértice del triángulo con el baricentro del lado opuesto, se cumple la siguiente proposición. Proposición 2 Las medianas de un triángulo concurren en un punto que divide a cada mediana en dos segmentos uno doble del otro. Demostración Las medianas N y M se cortan en G, Q y R los puntos medios de G y G respectivamente. Q N R G M Figura 3: MN y QR son paralelos e iguales entre sí por ser paralelos a e iguales a su mitad por lo que el cuadrilátero MNQR es paralelogramo, de donde G es punto medio de sus diagonales QM y RN. En resumen: R = RG = GN y Q = QG = GM. (1) Procediendo de forma análoga: considerando que las medianas N y P se cortan en G, llamando Q y S a los respectivos puntos medios de G y G, como NP y R S son paralelos a e iguales a su mitad el cuadrilátero NP R S es paralelogramo de donde G es punto medio de sus diagonales SP y R N. En resumen: R = R G = G N y S = SG = G P.(2) Por lo visto en (1) se cumple que R = RG = GN y de lo visto en (2) se cumple que R = R G = G N por lo que debe ser G = G. 3

4 P N G' R' S Figura 4: Definición [aricentro]. Llamaremos baricentro de un triángulo al punto de intersección de sus medianas. Definición [Medianas de un cuadrilátero]. Definimos las medianas de un cuadrilátero como los segmentos que unen cada vértice con los baricentros de los triángulos que forman los tres vértices restantes. Proposición 3 Se cumple la siguiente proposición: Las medianas de un cuadrilátero concurren en un punto que divide a cada mediana en dos segmentos uno triple del otro. Demostración S y T los baricentros de y D respectivamente. T y DS se cortan en G. Por lo demostrado acerca de las medianas de un triángulo se cumple que mn mns = mnd = 3 de donde mnt por el recíproco de Tales podemos afirmar que T S y D son paralelas y por tanto que los triángulos GT S y GD son semejantes, se cumple así que mg mgt = mgd mgs = md y como además mt S md mt S = mnd = 3 podemos concluir que mg = 3 mgt y mgd = 3 mgs (1) mnt Razonado de manera análoga, si las medianas T y U se cortan en G se cumple que mg = 3 mg T y mg = 3 mg U. (2) 4

5 partir de lo visto en (1) el punto G pertenece al segmento T y cumple que mg = 3 mgt y por lo visto en (2) el punto G pertenece al segmento T también cumple que mg = 3 mg T, de donde podemos concluir que G = G. M S G N T P D Figura 5: Q G' N U T P D Figura 6: Definición [aricentro de un cuadrilátero]. Llamaremos baricentro de un cuadrilátero al punto de intersección de sus medianas. 4. rtocentro de un cuadrilátero Proposición 4 Sea triángulo de circuncentro. Sean,, simétricos de respecto de,, y respectivamente, entonces las circunferencias (, ), (, ), (, ) pasan por un mismo 5

6 punto. Demostración ' ' Figura 7: El cuadrilátero es rombo al igual que el cuadrilátero por lo que el cuadrilátero es paralelogramo, de donde m = m. Las circunferencias (, ) y (, ) se cortan en. Los triángulos y son congruentes por tener los tres lados congruentes y como además por ser paralelogramo es paralela a por lo que es paralelogramo. (1) Procediendo de forma análoga, el cuadrilátero es rombo al igual que el cuadrilátero por lo que es paralelogramo, de donde m = m. Las circunferencias (, ) y (, ) se cortan en. Los triángulos y son congruentes por tener los tres lados congruentes y como además por ser paralelogramo es paralela a por lo que es paralelogramo. (2) En (1) y (2) vimos que y son paralelogramos que coinciden en tres de sus vértices por lo que debe ser =. 6

7 ' ' ' Figura 8: Definición [rtocentro de un triángulo.] Definimos como ortocentro del triángulo al punto determinado en la propiedad anterior. ' ' ' ' Figura 9: oincide el ortocentro del triángulo definido de esta manera con el punto de intersección de sus alturas? omo es perpendicular a, al ser paralelogramo, se cumple que también es perpendicular a. De la misma forma y son perpendiculares a y respectivamente. es entonces punto de intersección de las alturas de. 7

8 Proposición 5 Sea un triángulo cualquiera de ortocentro y circuncentro. Siendo M el punto medio de se cumple que es paralelo a M y m = 2 mm. E M Figura 10: Demostración Si E es diámetro de se cumple: y E son paralelas por ser ambas perpendiculares a E, al igual que y E son paralelas por ser ambas perpendiculares a, entonces E es paralelogramo y como M es punto medio de también M es punto medio de E y como es punto medio de E se cumple que M es paralelo a y 2 mm. Proposición 6 Sea D un cuadrilátero inscrito en (, ),,,, D ortocentros de D, D, D, respectivamente. Las circunferencias (, ), (, ), (, ), (, D ) pasan por un mismo punto. Demostración Sean D y ortocentros de y D respectivamente. Si N es el punto medio de, por lo demostrado previamente D es paralela a N y md = 2 mn, y también D es paralela a N y md = 2 mn por lo que D es paralela a D y md = md de donde D D es paralelogramo y por lo tanto md = D. 8

