Ingrals Indfinidas@JEMP INTEGRALES INDEFINIDAS MÉTODOS DE INTEGRACIÓN. Ingración inmdiaa.- Tnindo n cuna qu l procso d ingración s l invrso d la drivación, podmos scribir fácilmn las ingrals indfinidas d las funcions más lmnals sin más qu lr la abla d drivadas n snido conrario, d drcha a izquirda. Así podmos obnr los siguins ipos d ingrals lmnals: a) Poncial b) Logarímica uu n n+ d= u +C (n -) n+ Si n = - noncs s convir n una ingral LOGARÍTMICA: Ejmplos: 6 5 d = +C 6 - + d=ln u +C u - d = +C = +C = +C - + sn a cosa d = a cosa sn ad = a sn a = +C a a sn a +C = - - + - ( - ) d = ( -)( - ) d = +C = - - + = - +C d = d= ln +C sn g d = d = -ln cos +C ( o si s prfir cos = ln +C = ln sc +C cos --
Ingrals Indfinidas@JEMP c) Eponncial u u u d = +C Ejmplos: + + + d = d = +C d = d = +C sn sn cos d = +C d) Trigonoméricas snu d = - cosu+c cosu d = sn u+c d = - cogu +C sn u d = gu +C cos u Ejmplos: cos d = cos d = sn +C 6 sn d = - cos +C sn d = - cos +C cos( ln ) d = sn(ln)+c Aquí pud sr inrsan rcordar las fórmulas rigonoméricas d cursos anriors: cos sc u + g u u = = Así la úlima ingral omará las siguins formas: u d = u d = u (+g u) d sc cos u sc d = sc d = g +C cosc d = cosc d = - cog +C g d = (+g -) d = (+g ) d - d = g - +C ) Cicloméricas -u d = arcsn u+c d = arcg u+c +u --
Ingrals Indfinidas@JEMP Ejmplos: 6 d = 6 d = 6 arcg +C + + d = d = arcsn +C - -( ) d = d = arcsn - -( ) cos d = arcg(sn)+c + sn +C. Cambio d variabl o susiución Qué hacr cuando la ingral propusa no parc sr una ingral inmdiaa?. Eisn varias solucions. Una d llas s raar d cambiar la variabl "" por ora "" d manra qu la ingral rsulan ras l cambio sa más sncilla qu la inicial (inmdiaa si s posibl). S hac l cambio =g(), y así d= g ()d. En l siguin jmplo, db viars l cambio d variabl por sr rivial (hmos rsulo ya ingrals d s ipo d forma inmdiaa), pro nos prmi vr odo lo dicho anriormn: d sn sn cos d = = +C = +C 6 d ( = sn ; d = cos d = cos d ) En l siguin, sin mbargo, s méodo s l más adcuado: d = - (+ ( = - d = ) = arcg d = arcg +C = + -+C = + y así d = d ). Ingración por pars S corrspond con la rgla d drivación d un produco. u dv = u v - v du Ejmplos: ln d = ln - d = ln - +C = ( ln -)+C u = ln du = d dv = d v = --
arcg d = arcg - d = arcg - d = + + arcg - ln (+ )+C d ( u = arcg du = ; dv = d v = ) + = Ingrals Indfinidas@JEMP LA APLICACIÓN DE ESTE MÉTODO ES ACONSEJABLE CUANDO EL FACTOR QUE SE DERIVA (u) SE REDUCE O SIMPLIFICA, Y EL FACTOR QUE SE INTEGRA (dv) NO SE COMPLICA CON ESTA INTEGRACIÓN. Eisn varias rglas mnmoécnicas. Una d llas s "Sólo Un Día Vi (IGUAL) A Un Valin (mnos ingral) Soldadio Vsida D Uniform". Eligindo adcuadamn los valors d u y dv, pud simplificars mucho la rsolución d la ingral. Para lgir la función u s pud usar l código A L P E S Arcosno, arcocosno..., Logarímicas, Polinómicas, Eponncials, Sno, cosno, angn... (Elgimos simpr "u" como la función siuada más a la izquirda d la palabra ALPES). Los firms candidaos a s méodo con oda sguridad srán por ano: n n n d, sn d, cos d,... En algunas ocasions hay qu volvr a aplicar la ingración por pars a la ingral rsulan: cos d = sn - sn d = u = du = d u = du = d dv = cos d v = sn dv = sn d v = - cos La siguin ingral s "basan curiosa": - sn +C = sn + cos + (- cos ) d = sn + cos = sn - [(-cos )- (-cos ) d] = sn d = - sn cos+ cos d = - sn cos + (- sn ( u = sn _ du = cos d ; v = sn d _ v = - cos d ) = - sn cos + d - sn d.por ano : sn d + sn d = - sn cos + +C d dond : - sn cos + sn d = +C D la misma manra: cos d = (+ sn cos )+C )d = --
