Intervalos de confianza

Documentos relacionados
Tema 3: Estimación estadística de modelos probabilistas. (segunda parte)

Tema 4: Estimación por intervalo (Intervalos de Confianza)

INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M.

Ejemplos Resueltos Tema 4

1. Ejercicios. 2 a parte

LEC/LADE/LECD/LADED CURSO 2006/07 HOJA DE PROBLEMAS 3 INTERVALOS DE CONFIANZA

R E S O L U C I Ó N. σ σ a) El intervalo de confianza de la media poblacional viene dado por: IC.. µ zα, µ+ zα

Tema 7: Ejercicios de Inferencia en una población Normal

PROBLEMAS DE ESTIMACIÓN PUNTUAL Y POR INTERVALOS

Tema 4. Intervalos de confianza. Estadística Aplicada (Bioquímica). Profesora: Amparo Baíllo Tema 4: Intervalos de confianza 1

Universidad Técnica de Babahoyo INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA

ESTADÍSTICA. Tema 4 Intervalos de confianza

ESTADÍSTICA Y PROBABILIDAD

ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA PARA LA MEDIA POBLACIONAL.

BLOQUE III: INFERENCIA ESTADISTICA. X, variable aleatoria de interés sobre una determinada población

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

Nombre: Solución: a) N(

Contrastes sobre la media Sea X 1, X 2,..., X n una m.a.s. extraída de una población normal X con media desconocida µ. Se desea contrastar:

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

1. Estimar el porcentaje de bolsas con peso menor de seis kilos suministrado por el mayorista.

Estadística. Contrastes para los parámetros de la Normal

EJERCICIOS DE SELECTIVIDAD

Matemáticas Aplicadas a las Ciencias Sociales II Hoja 6: Inferencia Estadística. Estimación de la Media

1._ (Modelo 2018) Un determinado partido político desea estimar la proporción de votantes, p, que actualmente se decantaría por él.

Inferencia estadística en la EBAU de Murcia INFERENCIA ESTADÍSTICA EN LA EBAU DE MURCIA

Tema 8: Estimación por intervalos de confianza.

Estadística I Tema 7: Estimación por intervalos

(1 punto) (1.5 puntos)

Problemas propuestos en pruebas de Selectividad de Madrid desde 2007 hasta 2014 Estadística: Resolución de los ejercicios propuestos

R E S O L U C I Ó N. a) El intervalo de confianza de la media poblacional viene dado por: I. C. z

Tema 13 y 14: Estadística e inferencia estadística Problemas propuestos en pruebas de Selectividad de Madrid desde 2007 hasta 2016

Técnicas de Inferencia Estadística II. Tema 2. Contrastes de hipótesis en poblaciones normales

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

TEMA 7. Estimación. Alicia Nieto Reyes BIOESTADÍSTICA. Alicia Nieto Reyes (BIOESTADÍSTICA) TEMA 7. Estimación 1 / 13

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II

R E S O L U C I Ó N. σ σ a) El intervalo de confianza de la media poblacional viene dado por: IC.. μ zα

Matemática Aplicada y Estadística - Grado en Farmacia Curso 2014/15 1er. Examen Parcial 6 de noviembre de 2014

Preguntas más Frecuentes: Tema 8

Tema 6: Ejercicios de Inferencia con muestras grandes

Problemas propuestos en pruebas de Selectividad de Madrid desde 2007 hasta 2013 Estadística: Resolución de los ejercicios propuestos

7. Inferencia Estadística. Métodos Estadísticos para la Mejora de la Calidad 1

12. (SEPTIEMBRE 2004) Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos

Ejemplos Resueltos Tema 4

Relación de Problemas. Tema 5

R E S O L U C I Ó N. σ σ a) El intervalo de confianza de la media poblacional viene dado por: IC.. μ zα

8. [ASTU] [SEP-A] Se ha entrevistado a 400 mujeres elegidas de forma aleatoria y se ha obtenido que el tiempo medio semanal que

Intervalos de Confianza

1. Una organización de consumidores ha tomado una muestra de varias bombillas de cierta marca y ha anotado el número de días que han durado

ESTADÍSTICA I Tema 4: Estimación por intervalos de confianza

INFERENCIA ESTADÍSTICA MUESTRAL TEMA 2: ESTIMACIÓN POR INTERVALO

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] =

INFERENCIA ESTADÍSTICA

a) p(z < 1,89) b) p(z > 1) c) p(z > 0,04) d) p(1,78 < Z < 3) e) p( 2,25 < Z < 1,49)

Estimación. Introducción. Sea X la variable aleatoria poblacional con distribución de probabilidad f θ donde. es el parámetro poblacional desconocido

Tema 3: Estimación estadística de modelos probabilistas. (primera parte)

a. N(19 5, 1 2) P(19 X 21) = P( Z ) = = P = P P = = P P = P = = = El 55 72% no son adecuados.

