FUNCIONES VECTORIALES CON DERIVE. Las operaciones de cálculo de Dominio, adición susracción, muliplicación escalar y vecorial de funciones vecoriales, se realizan de manera similar a las operaciones con vecores dadas en emas aneriores. (Consular guías). LÍMITES, CONTINUIDAD Y DERIVADAS E INTEGRALES DE FUNCIONES VECTORIALES. LÍMITES DE FUNCIONES VECTORIALES: El procedimieno para calcular límies de ese ipo de funciones en DERIVE es idénico al que da a funciones reales de variable real. Esudiemos unos ejemplos: Ejemplo 1. Deermine el límie de la función vecorial, 4 F () = i+ jen ; =4 4 Exisen dos formas de calcular ese límie: 1) Podemos hacerlo escribiendo lim(f(),,4) o uilizando la opción(con la expresión #1 resalada) Cálculo, lim, variable:, puno: 4 endiendo por: ambas y luego simplificar. 91
Ejemplo. Deermine el límie de la función vecorial, R() = cos() i+ e j+ 3k; en =0 DERIVADAS DE FUNCIONES VECTORIALES Para hallar las derivadas de una función vecorial, podemos uilizar dos opciones: 1) dada la expresión y resalada aplicamos el procedimieno: CALCUL0, DERIVADAS, VARIABLE:, ORDEN 1 Y SIMPLIFICAR, o bien direcamene DIF(f(),,n), donde n el indica el grado de la derivada. Ejemplo. 3 Deermine la derivada de la función vecorial 4 F () = i+ j 4 Ejemplo 4.Deermine la derivada de la función vecorial R() = 5sen i sec4j + 4cosk 9
DERIVADA DE LA SUMA DE DOS FUNCIONES VECTORIALES. Si R y Q son dos funciones vecoriales diferenciables en un inervalo, enonces R+ Q es diferenciable en el inervalo, y D R( ) + Q( ) = DR ( ) + DQ ( ) Ejemplo 5. Dadas las funciones derivada de S () + Q () S () = i+ ( 1) j; Q () = seni () + cos() j deermine la DERIVADA DEL PRODUCTO PUNTO DE DOS FUNCIONES VECTORIALES. Si R y Q son dos funciones vecoriales diferenciables en un inervalo, enonces RQ i es diferenciable en el inervalo, y D R ( ) iq ( ) = DR ( ) iq ( ) + R ( ) i DQ ( ) Ejemplo 6. Dadas las funciones derivada de S () i Q () S () = i+ ( 1) j; Q () = seni () + cos() j deermine la DERIVADA DEL PRODUCTO CRUZ DE DOS FUNCIONES VECTORIALES Si R y Q son dos funciones vecoriales diferenciables, enonces D R() Q() = R ( ) Q( ) + R( ) Q ( ) R ( ) y Q ( ) exisen. Para odos los valores de para los cuales 93
Ejemplo 7. Deermine la derivada de A () C () dadas las funciones A = seni + cosj senk C = cosi + senj + k () ( ) REGLA DE LA CADENA PARA FUNCIONES VECTORIALES. Suponga que F es una función vecorial, h es una función real y G es la función vecorial ( ) φ = y d d dφ = φ d Ejemplo 8. Aplicar la regla de la cadena para deerminar F( θ) = θ i+ e θ j+ ln( θ) k h( ) = sen definida por G ( ) = Fh ( ). Si h ( ) esá dada por DG( ) DG( ) φ y DG φ ( ) exisen, enonces ( ) DG exise y la derivada las funciones Noa: Si R es una función vecorial diferenciable en un inervalo y R ( ) es consane para oda del inervalo, enonces los vecores R ( ) y DR( ) son orogonales. Si el produco puno de R ( ) y DR( ) es cero, se concluye, que R ( ) y ( ) orogonales. DR son 94
INTEGRACIÓN INDEFIN IDA DE FUNCIONES VECTORIALES. Q = f i+ g j+ hk, enonces la Si Q es la función vecorial deerminada por ( ) ( ) ( ) ( ) inegral indefinida de Q ( ) esa definida por: ( ) = ( ) + ( ) + ( ) Q d i f d j g d k h d La inegral de una función vecorial se puede calcular de dos maneras: 1) Con INT(f(),,0,1) o bien con la opción CÁLCULO, INTEGRACIÓN, VARIABLE:, indefinida, consane : k Ejemplo. 9 Deermine la inegral de la función vecorial 4 F () = i+ j 4 Ejemplo. 10 Deermine la inegral de la función vecorial 1 N () = ani+ secj+ k R = e i+ e j+ 3; k y R 0= i+ j+ 5k Ejemplo. 11. Obenga el vecor R ( ) para el cual ( ) ( ) Sabemos por definición que: R () R ( ) d = Enonces por cada inegral hay una consane de inegración por lo ano es recomendable resolver cada una de ellas por separadas. 95
