EJEMPLOS Y EJERCICIOS
|
|
|
- Salvador Tebar Valverde
- hace 7 años
- Vistas:
Transcripción
1 EJEMPLOS Y EJERCICIOS ALGORITMIA
2 Ejercicio : 1 Desarrolle un algoritmo que permita leer dos valores distintos, determinar cual de los dos valores es el mayor y escribirlo Inicializar variables: A = 0, B = 0 3.Solicitar la introducción de dos valores distintos 4.Leer los dos valores Introduzca dos valores distintos 5.Asignarlos a las variables A y B 6. A = B Entonces vuelve a 3 porque los valores deben ser distintos 7. A>B Entonces A, B A = B Escribir A, Es el mayor 8.De lo contrario: Escribir B, Es el mayor A > B 9._ B Es el mayor A Es el mayor 10. Ejercicios propuesto: a. Realizar un algoritmo que permita leer dos valores, determinar cual de los dos valores es el menor y escríbalo b. Realizar un algoritmo que sume dos números. Misión Sucre y la Municipalización del Programa Nacional en stemas e Informática 51
3 Ejercicio : 2 Desarrolle un algoritmo que permita leer tres valores y almacenarlos en las variables A, B y C respectivamente. El algoritmo debe imprimir cual es el mayor y cual es el menor. Recuerde constatar que los tres valores introducidos por el teclado sean valores distintos. Presente un mensaje de alerta en caso de que se detecte la introducción de valores iguales Inicializar las variables A, B y C 3. Leer los tres valores 4. Almacenar en las variables A, B y C A, B, C 5. A > B y A > C Entonces 6. Escribir A Es el mayor A > B y A >C 7. no B>A y B>C A Es el mayor 8. B > A y B > C Entonces 9. Escribir B Es el mayor B Es el mayor 10. no C Es el mayor 11. Escribir C Es el mayor 12. _ 13. _ 14. Ejercicios propuestos: a. Es este algoritmo la solución perfecta al ejercicio anterior? Razone su respuesta. b. De ser necesario qué cambios deberá realizar? Indíquelos. c. Desarrolle un algoritmo que permita leer tres valores y almacenarlos en las variables A, B, y C respectivamente. El algoritmo debe indicar cual es el menor. Asumiendo que los tres valores introducidos por el teclado son valores distintos. d. Desarrolle un algoritmo que lea cuatro números diferentes y a continuación imprima el mayor de los cuatro números introducidos y también el menor de ellos. Misión Sucre y la Municipalización del Programa Nacional en stemas e Informática 52
4 Ejercicio : 3 Desarrolle un algoritmo que realice la sumatoria de los números enteros comprendidos entre el 1 y el 10, es decir, Declaración de variables: N= 0, Suma = 0 3. Asignación Contador : N = N Asignación Acumulador: Suma = Suma + N 5. N = 10 Entonces 6. Escribir Suma N = 0 Suma = 0 N = N + 1 Suma = Suma + N N = De lo contrario, Repetir desde el paso 3 8. _ Suma 8. Ejercicios propuestos: a. Desarrolle un algoritmo que realice la sumatoria de los números enteros múltiplos de 5, comprendidos entre el 1 y el 100, es decir, El programa deberá imprimir los números en cuestión y finalmente su sumatoria b. Desarrolle un algoritmo que realice la sumatoria de los números enteros pares comprendidos entre el 1 y el 100, es decir, El programa deberá imprimir los números en cuestión y finalmente su sumatoria c. Desarrolle un algoritmo que lea los primeros 300 números enteros y determine cuántos de ellos son impares; al final deberá indicar su sumatoria. Misión Sucre y la Municipalización del Programa Nacional en stemas e Informática 53
5 Ejercicio : 4 Determinar la hipotenusa de un triángulo rectángulo conocidas las longitudes de sus dos catetos. Desarrolle el algoritmo correspondiente Declaración de Variables: CatA= 0, CatB=0 3. Leer el valor de cada cateto 4. Almacenarlo en la variable CatA y CatB 5. Calcular el valor de Hip con la formula indicada 6. Escribir el valor de la Hipotenusa CatA=0, CatB=0 CatA, CatB Hip = CatA + CatB Hipotenusa 7. Ejercicio propuestos: a. Qué falta en este algoritmo? Qué errores presenta? b. Desarrollar un algoritmo que calcule el área de un cuadrado. Misión Sucre y la Municipalización del Programa Nacional en stemas e Informática 54