DISTRIBUCION "F" FISHER

ESTIMACION INFERENCIA ESTADISTICA

Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

Estadística I Tema 5: Introducción a la inferencia estadística

Tema 4: Variables aleatorias. Tema 4: Variables Aleatorias. Tema 4: Variables aleatorias. Objetivos del tema:

Matemática Aplicada y Estadística - Farmacia Soluciones del Primer Examen Parcial - Grupo 3

= 134, 5 Tercer cuartil: Q 3 = Pueden considerarse normales. =2 P 10 = 118 horas. f(x) =

Técnicas Cuantitativas para el Management y los Negocios I

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Muestreo de variables aleatorias

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

Tema 6: Contraste de hipótesis

Modelo Problema 5A.- a) b) Modelo Problema 5B.- a) b) Septiembre Ejercicio 5A. a) b) Septiembre Ejercicio 5B.

INFERENCIA ESTADÍSTICA: INTERVALOS DE CONFIANZA

Inferencia Estadística

Asignatura : INFERENCIA ESTADÍSTICA I Titulación : DIPLOMADO EN ESTADÍSTICA Profesor : ISABEL MOLINA PERALTA Capítulo 5 : INTERVALOS DE CONFIANZA

Intervalo para la media si se conoce la varianza

UNIVERSIDAD DE ATACAMA

Selectividad Septiembre 2007 SEPTIEMBRE 2007

Muestreo e intervalos de confianza

IES Gerardo Diego Curso Matemáticas Aplicadas a las Ciencias Sociales II

Apuntes de Estadística Curso 2017/2018 Esther Madera Lastra

EJERCICIOS PROBABILIDAD (1) 2. Sean A y S dos sucesos de un espacio muestral tales que P(A)=0 4; P(A S)=0 5 y P(S/A)= 0 5 Calcular P(S) y P(A/ S )

Inferencia estadística Selectividad CCSS MasMates.com Colecciones de ejercicios

b) Si decides elegir el trabajo que con más probabilidad te permita ganar más de 900 euros al mes, qué trabajo debes elegir?

Estadística II Examen final enero 19/1/17 Curso 2016/17 Soluciones Duración del examen: 2 h y 15 min

ESTADÍSTICA Hoja 9

Departamento de Matemática Aplicada a las T.I.C. SOLUCIONES

Tema 14: Inferencia estadística

Tema 14: Inferencia estadística

Práctica 6: Fundamentos de la Inferencia. Teorema Central del Límite.

Probabilidad y Estadística Segundo del grado en Telecomunicaciones, UAM, Examen de la convocatoria extraordinaria,

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PRUEBA B Problema 1. Al 80% de los trabajadores en educación que se jubilan sus compañeros les hacen una fiesta de despedida, también al 60% de los tr

EXAMEN PARCIAL DE ESTADÍSTICA. Universidad de Castilla-La Mancha 1 de Febrero de 2006

Matemáticas aplicadas a las Ciencias Sociales II

ESTADÍSTICA. 2.- Halla las siguientes probabilidades en una distribución N (0, 1): Página 1 de 8

ENUNCIADO y SOLUCIONES. Problema 1

Transcripción:

Capítulo 5 Intervalos de confianza Como su nombre indica, el objetivo de un estadístico puntual para un parámetro desconocido de una población, es acercarnos al verdadero valor del mismo dando un valor concreto a partir de una muestra. Difícilmente esta estimación acertará con el valor exacto del parámetro. o obstante, la pretensión de dar con dicho valor puede ser excesiva, y podemos relajarla buscando simplemente una aproximación razonable del mismo. En esta línea surgen los intervalos de confianza, para un nivel de confianza dado.. Definiciones Definición.. Sea (X... X ) una muestra aleatoria de una población X con función de masa P θ (o función de densidad f θ ), donde θ = (θ... θ k ) Θ. Un estimador por intervalos de confianza de θ i (al nivel de confianza α), es una función que a cada posible muestra x... x le hace corresponder un intervalo (T T ) = (T (x... x ) T (x... x )), tal que, para todo θ Θ: P θ θi (T T ) = P θ (x... x ) : θ i (T (x... x ) T (x... x )) = α. Para la construcción de intervalos de confianza, usaremos cantidades pivotales. Definición.. Sea (X... X ) una muestra aleatoria de una población X con función de masa P θ (o función de densidad f θ ), donde θ = (θ... θ k ) Θ. Una cantidad pivotal para θ i es una función C(X... X ; θ i ) tal que su distribución no depende de θ. Una vez obtenida una cantidad pivotal C(X... X ; θ i ), la construcción de un intervalo para estimar es el siguiente: - se eligen dos valores c y c tales que: P θ (x... x ) : c < C(X... X ; θ i ) < c = α. Obsérvese que c y c no dependen de θ, al ser C(X... X ; θ i ) una cantidad pivotal. - Despejamos θ i de las desigualdades c < C(X... X ; θ i ) < c. Obtenemos así un estimador por intervalos de confianza para θ i. Obsérvese que la cantidad pivotal debe ser continua y monótona en θ i. ecesitaremos, pues, obtener cantidades pivotales, y en este capítulo describiremos la construcción para los modelos más importantes. 83

