Si Hallaremos el punto de corte con el eje OY en cualquier función sustituyendo el 0 en la función: f (x) = 1 Punto de corte con el eje O Y

Documentos relacionados
el blog de mate de aida CS II: Representación de funciones y optimización.

Ecuación de la recta tangente

Eje OY (Vertical) => Se hace la x = 0, y se despeja la y. Corte (0,y)

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9

Ejercicios de representación de funciones

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

REPRESENTACION GRÁFICA DE FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x)

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a)

Ejercicios de representación de funciones

= y. [Estudio y representación de funciones] Matemáticas 1º y 2º BACHILLERATO. Pasos a seguir para estudiar una función:

TEMA 3: APLICACIONES DE LAS DERIVADAS

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos

Ejercicios resueltos de cálculo Febrero de 2016

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA

SOLUCIÓN. BLOQUE DE FUNCIONES.

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

Representaciones gráficas

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

Matemáticas 1º Bachillerato ASÍNTOTAS Colegio La Presentación

TEMA 0: REPASO DE FUNCIONES

COL LECCIÓ DE PROBLEMES RESOLTS

Aplicaciones de la derivada Ecuación de la recta tangente

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE

Derivada de una función en un punto. Función derivada. Diferencial de una función en un punto. dy = f (x) dx. Derivada de la función inversa

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN

UNIDAD 8.- Funciones racionales (tema 8 del libro)

Estudio de funciones mediante límites y derivadas

TEMA 8. FUNCIONES (I). GENERALIDADES

1. FUNCIÓN REAL DE VARIABLE REAL

ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN

Colegio Universitario Boston

Examen funciones 4º ESO 12/04/13

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10

Si se pueden obtener las imágenes de x por simple sustitución.

Unidad 8: Derivadas. Técnicas de derivación. Aplicación al estudio y representación de funciones. Primitiva de una función (integración).

Qué estudiaremos? Tema 11: Funciones cuadráticas y de proporcionalidad inversa. Tema 12: La función exponencial Grupo 4. Opción A. Funciones lineales

Límite de una función

= +1. A la hora de representar funciones tenemos que tener en cuenta los siguientes puntos.

Tema 7: Aplicaciones de la derivada, Representación de Funciones

DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x):

Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.

REPRESENTACIÓN DE FUNCIONES

Unidad 6 Estudio gráfico de funciones

CARACTERÍSTICAS DE UNA FUNCIÓN

CONCEPTOS QUE DEBES DOMINAR

1 Indica cuáles de las siguientes parábolas están abiertas hacia arriba y cuáles hacia abajo:

REPRESENTACIÓN DE FUNCIONES

Tema 9: Funciones II. Funciones Elementales.

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )

Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 20 - Todos resueltos

APLICACIONES DE LA DERIVADA

CÁLCULO DIFERENCIAL E INTEGRAL I APLICACIONES DE LA DERIVADA. 1. Derivabilidad y monotonía. creciente para x en cierto intervalo f es < 0

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x

1. Dominio, simetría, puntos de corte y periodicidad

Gráficas de funciones

F es primitiva de f ya que:

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE. ESTUDIO DE LA GRÁFICA DE UNA FUNCIÓN

Ejemplo 1 Dibujar la siguiente parábola, calculando previamente todos sus elementos. 0=2 +2 4

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

10.1 LAS FUNCIONES DESCRIBEN FENÓMENOS REALES

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.

Conocer las posibles asíntotas de una función nos ayudará en su representación gráfica. Vamos a distinguir tres tipos distintos de asíntotas:

Bloque 2. Geometría. 3. La recta. 1. Definición de recta

Introducción a las funciones

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

Derivación. Aproximaciones por polinomios.

2.1 Derivadas Tipo Función Simple Función Compuesta

4.2 Tasas de Variación. Sea la función f: Se llama tasa de variación media de la función f en el intervalo [a, b] al cociente:

Parciales Matemática CBC Parciales Resueltos - Exapuni.

Una función es una relación o correspondencia entre dos magnitudes o variables x e y, de manera que a cada valor

Representación de funciones

«La derivada de una función en un punto representa geométricamente la pendiente de la recta tangente a la función en dicho punto»

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD

EJERCICIOS RESUELTOS TEMA 11 Y 12. FUNCIONES. FUNCIÓN LINEAL Y CUADRÁTICA. Apellidos y Nombre:.Curso: 3º E.S.O. Grupo:.

x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas.