6 Ejercicio : 5 Desarrolle un algoritmo que permita determinar el área y volumen de un cilindro dado su radio (R) y altura (H) Declaración de variables: R = 0, H = 0 3. Leer el valor de Radio (R) y Altura (H) 4. Calcular el Volumen aplicando la fórmula 5. Calcular el valor del área aplicando la fórmula respectiva 6. Escribir el valor del Área y del Volumen 7. Ejercicio: a. Realiza un algoritmo que le permita determinar el área de un rectángulo. Misión Sucre y la Municipalización del Programa Nacional en stemas e Informática 55
EJEMPLOS Y EJERCICIOS
EJEMPLOS Y EJERCICIOS ALGORITMIA Programa Nacional de Formación en stemas e Informática Ejercicio : 1 Desarrolle un algoritmo que permita leer dos valores distintos, determinar cual de los dos valores
c² = a² + b² Elaborar un algoritmo que lea el tamaño de los lados A y B, y calcule e imprima C (hipotenusa).
Capítulo 3 3.5 Ejercicios resueltos (Continuación ) Ejercicio 3.5.4 Dados los lados A y B de un triángulo rectángulo, según el teorema de Pitágoras, el cuadrado de la hipotenusa (C), es igual a la suma
19. En un hospital existen tres áreas: Ginecología, Pediatría, Traumatología. El presupuesto anual del hospital se reparte conforme a la sig.
ESTRUCTURAS SECUENCIALES 1. Lea desde el teclado el nombre y la edad de cualquier persona e imprima tanto el nombre como la edad 2. Lea dos números. Calcule la suma e imprima la suma y los dos números.
INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS " GONZALO VAZQUEZ VELA "
INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS " GONZALO VAZQUEZ VELA " GUIA DE ESTUDIOS DE ANALISIS Y DISEÑO DE ALGORITMOS. 1. Qué es un algoritmo? 2. Qué es un Pseudocódigo?
Distinguir las diferentes estructuras de repetición utilizadas en problemas con bucles: mientras, repetir mientras, para.
ESTRUCTURAS ITERATIVAS 1 ESTRUCTURAS ITERATIVAS OBJETIVOS Aprender a resolver problemas mediante la ejecución repetida de una secuencia de proposiciones llamados bucle o estructuras repetitivas o iterativas.
Profesor(a): Ing. Miriam Cerón Brito
Área Académica: Informática Tema: Algoritmos Profesor(a): Ing. Miriam Cerón Brito Periodo: Enero Junio 2014 Abstract: In this presentation you ll find algorithm s definition and flowcharts definition,
Estructuras de Repetición (Repita para)
Estructuras de Repetición (Repita para) Andrés Arcia Departamento de Computación Escuela de Ingeniería de Sistemas Facultad de Ingeniería Universidad de Los Andes Programación Digital I 1 REPITA PARA Fijar
PRÁCTICA ALGORÍTMICA: EJERCICIOS PROPUESTOS
Página 1 de 7 PRÁCTICA ALGORÍTMICA: EJERCICIOS PROPUESTOS EJERCICIOS DE ESTRUCTURA REPETITIVA 1. (Problema 4) Escriba un algoritmo que lea del teclado un número entero y que compruebe si es menor que 5.
RESOLUCIÓN DE TRIÁNGULOS
RESOLUCIÓN DE TRIÁNGULOS Resolver un triángulo consiste en determinar la longitud de sus tres lados y la amplitud de sus tres ángulos. Vamos a recordar primero la resolución para triángulos rectángulos
PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES:
PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES: http://espaiescolar.wordpress.com CONCEPTOS PREVIOS PROPORCIONALIDAD Recta: línea continua formada por
RAZONAMIENTO GEOMÉTRICO
RAZONAMIENTO GEOMÉTRICO Fundamentos de Matemáticas I Razonamiento geométrico Video Previo a la actividad: Áreas y perímetros de cuerpos y figuras planas Video Previo a la actividad: Áreas y perímetros
EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA
1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.