84 CAPÍTULO 5. ITERVALOS DE COFIAZA. Poblaciones normales Sea X (µ ; σ), y (X... X ) una muestra aleatoria de dicha población. El estimador media muestral, X, tiene las siguientes propiedades: E[ X] = E[X] = µ V [ X] = V [X] = σ. Por otra parte, X... X son variables aleatorias independientes, todas con la misma distribución, (µ ; σ), y así X (µ ; σ/ ). Por otra parte, el estimador cuasi varianza muestral tiene esperanza S = (X i E[ X]) E[S ] = σ. ecesitaremos conocer la distribución seguida por este estadístico. Se tiene la siguiente definición: Definición.. Distribución χ ) Sean Z... Z variables aleatorias independientes, todas con distribución (0 ; ). La distribución χ de Pearson con grados de libertad (abreviadamente χ ) es la distribución de la variable aleatoria Esta distribución está asociada a la distribución normal, y sus valores vienen dados por una tabla. Es claro que si (X... X ) es una muestra aleatoria de una población X (µ ; σ), entonces: Z i. σ S = = = = (X i µ) σ χ de manera que: (X i X) σ = (X i µ + µ X) σ (X i µ) σ X µ σ (Xi µ) + (X i µ) ( X µ) + ( X µ) σ σ σ (X i µ) ( X µ) σ σ ( X µ) X µ = χ σ/ σ χ. Para evitar confusiones, denotaremos por S a la variable aleatoria cuasi varianza muestral, y por V X la varianza muestral. Se tiene la siguiente propiedad:

. POBLACIOES ORMALES 85 Propiedad: [Lema de Fisher] Sea (X... X ) una muestra aleatoria de una población X con distribución (µ ; σ). Entonces: X (µ ; σ/ ) ; σ S χ ; y, además, X y S son independientes. Igual que para la distribución de la cuasi varianza de variables aleatorias independientes con igual distribución (µ σ), hemos introducido una nueva distribución, necesitaremos las siguientes nuevas definiciones. Definición.. Distribución t de Student) Sean Y, X... X variables aleatorias independientes, todas con distribución (0 ; ). La distribución t de Student con grados de libertad (abreviadamente t ) es la distribución de la variable aleatoria Y X i = Y χ. Definición.3. Distribución F de Fisher Snedecor) Sean X... X m, Y... Y n variables aleatorias independientes, todas con distribución (0 ; ). La distribución F de Fisher Snedecor con m y n grados de libertad (abreviadamente F m;n ) es la distribución de la variable aleatoria m m X i n n Y i = m χ m. n χ n.. Cantidades pivotales en poblaciones normales Recogemos, de manera resumida, las principales cantidades pivotales utilizadas para la construcción de estimadores por intervalos de confianza, para el caso de una población X (µ ; σ). Distinguiremos el caso de un muestra y el de dos muestras. Cantidades pivotales para el caso de una muestra a) Sea (X... X ) una muestra aleatoria de una población X (µ ; σ), con σ conocido. Entonces: X µ σ/ (0 ; ) y es una cantidad pivotal para µ. b) Sea (X... X ) una muestra aleatoria de una población X (µ ; σ). Entonces: X µ S/ t es una cantidad pivotal para µ σ S χ es una cantidad pivotal para σ.

86 CAPÍTULO 5. ITERVALOS DE COFIAZA Obsérvese que si (X... X ) es una muestra aleatoria de una población (µ ; σ), entonces: X µ σ/ S σ = X µ S/ t por definición de la distribución t de Student con grados de libertad. Cantidades pivotales para el caso de dos muestras a) Sean (X... X m ) e (Y... Y n ) muestras aleatorias independientes de las poblaciones X (µ ; σ) e Y (µ ; σ), respectivamente. Entonces: donde X Ȳ (µ µ ) t m+n y es una cantidad pivotal para µ µ S p m + n S p = (m )S X + (n )S Y m + n puede interpretarse como una ponderación de las cuasi varianzas muestrales S X y S Y, correspondientes a cada una de las muestras. b) Sean (X... X m ) e (Y... Y n ) muestras aleatorias independientes de las poblaciones X (µ ; σ ) e Y (µ ; σ ), respectivamente. Entonces: S X /σ S Y /σ F m ;n y es una cantidad pivotal para σ /σ. Obsérvese que, en la situación descrita para dos muestras: m m σ n n σ S X S Y = S X /σ S Y /σ F m ;n de ahí la afirmación del apartado b). La comprobación del primer apartado excede el nivel de este curso, y no se abordará... Intervalos de confianza en poblaciones normales Utilizando las cantidades pivotales del apartado anterior, es sencillo obtener intervalos de confianza para los parámetros de una población normal. Distinguiremos diferentes casos: Primer caso: Sea (X... X ) una muestra aleatoria de una población X (µ ; σ), con σ conocido. Entonces: σ X zα/ X σ + z α/ es un intervalo de confianza para µ al nivel α), siendo z α el valor que verifica P (Z > z α ) = α, para Z (0 ; ).