Evaluar R(0) Como R( 0) = i+ j+ 5k, enonces i+ j+ 5k= i( 1+ C ) + j( 1+ C ) + k( C ) 1 3 96
En consecuencia, REPRESENTACIÓN GRÁFICA DE FUNCIONES VECTORIALES Para represenar funciones vecoriales es recomendable revisar guías de gráficas de funciones en dos y res dimensiones y de gráficas de funciones en ecuaciones paraméricas. Ejemplo. 1. Grafique la siguiene función vecorial W () = 6cos() i+ 3 sen () j Ejemplo. 13 Grafique la curva que iene la ecuación vecorial B ( ) = cosi+ senj+ k, 0 4π VECTOR Y RECTA TANGENTE EN UN PUNTO. n Dada una curva descria mediane la función f :[ ab, ] R, derivable para = 0, sabemos que el vecor f ( 0) es angene a la curva en el puno f ( 0). Por ano la reca de ecuación T( s) = f( 0) + f ( 0) será la reca angene en ese puno. 97
Podemos considerar la expresión enre corchees [f( 0 )+f ( 0 ), 0], incluye 0 para eviar que DERIVE inerpree una sola función en coordenadas polares) Si omamos en cuena, la función del ejemplo 1, la derivada en =4 (la hallamos resalando #8 y uilizando la secuencia simplificar, susiuir variables) es: El vecor anerior es angene a la curva en =4, y para dibujarlo como un vecor sobre la curva debemos seguir los siguienes pasos: 1) Escribir la mariz [f(4);f(4)+f '(4)] (de esa forma le esamos dando al Derive el origen y el exremo del vecor). ) Revisar guías aneriores donde se explica cómo graficar funciones y vecores. 98
En algunas ocasiones es preferible que el Derive simplifique los daos que le damos anes de hacer el dibujo, para ello basa seleccionar en la venana D la opción OPTCIONES, SIMPLIFICAR ANTES DE GRAFICAR. ECUACIÓN EXPLICITA DE LA RECTA TANGENTE A LA CURVA. Para calcular la ecuación explícia de la reca angene a la curva descria por una función f() en el puno f( 0 ) el Derive iene el comando PARA_TANGENT(f(),, 0,x). Noa: Debe cargar primero el fichero: DiffereniaionApplicaions.mh) De la función del ejemplo 1, enemos que la ecuación explícia de la reca angene a la 4 curva descria por F () = i+ jen =4 es 4 Para graficar de una vez ambas funciones colocamos: ECUACIÓN EXPLICITA DE LA RECTA PERPENDICULAR A LA CURVA. En derive se uiliza la ecuación: PARA_PERPENDICULAR(F(),, 0,x) 99
LONGITUD DEL ARCO DE CURVA Si C es una curva plana cuyas ecuaciones paraméricas son x = f( ) y y= g( ), donde f y g son coninuas en el inervalo cerrado [ ab, ] y si L unidades es la longiud de arco de C desde el puno f( a), g( a ) hasa el puno f( b), g( b ), enonces a b () () ( ) L= f + g d ( ) Pueso que una ecuación vecorial de C es R ( ) = fi ( ) + g ( ) j, esa ecuación puede b escribirse como L= R ( ) d enonces la curva descria por R es recificable y la a longiud del arco desde f(a) a f(b) viene dado por la inegral desde a hasa b de la norma o módulo de R'(). Sea C la curva cuya ecuación vecorial es R ( ) = fi ( ) + g ( ) j+ hk ( ), y suponga que f, g y h son coninuas en el inervalo cerrado [ ab., ] Enonces si L es la longiud de arco de C desde el puno f( a), g( a), h( a ) hasa el puno f( b), g( b), h( b ) b L= R ( ) d a ( ) EJEMPLO 14. Calcule la longiud de arco de la hélice circular B cosi senj kdesde 0 4π = 0 ()= + + ( ) 100
Ora forma que puede usarse es el comando Para_arc_lengh(f(),,a,b) que aproxima el valor de la longiud de arco de la curva en el inervalo [a, b] Debe acivar el comando: InegraionApplicaions.mh) DÁMASO ROJAS. OCTUBRE 011 101