LENGUAJE DE PROGRAMACION UNO.
Guía de ejercicios numero uno. LENGUAJE DE PROGRAMACION UNO. Instrucciones: Para cada caso elabore la sintaxis en lenguaje C., compílelo e intégrelos al menú que su profesor le explicara en clase. Solución
INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS
Sep. 18 de 2015 Señores Estudiantes grados Novenos El siguiente trabajo ya lo estamos realizando en clase, pero los datos que a continuación aparecen son refuerzo para terminar las figuras geométricas
6. EJERCICIOS RESUELTOS
CLASE : CICLOS. CICLOS CLASE. EJERCICIOS RESUELTOS 0. Desarrollar un algoritmo que imprima desde el numero hasta el 0 C= Mientras C
4.- Leer tres números y escribirlos en orden decreciente
Ejercicios tema 3 2.- Leer dos números y decir cuál es el menor 3.- Leer tres números y decir cuál es el mayor 4.- Leer tres números y escribirlos en orden decreciente 5.- Los siguientes fragmentos de
AUTOEVALUACIÓN PROBLEMAS CON ECUACIONES DE SEGUNDO GRADO. OPCIONES DE PROBLEMA
AUTOEVALUACIÓN PROBLEMAS CON ECUACIONES DE SEGUNDO GRADO. OPCIONES DE PROBLEMA ORIENTACIONES RESPUESTA 1 5,6,7 ó -5,-6,-7 trabajo. Excelente. Buen 1. Hallar tres números enteros consecutivos sabiendo que
Llamamos área o superficie a la medida de la región interior de un polígono. Figura Geométrica Perímetro Área. p = a + b + c 2 2.
GUÍA GEOMETRÍA PERÍMETRO Y AREA DE FIGURAS PLANAS Llamamos área o superficie a la medida de la región interior de un polígono. El perímetro corresponde a la suma de los lados del polígono. Figura Geométrica
. M odulo 7 Geometr ıa Gu ıa de Ejercicios
. Módulo 7 Geometría Guía de Ejercicios Índice Unidad I. Conceptos y elementos de geometría. Ejercicios Resueltos... pág. 02 Ejercicios Propuestos... pág. 09 Unidad II. Áreas y perímetros de figuras planas.
UNIDAD V: ARR R EGL G OS O BIDI D MENS N IONALE L S
UNIDAD V: ARREGLOS BIDIMENSIONALES DIMENSIONALES UNIDAD V: ARREGLOS BIDIMENSIONALES 1.1 GENERALIDADES: Las matrices son una colección finita, homogénea y ordenada de datos. Su información está organizada
TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008
TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo
Matemática 3 Colegio N 11 B. Juárez
Unidad 4: RAZONES Y PROPORCIONES Definición de RAZÓN: Se denomina razón entre dos números racionales a y b, al cociente (división) entre ambos, siendo b distinto de 0. a se denomina antecedente Ejemplo
Programa Entrenamiento MT-22
Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8
MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes
MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos
ESCUELA POLITÉCNICA SUPERIOR PRÁCTICA 2: EXPRESIONES, PRINTF Y SCANF
ESCUELA POLITÉCNICA SUPERIOR GRADO EN DISEÑO IND. INFORMÁTICA CURSO 2012-13 PRÁCTICA 2: EXPRESIONES, PRINTF Y SCANF HASTA AHORA... En prácticas anteriores se ha aprendido: La estructura principal de un
Actividad colaborativa Ejercicios de programación Programación básica C++
Actividad colaborativa Ejercicios de programación Programación básica C++ Entra a la página del Prof. Jorge Sánchez, autor del Manual completo de programación en C++, de donde edité estos apuntes: http://www.jorgesanchez.net/programacion/ejerciciosc/sencillos.html
CUERPOS DE REVOLUCIÓN
PROPÓSITOS: Identificar los cuerpos redondos o de revolución. Resolver problemas, donde se aplique el volumen y área de cuerpos de revolución. CUERPOS DE REVOLUCIÓN Existen cuerpos geométricos que no tienen
Areas y perímetros de triángulos.