. POBLACIOES ORMALES 87 Segundo caso: Sea (X... X ) una muestra aleatoria de una población X (µ ; σ). Entonces: a) X t ; α/ S X S +t ; α/ es un intervalo de confianza para µ al nivel α), siendo t ; α el valor que verifica que P (t > t ; α ) = α. ( )S ( )S b) es un intervalo de confianza para σ al nivel α), siendo χ ; α/ χ ; α/ χ ; α el valor que verifica: P (χ > χ ; α ) = α. Tercer caso: Sean (X... X m ) e (Y... Y n ) muestras aleatorias independientes de dos poblaciones normales con igual desviación típica: X (µ ; σ) e Y (µ ; σ), respectivamente. Entonces: X Ȳ t m+n ; α/ S p m + n X Ȳ + t m+n ; α/ S p m + n es un intervalo de confianza para la diferencia de medias, µ µ al nivel α). Cuarto caso: Sean (X... X m ) e (Y... Y n ) muestras aleatorias independientes de dos poblaciones normales: X (µ ; σ ) e Y (µ ; σ ), respectivamente. Entonces: S X /SY SX /S Y F m ; n ; α/ F m ; n ; α/ es un intervalo de confianza para la razón de varianzas, σ /σ al nivel α), siendo F m ; n ; α el valor que verifica: P (F m ; n > F m ; n ; α ) = α. Observación: En el manejo de las tablas correspondientes a la distribución F m ; n, conviene tener en cuenta la siguiente relación (obsérvese el cambio de orden en los grados de libertad): F m ; n ; α = F n ; m ; α..3. Ejemplos Ejemplo 36 Una empresa fabrica bombillas cuya duración en horas sigue una distribución (µ ; 00). Una muestra aleatoria de 36 bombillas ha dado una vida media de 7000 horas. Constrúyase un intervalo de confianza al nivel del 99 para la vida media de las bombillas fabricadas por esa fábrica. Solución: Tenemos una muestra de tamaño = 36 de una población, X (µ ; 00), de varianza conocida. Usaremos la cantidad pivotal: X µ 00/6 (0 ; ) ; y, para α = 0.0, repartimos la probabilidad de manera equitativa a izquierda y derecha de la media muestral x = 7000. En otras palabras, consideramos la igualdad: P c < 7000 µ < c = α = 0.99. 00/6

88 CAPÍTULO 5. ITERVALOS DE COFIAZA De la tabla para una (0 ; ) se tiene c = z α/.58 (pues α/ = 0.005). Construimos el intervalo de confianza para µ, al nivel del 99 %, despejando µ en las desigualdades:.58 < 7000 µ 00/6 <.58 de manera que: µ < 7000 + 00 6 µ > 7000 00 6.58 = 000 + 58 3.58 = 000 58 3 = 58 3 = 074 3 = 7086 (de la desigualdad izquierda) = 694 (de la desigualdad derecha) Resumiendo, el intervalo de confianza para µ al nivel del 99 % para la muestra dada es: I = 7000 00 00.58 7000 + 6 6.58 = (694 7086). Ejemplo 37 Una muestra aleatoria de 6 cigarrillos de una cierta marca tiene un contenido medio de nicotina de.6mg. y una desviación típica de 0.7mg. Suponiendo que la variable X = contenido de nicotina en un cigarrillo, sigue una distribución (µ ; σ), obténgase un intervalo de confianza al 99 del contenido medio de nicotina por cigarrillo en esa marca. Solución: En este caso se quiere estimar µ en una población (µ ; σ), con ambos parámetros desconocidos. Partimos de una muestra de tamaño = 6, con x =.6 y cuasi desviación típica muestral s = 0.7 6 5 0.73. Sabemos que en este caso hemos de usar la cantidad pivotal: x µ s/ =.6 µ 0.73/4 que sigue una distribución t de Student con = 5 grados de libertad. Para la muestra dada, el intervalo de confianza para µ al nivel de confianza α queda x t ; α/ s x + t ; α/ s 0.73 =.6 t 5 ; α/ 4.6 + t 5 ; α/ 0.73 4 siendo t 5 ; α/ el valor tal que P (t 5 > t 5 ; α/ ) = α/. Como en nuestro caso α = 0.99 entonces α = 0.0 y así, de la correspondiente tabla para la distribución t de Student, obtenemos: t 5 ; α/ = t 5 ; 0.005 =.947. El intervalo que nos piden es pues:.6 t 5 ; α/ 0.73 4.6 + t 5 ; α/ 0.73 4 =.6.947 0.73 0.73.6 +.947 4 4 (.6 0.537.6 + 0.537) = (.0673.37).