9 D N ' D' Figura 11: Las circunferencias (, D ) y (, ) se cortan en y otro punto. Los triángulos D paralelogramo. (1) y D son iguales por tener los tres lados iguales, entonces D D es Procediendo de forma análoga, D y ortocentros de y D respectivamente. Si M es el punto medio de, por lo demostrado previamente D es paralela a M y md = 2 mm, y también D es paralela a M y md = 2 mm por lo que D es paralela a D y md = md de donde D D es paralelogramo y por lo tanto md = m D. Las circunferencias (, D ) y (, ) se cortan en. Los triángulos D y D son iguales, entonces D D es paralelogramo. (2) En resumen: por lo demostrado en (1) y (2) los cuadriláteros D D y D D son paralelogramos que coinciden en tres de sus vértices, por lo tanto debe ser =. Razonando de la misma manera podemos demostrar que (, ) siendo ortocentro de D, pasa por. Definición [rtocentro de un cuadrilátero.] Definimos como ortocentro del cuadrilátero inscriptible D al punto determinado en la propiedad 9

10 D ' M ' D' Figura 12: D ' ' ' D' Figura 13: 10

11 anterior. Los cuadriláteros D y D, al igual que y sus circuncentros respectivos se corresponden en una simetría central de centro P, punto de intersección de,,, DD. De los visto hasta el momento,, D D, DD son paralelogramos por lo que los segmentos,,, DD tienen punto medio común P. Los cuadriláteros D y D se corresponden entonces en una simetría central de centro P. También se corresponden en la misma simetría central los puntos y, circuncentros de D y D respectivamente, por lo que P es punto medio de. D ' P ' ' D' Figura 14: 5. Recta de Euler en cuadriláteros Proposición 7 El circuncentro (), baricentro (G) y ortocentro () de un cuadrilátero inscriptible están alineados y verifican la relación mg = 3 mg. Demostración circuncentro de (1) 11

12 D ortocentro de (2) G D baricentro de (3) Entonces de (1), (2), (3), se concluye que, G D, D alineados (4) mg D = 2 mg D (5) (D) = E entonces punto medio de DE entonces D mediana de DED (6) D ' G ' P G D E M D M ' D' Figura 15: D G = 0,30 cm G G = 0,90 cm Figura 16: 12

13 Entonces de (4), (5), (6), se concluye que G D baricentro de DED (7) M D punto medio de D E (8) Entonces de (7), (8) se concluye que mdg D = 2 mg D M D (9) G D baricentro de (10) Si G baricentro de D (baricentro de un cuadrilátero) entonces D, G, G D alineados (11) mdg = 3 mgg D (12) Entonces de (9), (10), (11), (12) se concluye que G punto medio de DM D (13) punto medio de DE (14) Si DD = {P }entoncesp punto medio de DD (por lo visto en 6) (15) M D punto medio de D E (16) Entonces de G punto medio de P (17) (13), (14), (15), (16) se concluye que P punto medio de (por lo visto en 6) (18) Entonces de (17), (18), se concluye que, G, alineados y mg = 3 mg 6. onclusiones La forma en que fue definido el baricentro de un cuadrilátero cualquiera permite que pueda definirse por recurrencia el baricentro de un polígono cualquiera. También por recurrencia puede definirse el ortocentro de un polígono inscriptible cualquiera. Para poder hablar de circuncentro de un polígono es necesario que este sea inscriptible. La demostración vista para la recta de Euler en cuadriláteros inscriptibles permite una reformulación para polígonos inscriptibles cualesquiera: el circuncentro () baricentro (G) y ortocentro () de un polígono inscriptible de n lados están alineados y verifican la relación mg = (n 1)mG 13

14 7. Referencias eath, T. L. (1953). The Works of rchimedes. U.S..: Dover. Jackiw, N. (1991). The Geometer s Sketchpad (Software). U.S..: Key urriculum Press. Euclides. (1992). Elementos de Geometría. México: UNM. Goloviná, L. I.; Yaglóm, I. M. (1981). Inducción en la Geometría. Rusia: Mir. Yaglóm, I. M. (1975). Geometric Transformations I. U.S..: M. 14

1.1. Puntos y rectas notables en el triángulo. Sean A, B y C los vértices de un triángulo de lados opuestos a, b y c, respectivamente.

1.1. Puntos y rectas notables en el triángulo. Sean A, B y C los vértices de un triángulo de lados opuestos a, b y c, respectivamente. apítulo 1 Rectas notables 1.1. Puntos y rectas notables en el triángulo ltura, mediana y bisectriz Sean, y los vértices de un triángulo de lados opuestos a, b y c, respectivamente. H a c h b a H c H b

Más detalles

Puntos y rectas en el triángulo

Puntos y rectas en el triángulo Puntos y rectas en el triángulo En los triángulos hay un conjunto de rectas y puntos importantes. Las rectas son las bisectrices, las mediatrices, las alturas, las medianas y las bisectrices exteriores.