Areas y perímetros de triángulos. Teorema de Pitágoras. Propiedades de las medidas de los lados de todo triángulo. Area de un triángulo rectángulo y cualquiera. Perímetro y semiperímetro de un triángulo
DIAGRAMAS DE FLUJOS. Qué son Los Diagramas de Flujo y Para qué se Usan?
DIAGRAMAS DE FLUJOS Los diagramas de flujo representan la secuencia o los pasos lógicos para realizar una tarea mediante unos símbolos. Dentro de los símbolos se escriben los pasos a seguir. Un diagrama
a) 12 = b) 45 = c) 54 a) 2 = 2 c) 9 c) 9 = 9 Tema 2 - Hoja 2: Raíz de un número
Tema - Hoja : Raíz de un número Expresa como producto de un número entero y un radical los siguientes radicales: a) a) = = = = = = Expresa en forma de raíz las siguientes potencias de exponente fraccionario:
Matemáticas 3º E.S.O. 2013/14
Matemáticas º E.S.O. 01/14 TEM 6: Cuerpos geométricos Repaso eamen 1.- Estoy construyendo una piscina de 5 metros de largo, 15 metros de ancho y metros de alto. Quiero cubrir las paredes y el fondo con
TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos
TRIGONOMETRÍA 1 Ángulos Hasta ahora se han considerado los ángulos como la porción del plano comprendida entre dos semirrectas con el origen común De esta manera, el ángulo está comprendido entre 0 y 360
TEMAS 4 Y 5 TRIGONOMETRÍA
Temas 4 y 5 Trigonometría Matemáticas I º Bachillerato TEMAS 4 Y 5 TRIGONOMETRÍA UNIDADES DE MEDIDAS DE ÁNGULOS EJERCICIO a Pasa a radianes los siguientes ángulos: y 7 b) Pasa a grados los ángulos: 7 rad
Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides.
Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. a) b) c) Prisma es un poliedro que tiene por caras dos bases
INECUACIONES Y VALOR ABSOLUTO
INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.
Algoritmos. Diagramas de Flujo. Informática IV. L. S. C. Heriberto Sánchez Costeira
Informática IV Algoritmos Diagramas de Flujo L. S. C. Heriberto Sánchez Costeira Algoritmos 1 Definición Es una serie finita de pasos o instrucciones que deben seguirse para resolver un problema. Es un
DuocUC MAT 1001 GUÍA DE EJERCICIOS Nº 9 AP LICACIONES DE ECUACIONES DE P RIMER GRADO EVALUACIÓN DE EXP RESIONES ALGEBRAICAS
GUÍA DE EJERCICIOS Nº 9 AP LICACIONES DE ECUACIONES DE P RIMER GRADO EALUACIÓN DE EXP RESIONES ALGEBRAICAS 1. Si al doble de un número se le aumenta 7, resulta ser 5. Determine el número.. El triple de
Nota: Se entiende que el usuario no introducirá un divisor igual a cero.
EJERCICIOS EN LENGUAJE C Ejercicio 1 - Área de un triángulo (Entrada y salida estándar - Lenguaje C) 1º) Pida por teclado la base (dato real) de un triángulo. 2º) Pida por teclado la altura (dato real)
SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS
SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por
Una ampliación al teorema de Pitágoras
Una ampliación al teorema de Pitágoras Marco Vinicio Vasquez Bernal Resumen Uno de los teoremas mas ampliamente difundidos en las matemáticas es el de Pitágoras con sus múltiples demostraciones y aplicaciones
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto
Estructuras de Repetición (Hacer-Mientras)
Estructuras de Repetición (Hacer-Mientras) Material Original: Prof. Flor Narciso Modificaciones: Prof. Andrés Arcia Departamento de Computación Escuela de Ingeniería de Sistemas Facultad de Ingeniería
Tema: Entorno a C# y Estructuras Secuenciales.