Ejrcicios Solucions Ingrals Indfinidas@JEMP. d - + arcg + C ( + ) ( +). - d - + arcsn + C. d - + C 9 -. d - + C (+) 5. d ( - +6-6)+ C n - 6. d - n n- n- - ( +n +n(n -) +...+n! )+ C 9 7. 6 d + C 5. ( - 5 + ) d 6 5 - + + C 5 9. (+ - ) d +5ln + + C 0. d + C d. + C 5. ( +a) d 5 +a+ C -. d - + C. 5(+g ) d 5 g + C π 5. d + π arcg + C 6. g d g - + C - sn 7. d sn cos - cog + C. sn d - cos + C 9. cog d ln sn +C sn 0. sn cos d + C sn. d +C = sc + C cos cos cos. d ln sn + +C sn +. g d - ln cos +C -5-
sn +g. d - ln cos + sc +C cos 5. ln d ln - +C 9 6. ln d ln - ln ++ C Ingrals Indfinidas@JEMP 7. ln d ln + C ln( ln ). d ln [ ln( ln )-] +C 9. arcg d arcg - ln (+ )+ C 0. arcsn d arcsn - arcsn + - + C. arcg d + arcg - + C. sn d sn - cos d. sn - cog + ln sn +C ( u = ) arcsn. d + + arcsn + - +C ( u = arcsn ) 5. arcg d arcg - d y ahora con = (+ ) s obin la solución ( +)arcg - + C arcsn - - arcsn 6. d ln ( )- d 7. Por cambio d variabl, =/ ; d=-/ d y así: - - d d = - = - - d = - = -arcsn +C - d. Como una función a+ lvada a -/ o mdian cambio d variabl: a+ +C ( a+ = ) -6-
-- 0. d ( + = ) (+ ) 6(+ ) -. d - + ln - + +C d. ln Cuál s la drivada d ln? ln ln +C. d ln + +C +. d + C - 5. ( - ) d - + + C d 6. ( ln +) ln + ln +C d - 7. - ln ( +)+ C +. d - + C ln ( ) 9. d ( ln ) + C. Ingración d funcions racionals.- Ingrals Indfinidas@JEMP Son las dl ipo P() Q() d, dond P y Q son polinomios. Muchas d llas ya las hmos viso n l puno (Ingración inmdiaa). Por jmplo: Poncials: - - d= ( - )( - - ) d= - +C ( - - ) ( - - ) + Logarímicas: d= ln + - 9 +C + - 9 Arco angn: d= d= d= arcg +C + (+( ) ) +( ) Qué hacr n los dmás casos? -7- Nosoros somos srs racionals d los qu oman las racions n los bars. Sinisro Toal
Méodo d dscomposición n fraccions simpls.- Ingrals Indfinidas@JEMP Si l grado d P() fura mayor o igual qu l d Q(), la división sría posibl. Por jmplo + + n: d - + + - - + + Y nindo n cuna qu DIVIDENDO= DIVISOR COCIENTE + RESTO ++= ( - ) + +. Así, dividindo odo nr l divisor: + + ( -) + = +. Ingrando: - - - + + + d= d + d, dond la primra ingral s poncial, pro y la - - sgunda? P() P()Q() R() En gnral P()=Q() P ()+R(); y así: = +, ingrando: Q() Q() Q() P() R() d= P() d + d, dond l primr sumando s una ingral inmdiaa. Q() Q() R() En cualquir caso quda por ingrar d. Para llo s dscompon n facors l Q() dnominador y posriormn la función racional n fraccions simpls. Esa dscomposición dpnd dl ipo d raícs dl dnominador. Vamos los disinos casos. a) Q() in raícs rals simpls Es s nusro caso: ( -)= (+) (-) (*) + A B La dscomposición srá: = + (En gnral una fracción por cada raíz). El - + - problma qudará rsulo cuando hayamos drminado los valors d A y B. Si n la prsión anrior muliplicamos por - obnmos += A(-) + B(+). Sñalaré dos méodos para rsolvr: I) En la prsión += A(-) + B(+), podmos idnificar los coficins + = A -A +B -B; + = (A+B) -A+ B Para qu dos polinomios san iguals dbn srlo érmino a érmino: Términos d primr grado iguals: Términos indpndins iguals: Y rsolvindo s sisma obnmos: = A + B = -A+ B A=/ y B=5/. II) Dando los valors apropiados a la "" (los mjors son las raícs dl dnominador), podmos avriguar los d A y B. += A(-) + B(+). Para qu dos polinomios san iguals dbn nr los mismos valors numéricos. --