Más detalles

PUNTOS NOTABLES DE UN TRIÁNGULO

PUNTOS NOTABLES DE UN TRIÁNGULO PUNTOS NOTABLES DE UN TRIÁNGULO 1. CIRCUNCENTRO. Cualquier punto de la mediatriz de un lado de un triángulo equidista de los vértices que definen dicho lado. Luego si llamamos O al punto de intersección

Más detalles

1º ESO TEMA 12 FIGURAS PLANAS

1º ESO TEMA 12 FIGURAS PLANAS 1º ESO TEMA 12 FIGURAS PLANAS 1 1.- POLÍGONOS Concepto de polígono POLÍGONO 2 1.- POLÍGONOS Elementos de un polígono Lado: segmento que une dos vértices consecutivos Vértice: punto en común entre dos lados

Más detalles

ACTIVIDADES PROPUESTAS

ACTIVIDADES PROPUESTAS GEOMETRÍA DINÁMICA ACTIVIDADES PROPUESTAS 1. Dibujar un pentágono y trazar sus diagonales. 2. A partir de una circunferencia c y de un punto exterior A, trazar la circunferencia que tiene centro en el

Más detalles

Las bisectrices de dos ángulos adyacentes son perpendiculares. Las bisectrices de los ángulos opuestos por el vértice están en línea recta.

Las bisectrices de dos ángulos adyacentes son perpendiculares. Las bisectrices de los ángulos opuestos por el vértice están en línea recta. CONCEPTOS Y TEOREMAS BÁSICOS PARA LA RESOLUCIÓN DE PROBLEMAS DE GEOMETRÍA PLANA 1. CONSIDERACIONES GENERALES El objeto de la Geometría plana es el estudio de las figuras geométricas en el plano desde el

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

ACTIVIDADES. b. Completa la actividad haciendo lo mismo para los vértices restantes. Qué observas?

ACTIVIDADES. b. Completa la actividad haciendo lo mismo para los vértices restantes. Qué observas? ACADEMIA SABATINA RECTAS Y PUNTOS DEL TRIÁNGULO ACTIVIDADES 1. Materiales: triángulos de papel, regla y compás. a. Toma un triángulo cualquiera, escoge uno de sus vértices y haz un doblez de tal modo que

Más detalles

*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio.

*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *DISTANCIA ENTRE DOS PUNTOS EN EL PLANO: P(x a, y b ). Q(x a, y b ) 2 b + ya yb d= ( ) ( ) 2 x a x *SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *ALTURA: perpendicular bajada del vértice al

Más detalles

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 2- Explorando el triángulo. Fecha: Profesor: Fernando Viso

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 2- Explorando el triángulo. Fecha: Profesor: Fernando Viso GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 2- Explorando el triángulo. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros, ni cuadernos,

Más detalles

UNIDAD 8 Geometría analítica

UNIDAD 8 Geometría analítica Pág. 1 de 5 I. Sabes hallar puntos medios de segmentos, puntos simétricos de otros y ver si varios puntos están alineados? 1 Los puntos A( 1, 3), B(2, 6), C (7, 2) y D( 5, 3) son vértices de un cuadrilátero.

Más detalles

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el

Más detalles

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS. EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se

Más detalles

Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2.

Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2. Wilson Herrera 1 Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2. 2. Hallar la ecuación de la recta que pasa por

Más detalles

REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA

REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA MAT B Repartido Nº I REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA Conceptos primitivos Partiremos de un conjunto que llamaremos espacio, E, a cuyos elementos llamamos puntos, (a los cuales escribiremos

Más detalles

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS Un punto se nombra con letras mayúsculas: A, B, C Una recta, formada por infinitos puntos, se nombra con letras minúsculas: a, b, c Dos rectas pueden ser paralelas, secantes o coincidentes. 1. Paralelas

Más detalles

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos.

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Geometría plana B6 Triángulos Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Clasificación de los polígonos Según el número de lados los polígonos se llaman: Triángulo

Más detalles

4. GEOMETRÍA // 4.3. PROPIEDADES DE LOS

4. GEOMETRÍA // 4.3. PROPIEDADES DE LOS 4. GEOMETRÍA // 4.3. PROPIEDADES DE LOS POLÍGONOS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 4.3.1. Dos nuevas demostraciones del teorema de Pitágoras. 4.3.1. Dos nuevas

Más detalles

TRIÁNGULOS Y CUADRILÁTEROS.

TRIÁNGULOS Y CUADRILÁTEROS. TRIÁNGULOS Y CUADRILÁTEROS. 1. Triángulos. Al polígono de tres lados se le llama triángulo. Clasificación: Según sus lados, un triángulo puede ser Equilátero, si tiene los tres lados iguales Isósceles,

Más detalles

Ángulos consecutivos, suplementarios, adyacentes, opuestos por el vértice y complementarios.