Transcripción:

Tema 4: APLICACIÓN DE LAS DERIVADAS 4.1 Puntos de Corte con el eje de las Y Si Hallaremos el punto de corte con el eje OY en cualquier función sustituyendo el 0 en la función: = 1 Punto de corte con el eje O Y Una función no tendrá punto de corte con el eje OY si no pertenece al dominio de la función. Dom 4.2 Puntos de Corte con el eje de las X Si Polinomios de grado 3 (Cúbica): a) Cuando hay término independiente e incógnitas de distintos grados : Hacemos Ruffini una vez y solucionamos la ecuación de segundo grado resultante. Realizamos Ruffini: 1 2-1 -2 1 1 3 2 1º PC: 1 3 2 0 Solucionamos la ecuación de 2º grado resultante: x = = b) Cuando no hay término independiente: Sacamos x factor común y solucionamos la ecuación de segundo grado resultante. Una solución será, y por lo tanto tendrá como PC el. Sacamos x factor común: 1º PC: Solucionamos la ecuación de 2º grado resultante: c) Cuando no hay incógnitas de distintos grados : Despejamos la x y solucionamos la igualdad. Despejamos la x: PC: Polinomios de grado 2 (Parábola): Solucionamos la ecuación de segundo grado resultante. x = = Polinomios de grado 1 (Recta): Despejamos la x. Polinomios de grado 0 (Recta Horizontal o Asíntota Horizontal): Racional: Despejamos la x. No tiene punto de corte con el eje OX Inversa: No tiene punto de corte con el eje OX

4.3 Puntos de Corte en las funciones a trozos Puntos de corte con el eje de las y Si las funciones a trozos, habrá que tener en cuenta en que rama se encuentra para hallar. Puntos de corte con el eje de las x Si las funciones a trozos, habrá que igualar a 0 cada rama. Para que las x que nos salgan sean punto de corte con el eje OX, deben pertenecer a la rama correspondiente. Ejemplo: Halla los puntos de corte con los ejes de la siguiente función: - Puntos de corte con el eje OY: Si - Puntos de corte con el eje OX: Si 1ª Rama: Punto corte 1ª rama eje OX: 2ª Rama: P.C. 2ªRama Puntos de corte con el eje de las x: y 4.4 Signo El signo es estudiar en qué intervalos toma valores positivos (por encima del eje X) y en qué intervalos toma valores negativos (por debajo del eje X). Cuando la y va a ser positiva y cuando negativa. Para lo cual solucionaremos la inecuación: Pasos: a. Dibujamos una recta real b. Señalaremos los puntos que no pertenezcan al dominio. esos valores de la X la función no existirá. c. Señalaremos los puntos que hacen que la función se anule ). esos valores de la X la función corta al eje OX. d. Estudiamos el signo de la función a cada lado de los puntos marcados. Para que una función pase de positiva a negativa, o viceversa (de estar por debajo del eje OX a estar por encima del eje OX, o viceversa) debe o pasar por el eje (valores que anulan la función) o debe atravesar una asíntota vertical (valores que no pertenecen al dominio). Ejemplo: Halla el signo de la función: Dominio Denominador 0-2 -1-2 + - + -2-1 La función es positiva (por encima del eje x): La función es negativa (por debajo del eje x): La función es nula (corta al eje x) en: La función no existe (puntos que al dominio) en:

4.5 Signo en las funciones a trozos Al igual que en las funciones simples, solucionaremos la inecuación: Pasos: a. Dibujamos una recta real b. Si la función está acotada, acotaremos la recta real c. Señalaremos los cambios de rama d. Señalaremos los puntos que no pertenezcan al dominio. esos valores de la X la función no existirá. e. Señalaremos los puntos que hacen que la función se anule ). esos valores de la X la función corta al eje OX. las funciones a trozos tenemos que igualar a cero cada rama. Si los valores que nos salen pertenecen a la rama correspondiente, los incluiremos en la recta real. f. Estudiamos el signo de la función a cada lado de los puntos marcados. Para que una función pase de positiva a negativa, o viceversa (de estar por debajo del eje OX a estar por encima del eje OX, o viceversa) debe o pasar por el eje (valores que anulan la función) o debe atravesar una asíntota vertical (valores que no pertenecen al dominio). Ejemplo: Halla el signo de la función: Cotas y cambio de rama -10 2-10 -3 2 5 la cota la función es: el cambio de rama la función es: - + - + -10-3 2 5 La función es positiva (por encima del eje x): La función es negativa (por debajo del eje x): La función es nula (corta al eje x) en: y en 4.6 Monotonía de funciones (Crecimiento y decrecimiento). Queremos hallar los intervalos de crecimiento y de decrecimiento de una función. Para ello hallaremos el signo de la primera derivada: El procedimiento será igual que para el signo de la función, pero con la primera derivada. - : los intervalos en que la 1ª derivada sea positiva, mi función será creciente. - los intervalos en que la 1ª derivada sea negativa, mi función será decreciente. - los puntos en que se anule la 1ª derivada, la función ni crecerá ni decrecerá. estos puntos podrán existir extremos relativos de la función (siguiente punto del tema) 4.7 Extremos relativos (Máximos y mínimos relativos) : los puntos en que se anule la 1ª derivada, podrán existir extremos relativos (máx. y mínimos). - Máximo relativo : Existe en a un máximo relativo, si en todo entorno reducido de a, toda f de cualquier valor del entorno reducido, es menor que. Si la función es continua en a, y si justo allí pasa de creciente a decreciente, existirá un máximo relativo en a, y valdrá. Para que un máximo relativo de la función sea máximo absoluto,, para cualquier valor de x. Un máximo absoluto es el mayor valor que puede tomar una función en todo su dominio.