. POBLACIOES ORMALES 89 Observación: En este ejemplo hemos tenido que calcular la cuasi desviación típica muestral a partir de la desviación típica muestral. Si seguimos el uso dado, denotando por v la desviación típica muestral, vemos que: s v v v = = = Podríamos haber expresado el intervalo de confianza utilizando la desviación típica muestral: v v x t ; α/ x + t ; α/ pero no usaremos esta expresión, para no liar la notación. Tan sólo hemos de tener cuidado al tomar los datos del problema. Ejemplo 38 Una muestra aleatoria de una población (µ ; σ) ha dado los diez valores siguientes 6.9 ; 5.7 ; 8.4 ; 9.3 ; 7. ; 8.5 ; 7.4 ; 9. ; 6.5 ; 7.6. Constrúyase un intervalo de confianza de σ al 95. Solución: Estamos ante una población (µ ; σ) de la que desconocemos ambos parámetros. Para estimar por intervalos de confianza σ usaremos la cantidad pivotal S σ que sabemos sigue una distribución χ con grados de libertad. Así, de la muestra dada, tan sólo usaremos la cuasi varianza muestral: S = (X i X). Los siguientes cálculos dan con ella: x = 76.6 0 = 7.66 varianza muestral: v = 0 (6.9 +5.7 +8.4 +9.3 +7. +8.5 +7.4 +9. +6.5 +7.6 ) 7.66 = 598.8 58.6756 = 59.88 58.6756 =.064 0 s = v 0 9 =.064.34. 9 Para construir el intervalo pedido ( )s ( )s χ ; α/ χ ; α/ hemos de calcular χ ; α/ y χ ; α/, con = 9, α/ = ( 0.95)/ = 0.05. Estos valores son, respectivamente: χ 9 ; 0.05 = 9.03 ; χ 9 ; 0.05 = χ 9 ; 0.975 =.7. Sustituyendo en la expresión del intervalo de confianza para estimar σ al nivel pedido, se obtiene: 9.34 9.34 (0.634 4.467) 9.03.7 como intervalo de confianza para estimar σ al nivel del 95 %.

90 CAPÍTULO 5. ITERVALOS DE COFIAZA Ejemplo 39 Se ha ofrecido a un grupo de estudiantes elegir entre dar o no una hora complementaria de clase semanal. El examen final fue el mismo para todos los estudiantes. Del curso normal (sin clase extra), 5 alumnos obtuvieron una puntuación media de 76 con desviación típica 6, y 8 del curso con hora complementaria una puntuación media de 84 con desviación típica 5. Obténgase un intervalo de confianza al 90 de la diferencia de puntuaciones medias, suponiendo que las poblaciones son normales de varianzas iguales. Solución: En las condiciones dadas es aplicable el intervalo X Ȳ t m+n ; α/ S p m + n X Ȳ + t m+n ; α/ S p m + n con y m = 5 ; x = 76 ; s X = 6 5 4 = 540 4 n = 8 ; ȳ = 84 ; s Y = 5 8 7 = 700 7 s p = (m )s X + (n )s Y m + n 540 700 4 + 7 4 7 = 5 + 8 = 40 4 Sustituyendo α = 0.9 = 0., obtenemos, de la tabla para una distribución t de Student con 5 + 8 = 4 grados de libertad : t 4 ; α/ = t 4 ; 0.05.684 En definitiva, el intervalo de confianza para σ al 90 %, dadas las dos muestras, es: 40 8 + 5 40 8 + 5 76 84.684 76 84 +.684 4 8 5 4 8 5 40 43 40 43 = 6.684 6 +.684 4 8 5 4 8 5 = 6 43 6 43 6.684 6 +.684 ( 8.9633 3.0367). 4 4 Ejemplo 40 En un estudio sobre el tiempo de desarrollo de una especie de insectos en dos poblaciones aisladas, A y A, se obtuvieron los siguientes datos: = 3 x = 4 s = 3 = x = 5 s =.. Suponiendo que el tiempo de desarrollo en la población A i sigue una distribución (µ i ; σ i ), para i =, obtener un intervalo de confianza para el cociente de varianzas al nivel 0.80. En la tabla entregada en clase este dato está mal escrito: debería poner.684 en lugar de.648.