Ángulos consecutivos, suplementarios, adyacentes, opuestos por el vértice y complementarios. ÁNGULOS Dadas dos semirrectas de origen común (Ox, Oy), no opuestas ni coincidentes, llamaremos ángulo convexo de vértice O, a la intersección del semiplano de borde la recta sostén de Ox, que contiene

Más detalles

4. GEOMETRÍA // 4.3. PROPIEDADES DE LOS

4. GEOMETRÍA // 4.3. PROPIEDADES DE LOS 4. GEOMETRÍA // 4.3. PROPIEDADES DE LOS POLÍGONOS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS. 4.3.1. Dos nuevas demostraciones del teorema de Pitágoras. La demostración china del teorema

Más detalles

CURSO DE GEOMETRÍA 2º EMT

CURSO DE GEOMETRÍA 2º EMT CURSO DE GEOMETRÍA 2º EMT UNIDAD 0 REPASO 1º CIRCUNFERENCIA Y ANGULOS INSCRIPTOS Ángulos en la circunferencia 1. La circunferencia. 1.1. Elementos de una circunferencia Definición 1. Se llama circunferencia

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

20. Rectas y puntos notables

20. Rectas y puntos notables Matemáticas II, 2012-II Lugares geométricos En geometría es útil conocer varios lugares geométricos. Un lugar geométrico es un conjunto de puntos que satisfacen una cierta propiedad. Ejemplo 1. El lugar

Más detalles

Unidad 11. Figuras planas

Unidad 11. Figuras planas Unidad 11. Figuras planas Matemáticas Múltiplo 1.º ESO / Resumen Unidad 11 FIGURS LNS OLÍGONOS IRUNFERENI SIMETRÍ Elementos onstrucción lasificación Según el número de lados óncavos y convexos Regulares

Más detalles

TALLER No. 17 GEOMETRÍA

TALLER No. 17 GEOMETRÍA TLLER No. 17 GEOMETRÍ ontenidos: Los triángulos Fecha de entrega: Mayo 12 de 2014 1. Investigue sobre las líneas y puntos notables en un triángulo. 2. Responda las siguientes preguntas: a. Qué es un polígono?

Más detalles

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES - MATEMÁTICA I TRIÁNGULOS

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES - MATEMÁTICA I TRIÁNGULOS TRIÁNGULOS Definición: Dados tres puntos no alineados, A, B y C, se llama triángulo a la intersección de los semiplanos que tienen como borde la recta determinada por dos de estos puntos y contiene al

Más detalles

Construcciones. Proporciones. Áreas

Construcciones. Proporciones. Áreas Construcciones Proporciones Áreas Rectángulo y Cometa Dibuja una cometa inscrita en un rectángulo Qué relación hay entre sus áreas respectivas? Cómo cambiará el perímetro de la cometa a medida que E y

Más detalles

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo: 3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-

Más detalles

Ejercicios 16/17 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos.

Ejercicios 16/17 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos. Ejercicios 16/17 Lección 5. Geometría. 1 1. Expresa el vector u = ( 3, 1) como combinación lineal de los vectores v = ( 3, ) w = ( 4, 1). y. Expresa w = (4, 6) como combinación lineal de u = (,5) y v =

Más detalles

GEOMETRÍA. Contenidos a desarrollar: Circunferencia. Mediatriz. Bisectriz. Alturas. Medianas. Puntos notables del triángulo.

GEOMETRÍA. Contenidos a desarrollar: Circunferencia. Mediatriz. Bisectriz. Alturas. Medianas. Puntos notables del triángulo. GEOMETRÍA Contenidos previos: Recta. Segmento. Semirrecta. Ángulos. Clasificación. Ángulos opuestos por el vértice. Ángulos adyacentes. Clasificación de triángulos. Propiedades elementales. Contenidos

Más detalles

El teorema de Napoleón. Mario Dalcín Instituto de Profesores Artigas - Uruguay Fecha de recepción: Mayo, Fecha de aceptación: Octubre, 2005

El teorema de Napoleón. Mario Dalcín Instituto de Profesores Artigas - Uruguay Fecha de recepción: Mayo, Fecha de aceptación: Octubre, 2005 El teorema de Napoleón Mario Dalcín Instituto de Profesores Artigas - Uruguay Fecha de recepción: Mayo, 2005. Fecha de aceptación: Octubre, 2005 Resumen Presentamos seis demostraciones del teorema de Napoleón

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles

MUNICIPIO DE MEDELLÍN GEOMETRÍA ANALÍTICA. 1. Hallar la dirección, la pendiente y los interceptos de una línea recta.

MUNICIPIO DE MEDELLÍN GEOMETRÍA ANALÍTICA. 1. Hallar la dirección, la pendiente y los interceptos de una línea recta. ESTUDIO ANALÍTICO DE LA LÍNEA RECTA Y APLICACIONES PERÍODO II ÁREA MATEMÁTICAS FECHA: Septiembre 26 de 2013 MUNICIPIO DE MEDELLÍN GEOMETRÍA ANALÍTICA LOGROS: 1. Hallar la dirección, la pendiente y los

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean

Más detalles

Geometría 1 de Secundaria: I Trimestre. yanapa.com. Rayo. I: ELEMENTOS DE LA GEOMETRÍA - SEGMENTOS ELEMENTOS DE LA GEOMETRÍA El Plano

Geometría 1 de Secundaria: I Trimestre. yanapa.com. Rayo. I: ELEMENTOS DE LA GEOMETRÍA - SEGMENTOS ELEMENTOS DE LA GEOMETRÍA El Plano I: ELEMENTOS DE LA GEOMETRÍA - SEGMENTOS ELEMENTOS DE LA GEOMETRÍA El Plano Rayo Segmento : Rayo de Origen O y que pasa por B : Rayo de Origen O y que pasa por A La Recta : Se lee Segmento AB : Se lee

Más detalles

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas.