- Mínimo relativo : Existe en b un mínimo relativo, si en todo entorno reducido de b, toda f de cualquier valor del entorno reducido, es mayor que. Si la función es continua en b, y si justo allí pasa de decreciente a creciente, existirá un mínimo relativo en b, y valdrá. Para que un mínimo relativo de la función sea mínimo absoluto,, para cualquier valor de x. Un mínimo absoluto es el menor valor que puede tomar una función en todo su dominio. La 2ª representación corresponde a una función acotada. las cotas de dichas funciones nos podremos encontrar extremos absolutos, sin producirse en dichos puntos cambios en el crecimiento de la función. Para saber si en las cotas hay extremos absolutos, nos bastará con hallar el valor de la función en dichas cotas, y compararlas con los extremos relativos de la función. Ejemplo: Determina los intervalos de crecimiento y los extremos de la función: f (x) es + - + 0 1 es Creciente de: es Decreciente de: habrá un máximo habrá un mínimo 4.8 Monotonía en las funciones a trozos Al igual que en las funciones simples para la Monotonía estudiaremos el signo de la 1ª derivada, resolviendo la inecuación: Al igual que para estudiar el signo de la función, en la recta real tendremos que tener en cuenta: - Si la función está acotada, acotaremos la recta real - Señalaremos los cambios de rama - las funciones a trozos tenemos que igualar a cero cada rama. Si los valores que nos salen pertenecen a la rama correspondiente, los incluiremos en la recta real. 4.9 Extremos en las funciones a trozos - Si la función está acotada, tendremos que ver el valor de la función en la cota, ya que en ella podremos encontrarnos un extremo absoluto de la función. Habrá que comparar dicho valor con los extremos relativos de la función. - los cambios de rama tendremos que poner atención. Para que exista un extremo relativo de la función, no basta con que en el cambio de rama haya un cambio en el signo de la monotonía, además debe ser continua en dicho punto. Ejemplo: Halla la monotonía y los extremos de: 0 1 Cotas y cambio de rama -4 1-4 1 2 + - + -4 1 2 La función es creciente: La función es decreciente:

Hay un mínimo local en Hay un posible máximo local en Si la función es continua en Es continua es máximo Observamos: Será un Mínimo absoluto o global. 4.10 Curvatura de funciones (Concavidad, Convexidad y Puntos de Inflexión) Queremos hallar los intervalos de concavidad y de convexidad de una función. Para ello hallaremos el signo de la segunda derivada: El procedimiento será igual que para el signo de la función, pero con la segunda derivada. - : los intervalos en que la 2ª derivada sea positiva, mi función será convexa. - los intervalos en que la 2ª derivada sea negativa, mi función será cóncava. - los puntos en que se anule la 2ª derivada, la función ni será cóncava ni será convexa. estos puntos podrán existir puntos de inflexión de la función. Para que exista un punto de inflexión la función tiene que pasar en ese punto de cóncava a convexa o de convexa a cóncava, y ser continua en ese punto. Ejemplo: Determina la curvatura y los puntos de inflexión de la función: f (x) es + - + 0 1 es Convexa en: es Cóncava en: habrá un Punto de Inflexión habrá un Punto de Inflexión 0 1 4.11 Problemas de optimización Pasos para resolver este tipo de problemas: 1. Se nombran la función y la variable independiente, anotando las unidades de medida. 2. Se establece el intervalo en el que se moverá la variable elegida. 3. Se busca el máximo y el mínimo en el intervalo : - Se halla el signo de - Se anotan las posibles x donde la derivada cambia de signo: x 1, x 2, x 3,. - Calcular y - Calcular - El mayor valor de la función, será el máximo y el menor el mínimo.