3. OTRAS POBLACIOES 9 Solución: Un intervalo de confianza para el cociente σ/σ, al nivel 0.80 = α con α = 0., será: S/S S /S F ; ; 0. F ; ; 0.9 De los datos dados, se obtiene de la correspondiente tabla (α/ = 0.): F ; 0 ; 0. =.84 ; y: F ; 0 ; 0.9 = = F 0 ; ; 0..878 0.457. El intervalo queda: 3 /..84 3 /. (0.84 4.068). /.878 3. Otras poblaciones Cuando la muestra se obtiene de poblaciones con distribución Bernoulli, o de Poisson, usaremos intervalos de confianza asintóticos, para ponernos en la situación anterior. Para ello las cantidades pivotales utilizadas tendrán una distribución límite (cuando ) independiente de parámetros desconocidos. Intervalos de confianza para una distribución de Bernoulli Sea (X... X ) una muestra aleatoria de una población X B( ; p). Entonces: p ( p) X z α/ X p ( p) + z α/ es un intervalo de confianza para p al nivel α), siendo p = X = frecuencia relativa de éxitos. Estamos utilizando la siguiente cantidad pivotal asintótica: X p p(q p)/ (0 ; ) (aproximadamente, para grande). Intervalos de confianza para una distribución de Poisson Sea (X... X ) una muestra aleatoria de una población X Poisson (λ). Entonces: X zα/ λ/ X + z α/ λ/ es un intervalo de confianza para λ al nivel α), siendo λ = X. En este caso, la cantidad pivotal asintótica es: X λ λ/ (0 ; ) (aproximadamente, para grande).

9 CAPÍTULO 5. ITERVALOS DE COFIAZA 4. Mínimo tamaño muestral Un problema muy relacionado con la construcción de intervalos de confianza es el de determinar el mínimo tamaño muestral necesario para obtener una determinada precisión en nuestra estimación. Es decir, cuántos elementos tenemos que observar, al menos, para que el error cometido con la estimación no supere cierta cantidad. Definición 4.. El error de una estimación por intervalos de confianza (al nivel α) es la semi amplitud del intervalo obtenido. Ejemplo 4 Determinar el mínimo tamaño muestral de una población (µ ; σ = 5), para que el error de la estimación por intervalos de confianza para µ al 95, no sea superior a 0.5. Solución: Estimaremos µ mediante un intervalo de confianza de la forma: X z α/ σ X + zα/ σ con lo cual el error cometido será Error = z α/ σ. Siendo α = 0.95 = 0.05, α/ = 0.05y σ = 5, se quiere obtener el mínimo valor de para que: z 0.05 5 =.96 5 0.5 de donde: 5.96 = 9.6 = 384.6. 0.5 Es decir, necesitaremos observar 385 elementos para conseguir la precisión deseada (error 0.5) para esa estimación. Para otros intervalos, un cálculo similar nos llevaría a determinar, en cada caso, el mínimo tamaño muestral. Téngase en cuenta que este mínimo tamaño muestral ha de tomarse como un valor orientativo. Así, si obtenemos, para determinada precisión, un mínimo tamaño muestral de 96, entenderemos que debemos observar alrededor de 00 elementos. Esto es esencial, sobre todo en los casos en que el mínimo tamaño muestral depende de la muestra concreta obtenida. 5. Intervalos de confianza más frecuentes Recogemos por último, los intervalos de confianza antes obtenidos, y algún otro, en una lista esquemática. Se utiliza la siguiente notación (X... X n ) muestra aleatoria (m.a.) de X. x = n n x i s = n n (x i x) I = (a ± ) = (a a + )

5. ITERVALOS DE COFIAZA MÁS FRECUETES 93. X (µ σ) Intervalo de confianza α para µ: σ I = x ± z α/ n s I = x ± t n ;α/ n σ conocida σ desconocida Intervalo de confianza α para σ : I = (n )s χ n ;α/ (n )s χ n ; α/. X B( p) (muestras grandes). Intervalo de confianza α para p: I = 3. X P (λ) (muestras grandes). Intervalo de confianza α para λ: I = x ± z α/ x( x) n x ± z α/ x n 4. Dos poblaciones ormales independientes X (µ σ ), Y (µ σ ) independientes (X... X n ) m.a. de X; se calcula x y s. (Y... Y n ) m.a. de Y ; se calcula ȳ y s. s p = (n ) s + (n ) s n + n Intervalo de confianza α para µ µ : I = x ȳ ± z α/ σ n + σ n I = x ȳ ± t n+n ;α/ s p + n n σ, σ conocidas σ σ desconocidas, σ = σ I = x ȳ ± t f;α/ s n + s n σ σ desconocidas, σ = σ donde f = entero más próximo a (s /n + s /n ) s /n ) n + s /n ) + n + Intervalo de confianza α para σ/σ : I = s /s F n ;n ;α/ (s /s ) F n ;n ;α/