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. MYP (MIDDLE YEARS PROGRAMME) 2015-2016 Fecha 30/03/2016 APUNTES DE GEOMETRÍA 1º ESO 1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. Un punto es una posición en el espacio, adimensional,

Más detalles

4.1 Medida de ángulo: sistema sexagesimal. Para medir la amplitud de un ángulo podemos utilizar el sistema sexagesimal. 180º

4.1 Medida de ángulo: sistema sexagesimal. Para medir la amplitud de un ángulo podemos utilizar el sistema sexagesimal. 180º PÍTULO 4 Tópicos de Geometría Geometría, palara que proviene del griego, geo: tierra; metrein: medir, es una de las ramas mas antiguas de las ciencias, que tal vez ha tenido y tenga mayor incidencia en

Más detalles

Polígonos Polígonos especiales: Cuadriláteros y triángulos

Polígonos Polígonos especiales: Cuadriláteros y triángulos Polígonos Polígonos especiales: Cuadriláteros y triángulos 1) a) Busca información sobre polígonos equiláteros, equiángulares y regulares. Lista semejanzas y diferencias. b) Haz una lista de los polígonos

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este documento es de distribución gratuita y llega gracias a iencia Matemática www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio! 2 Polígonos Relaciones fundamentales 2.0 Introducción

Más detalles

( 2) 1. Simplificar las siguientes expresiones usando propiedades de la potenciación: a) f) 5 0 b) 2 6 : 2 3 g) 2 4.

( 2) 1. Simplificar las siguientes expresiones usando propiedades de la potenciación: a) f) 5 0 b) 2 6 : 2 3 g) 2 4. DO AÑO. 014 TRABAJO PRÁCTICO 0 1. Simplificar las siguientes expresiones usando propiedades de la potenciación: a) 5.. f) 5 0 b) 6 : g) 4. - + c) 5-5. 5 h) 5 d) ( 5 ) 5 i) e) Esta Guía 0 contiene los prerrequisitos

Más detalles

8 GEOMETRÍA DEL PLANO

8 GEOMETRÍA DEL PLANO EJEROS PROPUESTOS 8.1 alcula la medida del ángulo que falta en cada figura. 6 A 145 15 105 160 130 En un triángulo, la suma de las medidas de sus ángulos es 180. Ap 180 90 6 8 El ángulo mide 8. En un hexágono,

Más detalles

Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180

Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180 CLASIFICACIÓN DE ÁNGULOS Nombre Definición Figura Ángulo recto Mide 90 Ángulo agudo Mide menos de 90 Ángulo obtuso Mide más de 90 Ángulo extendido Mide 180 Ángulo completo Mide 360 ÁNGULOS COMPARATIVOS

Más detalles

LOS POLIGONOS. 1. Definiciones.

LOS POLIGONOS. 1. Definiciones. LOS POLIGONOS 1. Definiciones. Un triángulo es un polígono cerrado y convexo constituido por tres ángulos (letras mayúsculas y sentido contrario a las agujas del reloj) y tres lado (letras minúsculas).

Más detalles

Triángulos IES BELLAVISTA

Triángulos IES BELLAVISTA Triángulos IES BELLAVISTA Definiciones y notación Un triángulo es la figura plana limitada por tres rectas que se cortan dos a dos. Los puntos de corte se denominan vértices. El triángulo tiene tres lados

Más detalles

Geometría Básica 49 UNIVERSIDAD DE LOS ANDES - TÁCHIRA DEPARTAMENTO DE CIENCIAS CARRERA EDUCACIÓN BÁSICA INTEGRAL

Geometría Básica 49 UNIVERSIDAD DE LOS ANDES - TÁCHIRA DEPARTAMENTO DE CIENCIAS CARRERA EDUCACIÓN BÁSICA INTEGRAL Geometría Básica 49 UNIVERSIDAD DE LOS ANDES - TÁCHIRA DEPARTAMENTO DE CIENCIAS CARRERA EDUCACIÓN BÁSICA INTEGRAL GEOMETRÍA 10 Prof. Alfonso Sánchez ENCUENTRO 6 TRIÁNGULOS Y CUADRILÁTEROS A los filósofos

Más detalles

Triángulo es la porción de plano limitado por tres rectas que se cortan dos a dos.

Triángulo es la porción de plano limitado por tres rectas que se cortan dos a dos. Definición Triángulo es la porción de plano limitado por tres rectas que se cortan dos a dos. Elementos primarios Vértice:, y. Lados:, y. Ángulos interiores:, y. Ángulos exteriores:, y. * Observaciones:

Más detalles

MATEMÁTICAS Y SU DIDÁCTICA

MATEMÁTICAS Y SU DIDÁCTICA MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se

Más detalles

Compartir Saberes. Guía para maestro. Líneas Notables. Guía realizada por Bella Peralta Profesional en Matemáticas.

