E.T.S.I. Agrónomos Grado en Biotecnología Matemáticas II 1 a prueba de la evaluación continua: soluciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "E.T.S.I. Agrónomos Grado en Biotecnología Matemáticas II 1 a prueba de la evaluación continua: soluciones"

Transcripción

1 E.T.S.I. Agrónomos Grado en Biotecnología Matemáticas II a prueba de la evaluación continua: soluciones 4 de marzo de 04 Es importante que escribáis con claridad y expreséis con precisión los argumentos matemáticos que os permiten obtener los resultados a los que lleguéis. Es imprescindible que utilicéis las herramientas y las nociones matemáticas que se han introducido en este curso para obtener las soluciones de los problemas de este examen. Todos los ejercicios tienen el mismo valor. Tiempo: horas. La tabla refleja las observaciones de la densidad del agua de mar ρ como función de la salinidad S y de la temperatura T. a) Estimad el valor de la densidad cuando la salinidad es de 33,5 unidades y la temperatura de 7 unidades. b) Estimad el valor medio de la densidad del agua de mar para el rango de salinidades y temperaturas de las se tienen observaciones. Consideran el número de subintervalos en cada eje que permita utilizar el mayor número de datos. a) Para estimar el valor de la densidad cuando la salinidad es de 33,5 unidades y la temperatura de 7 unidades vamos a utilizar la aproximación lineal que proporcionan las derivadas parciales de las funciones diferenciables. Dado que no tenemos la expresión analítica de la función ρ(t, S) deberemos aproximar los valores de las derivadas parciales ρ S (33,5; 7) y ρ T (33,5; 7) para poder utilizar que ρ(33,5; 7) L(33,5; 7) = ρ(33; 6) + ρ S (33; 6)(0,5) + ρ T (33; 6)()

2 Aproximamos los valores de las derivadas parciales mediante el promedio de las derivada parcial con incremento de la variable independiente positivo y con incremento negativo: ρ S (33; 6) ( ) ρ(34; 6) ρ(33; 6) ρ(3; 6) ρ(33; 6) + = Por lo tanto = (6,77 6 5, + 6) = 0,775 ρ T (33; 6) ( ) ρ(33; 8) ρ(33; 6) ρ(33; 4) ρ(33; 6) + = = (5,73 6 6,3 + 6) = 0,5 4 ρ(33,5; 7) L(33,5; 7) = 6 + 0,3875 0,5 = 6,65 b) Para estimar el valor medio de la densidad del agua de mar para el rango de salinidades y temperaturas de las se tienen observaciones y considerar el número de subintervalos en cada eje que permita utilizar el mayor número de datos hemos de utilizar 6 subintervalos para la salinidad y otros 6 para la temperatura. En este caso los valores de la densidad estarán en los vértices de los rectángulos que genera la partición elegida. Si elegimos el valor de la densidad correspondiente al vértice más próximo al origen en cada rectángulo, la suma de Riemann de dicha partición se obtiene sumando todos los valores de la tabla excepto los de la primera fila y los de la última columna y multiplicado por dos, que es el área de cada rectángulo. El valor que se obtiene es 946,0 = 89,0 Entonces un valor aproximado de la densidad media del agua es 89,0/7 = 6,78. Este valor se ha obtenido dividiendo el valor de la suma de Riemann por el área de la región de los valores de salinidad y temperatura.. Para la función f(x, y) = e ax+by cos(x + y) + e ax+by sen(x + y) obtened los valores de a y b tales que en el punto (0, 0) la derivada direccional es máxima en la dirección de la bisectriz del primer cuadrante y tiene el valor 3. Como la dirección de máximo crecimiento debe ser la bisectriz del primer cuadrante el gradiente de f debe tener esa dirección; por lo tanto a y b deben ser tales que f f (0, 0) = (0, 0). x y Además como el valor de la derivada direccional en la dirección de máximo crecimiento es 3, debe verificarse ( ) ( ) f f (0, 0) + (0, 0) = 8. x y Se tiene que f x (x, y) = a exp(ax + by) cos(x + y) exp(ax + by) sin(x + y)+ +a exp(ax + by) sin(x + y) + exp(ax + by) cos(x + y) f y (x, y) = b exp(ax + by) cos(x + y) exp(ax + by) sin(x + y)+ +b exp(ax + by) sin(x + y) + exp(ax + by) cos(x + y)