94 CAPÍTULO 5. ITERVALOS DE COFIAZA 5. Comparación de proporciones (muestras grandes e independientes) X B( p ), Y B( p ), independientes. (X... X n ) m.a. de X; se calcula x y s. (Y... Y n ) m.a. de Y ; se calcula ȳ y s. x ( x) ȳ ( ȳ) Intervalo de confianza α para p p : I = x ȳ ± z α/ + n n 6. Datos emparejados (X Y ) ormal bivariante (µ µ σ σ ρ). (X Y )... (X n Y n ) m.a. de (X Y ). D = X Y µ = µ µ σ = σ + σ ρ σ σ (D... D n ) m.a. de D, donde D i = X i Y i. Intervalos de confianza α para µ ó σ: aplicar Apartado a la variable aleatoria D

5. ITERVALOS DE COFIAZA MÁS FRECUETES 95 Problemas. En una población se desea conocer la probabilidad de que un individuo sea alérgico al polen de las acacias. En 00 individuos tomados al azar se observaron 0 alérgicos. Hallar el intervalo de confianza al 95 % para la probabilidad pedida. Cuántos individuos se deberían observar para que, con el mismo nivel de confianza, el error máximo en la estimación de la proporción de alérgicos sea del 0.0?. Se supone que el número de erratas por página en un libro sigue una distribución de Poisson. Elegidas al azar 95 páginas, se obtuvieron los siguientes resultados: úmero de erratas 0 3 4 5 úmero de páginas 40 30 5 7 Hallar el intervalo de confianza al 90 % para el número medio de erratas por página en todo el libro. 3. Se mide el tiempo de duración (en segundos) de un proceso químico realizado 0 veces en condiciones similares, obteniéndose los siguientes resultados: 8 5 3 5 8 6 3 9 6 6 3 8 0 6 4 7 3 5. Suponiendo que la duración sigue una distribución ormal, hallar los intervalos de confianza al 90 % para ambos parámetros. 4. La vida activa (en días) de cierto fármaco sigue una distribución (00 ; 40). Se desea enviar un lote de este fármaco de manera que la vida media del lote no sea inferior a 80 días, con probabilidad 0.95. Hallar el tamaño del lote. 5. Una noticia en el periódico dice que, de 000 personas encuestadas sobre una cuestión, 556 se muestran a favor y 444 en contra, y concluye afirmando que el 55.6 % de la población se muestra a favor, con un margen de error de ±3 %. Cuál es el nivel de confianza de esta afirmación? 6. Se quiere estudiar la proporción p de declaraciones de la renta con algún defecto. En una muestra preliminar pequeña (muestra piloto) de tamaño 50 se han observado declaraciones defectuosas. Cuál es el tamaño muestral necesario para estimar p cometiendo un error máximo de 0.0 con una probabilidad 0.99? 7. En una gran zona ganadera se desea estimar la proporción de ovejas que sufren cierta enfermedad degenerativa. Calcular el tamaño muestral necesario para estimar esta proporción con un error menor que 0.03 a un nivel de confianza del 0.95, sabiendo que, en una pequeña muestra preliminar, se seleccionaron 30 ovejas, de las cuales resultaron padecer la enfermedad. 8. En un estudio sobre el tiempo de desarrollo de una especie de insectos en dos poblaciones aisladas, A y A, se obtuvieron los siguientes datos: = 3 x = 4 s = 3 = x = 5 s =.. Suponiendo que el tiempo de desarrollo en la población A i sigue una distribución (µ i ; σ i ), para i =, se pide: a) Hallar un intervalo de confianza para el cociente de varianzas al nivel 0.80. b) Obtener un intervalo de confianza para µ µ, con nivel de confianza 0.95. c) Cuántos individuos habría que observar para estimar µ con un error máximo de ±0. y un nivel de confianza de 0.95?