Compartir Saberes. Guía para maestro. Líneas Notables. Guía realizada por Bella Peralta Profesional en Matemáticas. Guía para maestro Guía realizada por Bella Peralta Profesional en Matemáticas Las líneas y puntos notables de un triángulo es uno de los contenidos matemáticos que le permiten la estudiante profundizar

Más detalles

AYUDAS SOBRE LA LINEA RECTA

AYUDAS SOBRE LA LINEA RECTA AYUDAS SOBRE LA LINEA RECTA AYUDA : Grafiquemos la función Solución: Se debe escoger algunos números que representan a la variable x, para obtener el valor de la variable y respectivamente así: El proceso:

Más detalles

Departamento de Bachillerato Preparatoria UNAM Matemáticas V Plan 100 Ciclo 06 / 07 TAREA 2, PARCIAL 3 TEMA: Ecuación de Primer Grado

Departamento de Bachillerato Preparatoria UNAM Matemáticas V Plan 100 Ciclo 06 / 07 TAREA 2, PARCIAL 3 TEMA: Ecuación de Primer Grado Departamento de Bachillerato Preparatoria UNAM Matemáticas V Plan 100 Ciclo 06 / 07 TAREA 2, PARCIAL 3 TEMA: Ecuación de Primer Grado NOMBRE DEL ESTUDIANTE: Apellido paterno Apellido materno Nombre(s)

Más detalles

EJERCICIOS ÁREAS DE REGIONES PLANAS

EJERCICIOS ÁREAS DE REGIONES PLANAS EJERCICIOS ÁREAS DE REGIONES PLANAS 1. En un triángulo equilátero se inscribe una circunferencia de radio R y otra de radio r tangente a dos de los lados y a la primera circunferencia, hallar el área que

Más detalles

1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice?

1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice? Pág. 1 Puntos 1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice? 2 Los puntos ( 2, 3), (1, 2) y ( 2, 1) son vértices de un rombo. Cuáles son las coordenadas

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS

Más detalles

Geometría con GeoGebra

Geometría con GeoGebra Geometría con GeoGebra Geometría con GeoGebra 2 Actividad 1: Para empezar Puesta en marcha del programa Para arrancar el programa, haz doble clic sobre el icono que está en el Escritorio. (si no encuentras

Más detalles

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles.

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles. FICHA REFUERZO TEMA 12: FIGURAS PLANAS Y ESPACIALES CURSO: 1 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja

Más detalles

95 EJERCICIOS de RECTAS

95 EJERCICIOS de RECTAS 9 EJERCICIOS de RECTAS Forma paramétrica: 1. Dado el punto A(,3) y el vector director ur = (1, ), se pide: a) Hallar las ecuaciones paramétricas de la recta r que determinan. b) Obtener otros tres puntos

Más detalles

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6. ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el

Más detalles

Teoremas de los ángulos. Los ángulos adyacentes son suplementarios. Los ángulos opuestos por el vértice son congruentes

Teoremas de los ángulos. Los ángulos adyacentes son suplementarios. Los ángulos opuestos por el vértice son congruentes Resumen de Matemática LiceoProm14.tk Nomenclatura: (Solo para circunferencias) Rectas perpendiculares Rectas paralelas Teoremas de los ángulos Teorema 1: Los ángulos adyacentes son suplementarios. Teorema

Más detalles

Guía 2: Puntos, rectas y circunferencias notables en el triángulo. Teorema de Pitágoras. Ternas Pitagóricas

Guía 2: Puntos, rectas y circunferencias notables en el triángulo. Teorema de Pitágoras. Ternas Pitagóricas Guía 2: Puntos, rectas y circunferencias notables en el triángulo. Teorema de Pitágoras. Ternas Pitagóricas duardo Sarabia 27 de enero de 2011 Puntos, rectas y circunferencias notables en el triángulo.

Más detalles

Actividades y ejercicios Mat II 6 I- Prof. Freire 2016

Actividades y ejercicios Mat II 6 I- Prof. Freire 2016 Selección de actividades y ejercicios Matemática II- Prof. Elena Freire Para los ejercicios propuestos se diseñará una carpeta con imágenes geogebra y con el nombre del alumno impreso dentro de cada imagen.

Más detalles

Página 209 PARA RESOLVER. 44 Comprueba que el triángulo de vértices A( 3, 1), B(0, 5) y C(4, 2) es rectángulo

Página 209 PARA RESOLVER. 44 Comprueba que el triángulo de vértices A( 3, 1), B(0, 5) y C(4, 2) es rectángulo 44 Comprueba que el triángulo de vértices A(, ), B(0, ) y C(4, ) es rectángulo y halla su área. Veamos si se cumple el teorema de Pitágoras: AB = (0 + ) + ( ) = AC = (4 + ) + ( ) = 0 BC = 4 + ( ) = 0 +

Más detalles

TEMA 6. ECUACIONES DE LA RECTA

TEMA 6. ECUACIONES DE LA RECTA TEMA 6. ECUACIONES DE LA RECTA Dados un punto y un vector, vamos a hallar las ecuaciones de la recta r que pasa por el punto A y es paralela al vector. Sea consideramos los vectores un punto cualquiera

Más detalles

Módulo 17. Capítulo 4: Cuadriláteros. 1. En las siguientes figuras (1 al 9) determine el valor de cada variable. Figura 1 Figura 2.