Tema: Entorno a C# y Estructuras Secuenciales. Programación I, Guía 3 1 Facultad: Ingeniería Escuela: Ingeniería en Computación Asignatura: Programación I Objetivos Utilizar el entorno de programación
Unidad 8 Áreas y Volúmenes
Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros
TEMA 1: NÚMEROS REALES 1.1 Numeros racionales Ejemplo:
TEMA : NÚMEROS REALES. Numeros racionales Ejemplo: 4... Entonces puedo expresar el "" de infinitas formas, siendo su fracción generatriz la que es irreducible. En nuestro caso Otro ejemplo de número racional
Repaso de Geometría. Ahora formulamos el teorema:
Repaso de Geometría Preliminares: En esta sección trabajaremos con los siguientes temas: I. El Teorema de Pitágoras. II. Fórmulas básicas de geometría: perímetro, área y volumen. I. El Teorema de Pitágoras.
Ejercicios de programación Luis Francisco García Martínez Ingeniería de Sistemas Programa de Ingeniería de Sistemas
Nivel 1 1. Escribir un programa que lea dos números y los sume. 2. Efectuar un programa que lea los valores de 3 resistencias electrónicas (en Ohmios, las 3 3. Escribir un programa que evalúe la siguiente
a) Forma de Escalera:
Chía, Febrero 8 de 2016 Buenos días Señores Estudiantes de los grados 902,903,y 904 a continuación encontrarán el trabajo que deben realizar de forma escrita en el cuaderno y debe ser entregado el día
TRIGONOMETRÍA. c) 315º = d) 320º = 4.- Expresa los siguientes ángulos como suma de un número entero de vueltas y un ángulo menor
TRIGONOMETRÍA 1.- Expresa en grados los siguientes ángulos medidos en radianes: a) b) c) 5π rad = 4 7π rad = 6 4π rad = 3 10π d) rad = 9 e) 0,25 π rad = f) 1,25 π rad = 2.-Expresa en radianes los siguientes
Abajo está una mezcla de expresiones racionales. Haga la operación indicada y simplifique su solución, si puede.
Unidad 1 Llendo a campar: D írculos 1 D-8. bajo está una mezcla de epresiones racionales. Haga la operación indicada simplifique su solución, si puede. 6 + 8 + 1 + 6 5 + 10 + 8 + + 5 ( + 1) d) + + 5 10
y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.
. Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x
República Bolivariana de Venezuela. Ministerio del Poder Popular para la Educación. Unidad Educativa Colegio Roraima. Cátedra Matemática
República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Unidad Educativa Colegio Roraima Cátedra Matemática Profesora María Eugenia Benítez 1er año Guía 2 1. Escribir los siguientes
MYP (MIDDLE YEARS PROGRAMME)
MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa
1. Leer X 2. Y= (3*X*X)+(7*x) Escribir Y. CONSTANTES: VARIABLES: Entero: x
ALGORITMO #1 ALGORITMO: Promedio DESCRIPCIÓN: Calcular la media (promedio) de 3 números CONSTANTES: -------------------------------- VARIABLES: Entero: N1, N2, N3 Real: Prom 1. Leer N1, N2, N3 2. Prom=
2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm.
ACTIVIDAD DE APOYO GEOMETRIA GRADO 11 1. Calcular el valor de la altura del triángulo equilátero y de la diagonal del cuadrado (resultado con dos decimales, bien aproimados): h 6 cm (Sol: 3,46 cm) (Sol:
ESTRUCTURAS REPETITIVAS EN PHP
ESTRUCTURAS REPETITIVAS EN PHP Los bucles nos permiten iterar conjuntos de instrucciones, es decir repetir la ejecución de un conjunto de instrucciones mientras se cumpla una condición. Sentencia while
ESTRUCTURAS ALGORITMICAS
ESTRUCTURAS ALGORITMICAS El proceso de resolución de problemas en un ordenador conduce a la escritura de un programa y su ejecución. Las fases en el desarrollo de un programa pueden resumirse de la siguiente
Ángulo inscrito es aquel cuyo vértice está en la circunferencia. Todos los ángulos inscritos que compartan el mismo arco son iguales.