96 CAPÍTULO 5. ITERVALOS DE COFIAZA 9. Para construir un intervalo de confianza de la media poblacional de una (µ ; σ) con σ conocida, se ha utilizado una muestra de tamaño n y se ha obtenido el intervalo del 95 %. Cómo ha de ser modificado el tamaño de la muestra para obtener el mismo intervalo con una confianza del 99 %? 0. Una fábrica elabora dos artículos A y B, cuya demanda aleatoria sigue una distribución normal de medias µ A y µ B desconocidas, y desviaciones típicas σ A = 00 y σ B = 50. Observados 00 puntos de venta, la demanda media de dichos artículos ha resultado de 00 y 50 unidades, respectivamente. Constrúyase un intervalo de confianza al 95 % para la diferencia de medias.. En una muestra aleatoria de 500 familias propietarias de televisor en una gran ciudad, se comprobó que 80 se habían suscrito a cierto canal de televisión. Obténgase un intervalo de confianza del 95 % de la proporción real de familias con televisor suscritas a dicho canal en esa ciudad.. Una máquina produce engranajes cuyo diámetro, debido a imperfecciones inherentes al funcionamiento de la máquina, es una variable aleatoria con distribución (µ ; σ = 0.03), de forma que µ puede ser fijada a voluntad mediante un reglaje de la máquina. Para que un engranaje sea utilizable, su diámetro debe estar comprendido entre 5.50 y 5.60 mm. Calcúlese: a) el valor de µ que hace máxima la proporción de engranajes utilizables y dicha proporción máxima. b) el tamaño n de la muestra de engranajes necesario para poder construir, a partir de la media muestral x, un intervalo de confianza de µ al 95 % de amplitud menor que 0.0 mm. 3. De una población normal de media µ desconocida se selecciona una muestra de tamaño n = 0, resultando: 40, 45, 39, 46, 58, 5, 50, 45, 57, 49. Constrúyase un intervalo de confianza al 95 % para el parámetro µ, suponiendo que: a) la varianza poblacional es σ = 49; b) la varianza poblacional es desconocida. 4. Sabiendo que X sigue una distribución (µ ; σ = 4), calcúlese el tamaño muestral mínimo para que, con una confianza del 99 %, el intervalo ( x.5 x +.5) contenga al parámetro µ. 5. El diámetro (en centímetros) de diez piezas metálicas de forma esférica, seleccionadas al azar de la producción de una máquina, resultó.0,.98,.04,.99,.05,.00,.0,.00,.98,.03. a) Suponiendo que el diámetro sigue una distribución normal, constrúyase un intervalo de confianza al 95 % del diámetro medio de las piezas producidas por esta máquina. b) Cuál deberá ser el tamaño muestral mínimo si, a este nivel de confianza, se pretende dar un intervalo de estimación cuya amplitud no supere los 0.0 cm? 6. Con objeto de decidir si un nuevo proceso de fabricación da mejores resultados que el antiguo, en cuanto a la proporción de elementos defectuosos, se selecciona una muestra de 000 elementos del nuevo proceso, y otra de 000 del antiguo, resultando 40 y 40 elementos defectuosos, respectivamente. a) Obténgase un intervalo de confianza al 95 % para la diferencia de proporciones de elementos defectuosos de ambos procesos. b) Se puede afirmar que el número de elementos defectuosos es significativamente menor en el nuevo proceso?

5. ITERVALOS DE COFIAZA MÁS FRECUETES 97 7. Se desea conocer la probabilidad de que una pieza falle en los cinco primeros años de funcionamiento. En 00 piezas tomadas al azar se observaron 0 fallos. Halla el intervalo de confianza de nivel 0.95 para la probabilidad pedida. Cuántas piezas se deberían observar para que, con el mismo nivel de confianza, el margen de error en la estimación de la proporción de fallos sea de ±0.0? 8. En una población, la altura de los individuos varones sigue una distribución (µ; σ = 7.5). Halla el tamaño de la muestra para estimar µ con un margen de error inferior a ± cm. para un nivel de confianza 0.90. 9. En una explotación minera, las rocas excavadas se someten a un análisis químico para determinar su contenido porcentual de cadmio. Se puede suponer que este contenido es una variable con distribución normal de media µ y varianza σ. Después de analizar 5 rocas se obtiene un contenido porcentual medio de 9.77 con una cuasidesviación típica de 3.64. La explotación comercial de este mineral es económicamente rentable si el contenido medio en la mina es superior al 8 %. a) Construye un intervalo de confianza de nivel 95 % para el contenido porcentual medio de cadmio en la mina. b) Otro indicador de la calidad de la mina es la uniformidad de su contenido mineral medida a través de la varianza σ, que debe ser menor al 3 %. Construye un intervalo de confianza de nivel 95 % para σ. 0. Como parte de un estudio para la reducción de los gases de efecto invernadero que emiten los coches, se estudian los efectos de un determinado aditivo que reduce las emisiones. Sea X el número de kilómetros recorridos por un coche con un litro de gasolina sin el aditivo. Sea Y el número de kilómetros recorridos con un litro de gasolina con el aditivo. Se observan los kilómetros recorridos por litro de gasolina en ocho coches, cuatro de ellos sin aditivo. Los datos que se obtienen son: 4 x i = 5.4 4 y i = 3. 4 x i = 73.53 4 yi = 6. a) Suponiendo que el aditivo puede cambiar la media pero no la varianza, y especificando las hipótesis necesarias, calcula un intervalo de confianza al 95 % para la diferencia de medias. b) A la vista del intervalo obtenido en a), hay alguna indicación de que el aditivo tiene algún efecto en el número de kilómetros recorridos por litro de gasolina?. Se admite que el número de microorganismos en una muestra de mm cúbico de agua de un río sigue una distribución de Poisson de parámetro λ. En 40 muestras se han detectado, en total, 833 microorganismos. Calcula un estimador puntual y un intervalo de confianza al 90 % para λ.