Módulo 17. Capítulo 4: Cuadriláteros. 1. En las siguientes figuras (1 al 9) determine el valor de cada variable. Figura 1 Figura 2. Módulo 17 1. En las siguientes figuras (1 al 9) determine el valor de cada variable. Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 Figura 6 210 Capítulo 4: Cuadriláteros Figura 7 Figura 8 Figura 9 2. En

Más detalles

8 GEOMETRÍA DEL PLANO

8 GEOMETRÍA DEL PLANO 8 GEOMETRÍ DEL PLNO EJERIIOS PR ENTRENRSE Ángulos y triángulos 8.6 Halla la medida del ángulo p en el siguiente triángulo. 6 4 180 6 p 4 p 180 6 4 11 8.7 alcula la suma de los ángulos interiores de un

Más detalles

Tema 2: Figuras geométricas

Tema 2: Figuras geométricas Tema 2: Figuras geométricas En este tema empezaremos a estudiar: 1. la circunferencia. 2. los triángulos. 3. los cuadriláteros. 4. los poĺıgonos. 1 2 La circunferencia (p. 31) El cerebro humano es muy

Más detalles

PROBLEMAS DE CORTE EUCLIDIANO

PROBLEMAS DE CORTE EUCLIDIANO PROBLEMAS DE CORTE EUCLIDIANO Sugerencias para quien imparte el curso El alumno debe comprender las definiciones de las rectas notables de un triangulo, de tal forma que pueda aplicar lo aprendido en esta

Más detalles

Curso Curso

Curso Curso Problema 84. Sea AB el diámetro de una semicircunferencia de radio R y sea O el punto medio del segmento AB. Con centro en A y radio OA se traza el arco de circunferencia OM. Calcular, en función de R,

Más detalles

Geometría. 5. Seas ABCD un cuadrilátero convexo, donde. 6. El triángulo ABC es rectángulo en A. Sea M el

Geometría. 5. Seas ABCD un cuadrilátero convexo, donde. 6. El triángulo ABC es rectángulo en A. Sea M el Cuadrilátero inscrito e inscriptible 1. En un cuadrilátero inscriptible CD, =C=a y CD=b. Si D=a+b, calcule la m CD. ) 5º ) 60º C) 90º D) 10º E) 105º. Dado un triángulo equilátero C de centroide G, se ubica

Más detalles

Preguntas tipo OLIMPIADA DE DIBUJO TÉCNICO MARZO 2014

Preguntas tipo OLIMPIADA DE DIBUJO TÉCNICO MARZO 2014 E S C U E L A T É C N I C A S U P E R I O R D E A R Q U I T E C T U R A U N I V E R S I D A D D E N A V A R R A Preguntas tipo OLIMPIADA DE DIBUJO TÉCNICO MARZO 2014 G E O M E T R Í A M É T R I C A. T

Más detalles

MATEMÁTICAS (GEOMÉTRÍA)

MATEMÁTICAS (GEOMÉTRÍA) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMÉTRÍA) GRADO:6 O DOCENTE: Nubia E. Niño C. FECHA: 9 / 06 / 15 Guía Didáctica 3 1 Desempeños: * Identifica, clasifica

Más detalles

MATHEMATICA. Geometría - Triángulos. Ricardo Villafaña Figueroa. Ricardo Villafaña Figueroa. Material realizado con Mathematica y Geometry Expressions

MATHEMATICA. Geometría - Triángulos. Ricardo Villafaña Figueroa. Ricardo Villafaña Figueroa. Material realizado con Mathematica y Geometry Expressions MATHEMATICA Geometría - Triángulos Material realizado con Mathematica y Geometry Expressions Contenido TRIÁNGULOS... 3 Cálculo de los ángulos interiores de un triángulo... 3 Baricentro... 6 Ortocentro...

Más detalles

Figuras planas. Definiciones

Figuras planas. Definiciones Figuras planas Definiciones Polígono: definición Un polígono es una figura plana (yace en un plano) cerrada por tres o más segmentos. Los lados de un polígono son cada uno de los segmentos que delimitan

Más detalles

TEMA 6: LAS FORMAS POLIGONALES

TEMA 6: LAS FORMAS POLIGONALES EDUCACIÓN PLÁSTICA Y VISUAL 1º DE LA E.S.O. TEMA 6: LAS FORMAS POLIGONALES Los polígonos son formas muy atractivas para realizar composiciones plásticas. Son la base del llamado arte geométrico, desarrollado

Más detalles

DEPARTAMENTO DE MATEMATICAS

DEPARTAMENTO DE MATEMATICAS 1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono 2.- Halla la medida de los ángulos interiores de: a) Un octógono regular. b) Un

Más detalles

Contenidos. Triángulos I. Elementos primarios. Clasificación. Elementos secundarios. Propiedad Intelectual Cpech

Contenidos. Triángulos I. Elementos primarios. Clasificación. Elementos secundarios. Propiedad Intelectual Cpech ontenidos Triángulos I Elementos primarios lasificación Elementos secundarios Triángulos Es un polígono de tres lados. Posee tres vértices, tres lados, tres ángulos interiores y tres ángulos exteriores.