Si =: + = A(-) + B(+) ; 5=B ; B=5/ Si =-: - += A(--)+ B(-+); -=-A; A=/ Ingrals Indfinidas@JEMP Con cualquira d los dos méodos obndrmos, siguindo la prsión (*) : 5 + d + d= 5 d= ln + + ln - +C, so s - + - ++ + d = d + d= + ln + + 5 ln - +C = - - = + ln (+ ) (- ) 5 +C b) Q() in raícs rals múlipls - Es s l caso d d. En la dscomposición aparcrán las sucsivas ( - ) (+) poncias d la raíz múlipl: - A B C D = + + + ( - ) (+) - ( - ) ( - ) + El rso dl procso s análogo al caso anrior. ( - ) = A( - ) ( - ) +B( - )( + ) +C( + ) +D( - ) Dando valors : Si = : - = C, d dond C=- Si =- : - = D(-) ; D=/ Ncsiamos oros dos valors. Por jmplo 0 y : Si =0 : -= A - B +(-/)- / Si = : 0= A+B - / + /... A=-/ y B=/ - - - d = d+ d+ d+ d = ( - ) (+) - ( - ) ( - ) (+) - - = - ln - + ( - ) d - ( - ) d+ ln + +C = = - ln - - + + ( -) ( - ) c) Q() in raícs compljas simpls + ln + +C = ln (+ ) ( - ) - - ( - ) Ahora la dscomposición incluy un facor d nauralza disina a los anriors. Por jmplo: - 9 d ; -=(-)( ++), s úlimo facor no in raícs rals. La - dscomposición n fraccions srá: (**) - 9 A M+ N = +, si a +b+c in raícs compljas, n la dscomposición - - + + M+ N scribirmos. El rsulado d sa ingral srá simpr la combinación d un a +b+c arcoangn y una logarímica. En nusro jrcicio: D (**) - 9= A( ++)+(M+N)(-)...Rsolvindo por cualquira d los dos méodos -9- +C
ans mncionados: A= -, M= y N= 7. Ingrals Indfinidas@JEMP - 9 - +7 d = d + d, )cómo rsolvr sa sgunda ingral? S procura - - + + qu l numrador s parzca lo más posibl a la drivada dl dnominador para podr dscomponrla n la suma d una logarímica y un arco-angn: +7 ++6 + 6 d= d = d+ d = + + + + + + + + (+) = ln ( + +)+ arcg( ) - ln - +C 6 Cómo s ingra d? Sabmos qu s un arcoangn. Vamos a uilizar la + + fórmula dl binomio d Nwon para complar los cuadrados. Rcurda qu a + ab + b = (a + b) s un rinomio cuadrado prfco. El objivo s podr prsnar ++ como a +u complando cuadrados, y así podr u aplicar la fórmula dl arcoangn ( d = arcg + C ). a +u a a Pudo muliplicar por, n s caso, para viar las fraccions. ++= (+) -+=(+) +. En gnral a + ab = (a +b ) - b 6 + d= d= d = arcg +C, qu una + + ++ (+) + vz racionalizado nos da la solución propusa. - 5+ - 5+ A B+C d ; = + ( - )( +) ( - )( +) - + El grado dl dnominador s mayor qu l dl numrador. El facor + s irrducibl, d ahí la dscomposición fcuada. -5+=A( +)+(B+C)(-) Para =, 0=0A. D dond A=. =A+B =A-C... B=; C=-. Por ano: - 5+ d= ( - )( +) - - d + d= + - = ln - + ln ( +)- arcg +C = ln[( - ) d - + d d d + - + + + ] = - arcg +C En primr lugar s dscompon l dnominador (hallando las raícs d la cuación d sgundo grado): -0-
Ingrals Indfinidas@JEMP A B -+=(-)(-); = + ; = A( -)+ B( - ) - + - - Solucions: A= y B=- d d d = - = ln - -ln - +C = ln - + - - - +C - Ejrcicios Solucions + 50. d - ( ++)+ arcg (+)+ C ln ++ -7+ 5. d 5 - - + ln + +C + + - + ( - ) 5. d + C + + ln + - + 5+ 5. d ln - - ln + +C + - 5 0 + 5. d - ln - +5 ln - +C - +5 - - d 55. + ln - - ln( + +)- arcg + C - 6 Limia l qu quir, driva cualquira, ingra l qu pud --