TEMA 8: PROBLEMAS MÉTRICOS EN EL PLANO ÁNGULOS EN LA CIRCUNFERENCIA Ángulo central es aquel cuyo vértice está en el centro de la circunferencia. Ángulo inscrito es aquel cuyo vértice está en la circunferencia.
PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO.
PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO. 1. Cuál es el número cuyo quíntuplo aumentado en 6 es igual a su cuadrado?. Qué número multiplicado por 3 es 40 unidades menor que su cuadrado?
XI Concurso Intercentros de Matemáticas de la Comunidad de Madrid
PRUEBA POR EQUIPOS 1º y 2º de E.S.O. (45 minutos) 1. Antonio escribe en la pizarra un número N de cinco cifras. Marta copia el número de Antonio y le añade un 1 a la derecha y obtiene un número de seis
Recursos. Temas. Tiempo. Evaluación. Competencias:
Lic. José Antonio Martínez y Martínez @jamm2014 Competencias: Utiliza formas geométricas, símbolos, signos y señales para el desarrollo de sus actividades cotidianas. Aplica el pensamiento lógico, reflexivo,
TEMA 12: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
009 TEMA 1: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/009 TEMA 1: Longitudes y Áreas. TEMA 1: LONGITUDES Y ÁREAS. 1.
Tema 5: Semejanza. 1.- Introducción: Concepto de Escala y Teorema de Pitágoras.
Tema 5: Semejanza. En este tema nos dedicaremos al estudio de los triángulos y polígonos, y dedicaremos un apartado a un famoso teorema, que nos será de utilidad para entender la semejanza entre ellos:
Taller especial de capacitación de los profesores del 4º Ciclo
Taller especial de capacitación de los profesores del 4º Ciclo Este taller fue preparado para satisfacer la inquietud de los docentes que solicitaron más capacitación Olimpiada Akâ Porâ Olimpiada Nacional
Programación. Ejercicios Tema 3. Elementos Básicos del Lenguaje C
Programación Ejercicios Tema 3 Autores: M. Paz Sesmero Lorente Paula de Toledo Heras Fco. Javier Ordoñez Morales Juan Gómez Romero Jose A. Iglesias Martínez Jose Luis Mira 1 SOLUCIONES Primera Sesión:
Matemáticas 3º E.S.O. 2014/15
Matemáticas 3º E.S.O. 2014/15 TEMA 5: Figuras planas Ficha número 16 1.- Calcula la altura del siguiente triángulo: (Sol: 12,12 cm) 2.- En un triángulo isósceles la altura sobre el lado desigual mide 50
3. Dado un monto calcular el descuento considerando que por encima de 100 el descuento es el 10% y por debajo de 100 el descuento es el 2%.
Lista general de Ejercicios Resueltos 1. A un trabajador le pagan según sus horas y una tarifa de pago por horas. Si la cantidad de horas trabajadas es mayor a 40 horas. La tarifa se incrementa en un 50%
Tema: Uso del programa DFD
Programación I, Guía 2 1 Tema: Uso del programa DFD Facultad: Ingeniería Escuela: Ingeniería en Computación Asignatura: Programación I Objetivos Utilizar el programa DFD para crear y ejecutar flujogramas.