Más detalles

Triángulos. Definición y clasificación

Triángulos. Definición y clasificación Profr. Efraín Soto polinar. Triángulos En esta sección empezamos el estudio de las figuras geométricas planas creadas de segmentos de rectas. uando la figura está formada por tres segmentos de recta y

Más detalles

Tema 2: Figuras geométricas

Tema 2: Figuras geométricas Tema 2: Figuras geométricas En este tema empezaremos a estudiar: 1. la circunferencia. 2. los triángulos. 3. los cuadriláteros. 4. los poĺıgonos. La circunferencia (p. 31) El cerebro humano es muy bueno

Más detalles

101 EJERCICIOS de RECTAS

101 EJERCICIOS de RECTAS 101 EJERCICIOS de RECTAS Forma paramétrica: 1. Dado el punto A(5,3) y el vector director ur = (1, ), se pide: a) Hallar las ecuaciones paramétricas de la recta r que determinan. b) Obtener otros tres puntos

Más detalles

B5 Lugares geométricos

B5 Lugares geométricos Geometría plana B5 Lugares geométricos Lugar geométrico Se llama así a la figura que forman todos los puntos que tienen una misma propiedad. Los lugares geométricos pueden ser del plano o del espacio,

Más detalles

Introducción. 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales?

Introducción. 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales? EL TRIÁNGULO: Un polígono con propiedades especiales Identificación de los puntos y las líneas notables del triángulo Introducción 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales? Figura

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

P RACTICA. 1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice?

P RACTICA. 1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice? P RACTICA Puntos Si los puntos 6 ) 6) y ) son vértices de un cuadrado cuál es el cuarto vértice? 6) 6 ) ) P ) P Los puntos ) ) y ) son vértices de un rombo. Cuáles son las coordenadas del cuarto vértice?

Más detalles

Caracterización de la parábola como lugar geométrico plano 1 Ficha del estudiante

Caracterización de la parábola como lugar geométrico plano 1 Ficha del estudiante Caracterización de la parábola como lugar geométrico plano 1 Ficha del estudiante Actividad 1 LA DEFINICIÓN DE PARÁBOLA A PARTIR DE SU PROPIEDAD FOCO DIRECTRIZAS Una parábola es el lugar geométrico determinado

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD 1 LA RECTA Y SUS ECUACIONES PROBLEMAS PROPUESTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivos

Más detalles

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es

Más detalles

1. INCENTRO Y ORTOCENTRO EN UN TRIÁNGULO ACUTÁNGULO.

1. INCENTRO Y ORTOCENTRO EN UN TRIÁNGULO ACUTÁNGULO. 1. INCENTRO Y ORTOCENTRO ❶ Sitúate en el ortocentro como punto de partida. ❷ Recorre la altura hasta el lado más alejado. ❸ Desplázate por el perímetro hasta el vértice más próximo. ❹ Dirígete al incentro.

Más detalles

Práctico de 5º Científico, Matemática "B". Liceo Nº 3 Nocturno. Año Profesora María del Rosario Quintans.

Práctico de 5º Científico, Matemática B. Liceo Nº 3 Nocturno. Año Profesora María del Rosario Quintans. 1 1) Dibuje un triángulo cualquiera ABC. Se desea construir un triángulo A'B'C' igual al ABC, investigue la mínima cantidad de condiciones que deben cumplirse entre los elementos de los dos triángulos

Más detalles

4. Si dos rectas son paralelas, qué condición cumplen sus vectores directores? Y sus vectores normales? Y si la rectas son perpendiculares?

4. Si dos rectas son paralelas, qué condición cumplen sus vectores directores? Y sus vectores normales? Y si la rectas son perpendiculares? . Si u=(,4) es un vector director de la recta r, indicar si el vector v también lo es:. v=(-,-4). v=(0,). v=(,). Dado un vector director de una recta, calcular un vector normal:. v=(,). v=(,). v=(-,) 4.

Más detalles

Introducción. Este trabajo será realizado con los siguientes fines :

Introducción. Este trabajo será realizado con los siguientes fines : Introducción Este trabajo será realizado con los siguientes fines : Aprender mas sobre la geometría analítica. Tener mejores conceptos sobre ella ; los cuales me pueden ayudar con las pruebas ICFES. Otro

Más detalles

INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO

INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO PRIMER EXAMEN PARCIAL INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO GUÍA DE GEOMETRÍA ANALÍTICA 2016-2017A SISTEMA DE COORDENADAS, LUGARES

Más detalles

Introducción. 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales?

Introducción. 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales? EL TRIÁNGULO: Un polígono con propiedades especiales Identificación de los puntos y las líneas notables del triángulo Introducción 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales? Figura

Más detalles

1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2)

1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 2. Halla la ecuación de la recta r, sabiendo que es paralela a y=2x-3 y pasa por el punto (1,3). 3. Halla la ecuación de la recta

Más detalles

Autor: 2º ciclo de E.P.

Autor: 2º ciclo de E.P. 1 Autor: 2º ciclo de E.P. Una línea recta es una línea que no tiene principio ni fin. Una semirrecta es una línea que tiene principio pero no tiene final. o Un punto divide a una recta en dos semirrectas.

Más detalles

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada. 1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Página 160 PRCTIC Ángulos 1 Calcula la medida de X en cada figura: a) 180 139 40' b) 180 17 a) b) ^ 40 0' X^ ^ ^ X^ ^ 53 Calcula la medida de X en cada caso: a) ^ ^ 140 ^ 150 b) ^ X^ ^ c) ^ 33 ^

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.

Más detalles