1. Teoremas válidos para triángulos rectángulos
1. Teoremas válidos para triángulos rectángulos Sea ABC triángulo rectángulo en C, entonces: El lado opuesto al ángulo recto, AB, es llamado HIPOTENUSA, y los lados AC y BC, CATETOS. cateto hipotenusa
DISEÑO DE ALGORITMOS Y SU CODIFICACIÓN EN LENGUAJE C: Ejercicios Complementarios Resueltos en Pseudocódigo y Diagrama de Flujo
SOLUCIÓN DE ALGUNOS EJERCICIOS COMPLEMENTARIOS EN PSEUDOCÓDIGO NOTAS: Hemos alternado por tema, la solución de ejercicios pares o nones en cada tema. Recordar en el símbolo de decisión del diagrama de
RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS
RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS ESTE TRIANGULO SERA EL MISMO PARA TODA LA EXPLICACIÓN RELACIÓN ENTRE LAS FUNCIONES
MATEMÁTICAS 3º ESO PENDIENTES HOJA 1 GEOMETRÍA PLANA. 1.- Calcular el área y el perímetro de los siguientes polígonos:
MATEMÁTICAS º ESO PENDIENTES HOJA GEOMETRÍA PLANA.- Calcular el área y el perímetro de los siguientes polígonos: a) Un cuadrado de lado 5 cm de lado b) Un cuadrado de diagonal 0 cm. c) Un rectángulo de
Práctica 4. Organización del Computador 1 12 de septiembre de Algunas consideraciones preliminares:
Práctica 4 Organización del Computador 1 12 de septiembre de 2005 Algunas consideraciones preliminares: Donde aparece xxxxxxxx quiere decir que el valor correcto ya está en esa dirección de memoria Todos
Valores de las funciones trigonométricas en los ángulos múltiplos de π 4 y de π 6
Valores de las funciones trigonométricas en los ángulos múltiplos de y de Vamos a recordar como se deducen los valores del cos y sen del ángulo. Preliminares de geometría. Teorema de Pitágoras. Denotemos
AYUDAS SOBRE LA LINEA RECTA
AYUDAS SOBRE LA LINEA RECTA AYUDA : Grafiquemos la función Solución: Se debe escoger algunos números que representan a la variable x, para obtener el valor de la variable y respectivamente así: El proceso:
Introducción a la programación
Introducción a la programación Resolución de Problemas El objetivo principal para que las personas aprendan a programar en algún lenguaje de programación en particular es utilizar el computador como una
Módulo III: Geometría Elmentos del triángulo Teorema de Pitágoras Ángulos en la circunferencia
Módulo III: Geometría Elmentos del triángulo Altura Bisectriz Simetral o mediatriz Transversal de gravedad Teorema de Pitágoras Ángulos en la circunferencia Ángulo del centro Ángulo inscrito Ángulo interior
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. Página 7 PRACTICA Aproximación y errores Expresa con un número adecuado de cifras significativas: a) Audiencia de un programa de televisión: 07 9 espectadores. b) Tamaño de un virus: 0,007 mm. c)
Geometría
Geometría Geometría www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 2007-2012 Contenido 1. Geometría 2 1.1. Definiciones....................................... 2 1.2. Postulados........................................
Geometría del espacio
Áreas y volumenes de cuerpos geométricos Un poliedro es un cuerpo geométrico que está limitado por cuatro o más polígonos. Los elementos de un poliedro son: Caras del poliedro: son los polígonos que lo
PÁGINA 88. Pág. 1. Unidad 9. Problemas métricos en el plano
Soluciones a las actividades de cada epígrafe PÁGINA 88 1 En los siguientes triángulos rectángulos, se dan dos catetos y se pide la hipotenusa (si su medida no es eacta, dala con una cifra decimal): a)
MATEMÁTICAS ÁLGEBRA (TIC)
COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS ÁLGEBRA (TIC) GRADO:8 O A, B DOCENTE: Nubia E. Niño C. FECHA: 23 / 02 / 15 GUÍA UNIFICADA: # 1 5; # 1-6 y 1-7 DESEMPEÑOS:
XIX OLIMPIADA NACIONAL DE MATEMÁTICA TERCERA RONDA REGIONAL - 1 DE SETIEMBRE DE 2007 - NIVEL 1. Nombre y Apellido:... C.I.:...
TERCERA RONDA REGIONAL - 1 DE SETIEMBRE DE 2007 - NIVEL 1 Nombre y Apellido:..................................... C.I.:.................. Grado:......... Sección:........ Puntaje:........... Los dibujos
Laboratorio 02: Ejercicios de programación en C
olicitado: Ejercicios 02: Soluciones estructuradas en C M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com [email protected] @edfrancom edgardoadrianfrancom Estructuras de datos (Prof. Edgardo
Traducir frases lingüísticas a expresiones
Traducir frases lingüísticas a expresiones Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. El Teorema de Pitágoras describe la relación entre la hipotenusa y los catetos de un
RESOLUCIÓN DE PROBLEMAS MEDIANTE ECUACIONES. 2.- La suma de dos números es 15 y su producto es 26. Cuáles son dichos números?
RESOLUCIÓN DE PROBLEMAS MEDIANTE ECUACIONES 1.- El perímetro de un rectángulo es 4 cm y su área es 0 cm. Cuáles son sus dimensiones? Sea = altura ; y = base Como perímetro es 4: + y = 1 y = 1 Como el área
Tema 10: Cuerpos geométricos y transformaciones geométricas
Tema 10: Cuerpos geométricos y transformaciones geométricas Regla. Escuadra. Cartabón. Compás. Transportador de ángulos. Calculadora Portaminas. Goma 10.1 Polígonos MATERIAL DE CLASE OBLIGATORIO PROBLEMAS
Series aritméticas. ó La suma de los primeros n términos en una serie se representa por S n. . Por ejemplo: S 6
LECCIÓN CONDENSADA 9.1 Series aritméticas En esta lección aprenderás terminología y notación asociada con series descubrirás una fórmula para la suma parcial de una serie aritmética Una serie es la suma
hermanitos. Si en total eran 85, cuántos estudiantes del aula tenían 2 hermanitos pequeños?
Tema P Sexto grado de primaria Rita va a invitar a algunos compañeros de su aula a jugar a su casa. Los compañeros de Rita son Vanessa, Claudia, Nataly, Tamara, Ariana, Joaquín, Alexandro y Diego. Si Rita
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 PÁGINA 228 EJERCICIOS Construcción de triángulos 1 Construye un triángulo equilátero cuyo lado mida l 5 cm. l l l = 5 cm l 2 Construye un triángulo isósceles cuyos ángulos iguales miden 30 y cuyo
a1 3 siendo a 1 y a 2 las aristas. 2 a a1
Semejanza y Trigonometria. 77 Ejercicios para practicar con soluciones Dos rectángulos tienen sus lados proporcionales. Los lados del primero miden 6 y 8 cm respectivamente. Si el perímetro del segundo
a) Da una aproximación (con un número entero de metros) para las medidas del largo y del ancho del campo.
Modelos de EXAMEN Ejercicio nº 1.- Nos dicen que la medida de un campo de forma rectangular es de 45,236 m de largo por 38,54 m de ancho. Sin embargo, no estamos seguros de que las cifras decimales dadas
SUBPROYECTO: LAS TABLAS DE MULTIPLICAR Y EL ÁLGEBRA. LAS TABLAS DE DOBLE ENTRADA Y EL ÁLGEBRA. ESCUBRIR ALGUNOS SECRETOS DE LAS TABLAS DE MULTIPLICAR.
GUIA DE TRABAJO # 18 PROYECTO: MAGIA MATEMÁTICA SUBPROYECTO: LAS TABLAS DE MULTIPLICAR Y EL ÁLGEBRA. ESTRATEGIA: OBJETIVO: LAS TABLAS DE DOBLE ENTRADA Y EL ÁLGEBRA. ESCUBRIR ALGUNOS SECRETOS DE LAS TABLAS
MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas
MATEMÁTICAS BÁSICAS Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 13 de agosto de 2012 Parte I Introducción a la geometría elemental Nociones básicas
DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez
DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado
Ámbito científico tecnológico
Dirección Xeral de Educación, Formación Profesional e Innovación Educativa Educación secundaria para personas adultas Ámbito científico tecnológico Educación a distancia semipresencial Módulo Unidad didáctica
RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA
RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo
Problemas de Aplicación
www.matebrunca.com Prof. Waldo Márquez González Ejercicios: Teorema de Pitágoras 1 Problemas de Aplicación 1. En los ejercicios siguientes, establézcase si la ecuación dada es correcta o no. Supóngase