3 Por lo tanto el valor de las derivadas parciales en (0, 0) es a + para la derivada parcial respecto de x y b + para la otra. La primera condición implica a = b, la segunda a =. 3. Un barco arroja al mar un vertido tóxico de metales pesados (se trata de mercurio fundamentalmente). Un estudio estima que al cabo de tres días la concentración de mercurio en la superficie alrededor del barco se puede aproximar por la función C(x, y) = 4x 4xy + 4y, considerando el barco en el origen de coordenadas. Un sistema de boyas de observación se sitúa a una distancia de 5 millas náuticas del barco formando una circunferencia. Las boyas tienen un dispositivo que dispara una alarma cuando la concentración de metales pesados es superior a 300 ppb (partes por billón). La alarma se disparó. Es buena la conclusión del estudio sobre la concentración de metales pesados que produjo el barco? Explicar por qué. Entre qué valores varía la concentración de mercurio a 5 millas náuticas del barco según la estimación del estudio? Debemos indagar sobre los valores de la concentración en una circunferencia centrada en el barco de radio 5 millas y debemos obtener los valores entre los que varía la concentración sobre dicha circunferencia. Si la función concentración estimada varía en un rango por debajo de 300 ppb, teóricamente no se dispararía la alarma y las conclusiones del estudio serían erróneas. Para evaluar el rango de variación de la concentración estimada debemos obtener los extremos absolutos de la función C en la circunferencia x + y = 5. Esta curva es la curva de nivel correspondiente al valor cero de la función g(x, y) = x + +y 5. Por lo tanto, hemos de obtener los puntos (x, y) que verifican las ecuaciones Este sistema es equivalente al sistema 8x 4y = xλ 4x + y = yλ x + y = 5. C(x, y) = λ g(x, y) g(x, y) = 0. x = y x + y = 5 Dado que x = y, de la segunda ecuación se obtiene x = ±5/. Volviendo a la primera ecuación, que es equivalente a x = ±y, se obtienen los puntos Dado que y (5/, 5/ ), ( 5/, 5/ ), (5/, 5/ ) y ( 5/, 5/ ). C(5/, 5/ ) = C( 5/, 5/ ) = 50 C(5/, 5/ ) = C( 5/, 5/ ) = 50 la concentración estimada varía entre 50 ppb y 50 ppb a una distancia de 5 millas del barco. Es decir, en una circunferencia de radio 5 millas y centrada en el barco, nunca se supera la concentración de 300 ppb. Una consecuencia del estudio es que la alarma de la boya no debe dispararse cuando su distancia al barco es de 5 millas. Teniendo en cuenta los datos de que se dispone podemos afirmar que la estimación de la concentración en el citado informe es errónea. }. 3

4 4. La temperatura de los puntos de una plancha es inversamente proporcional a la distancia a un cierto punto P de la misma. Obtened la temperatura media de la plancha en un disco de 5 unidades de radio. El punto P está en la circunferencia que delimita dicho disco y la temperatura en el punto de la circunferencia diametralmente opuesto a P es 00 C. Podemos colocar los ejes coordenados de forma que que el disco D está definido por D = {(x, y) x + y 0y} Dado que T (x, y) = k x + y se tiene que el punto opuesto a P sobe la circunferencia es (0, 0). Por lo tanto T (0, 0) = k/0 = 00, entonces k = 000. El área del disco es 5 y el promedio se calcula mediante la integral 5 D Utilizando coordenadas polares tenemos que Se obtiene 40 D 000 x + y = 40 D x + y dxdy D = {(θ, r) 0 θ, 0 r 0 sen θ} ( 0 sen θ dxdy =40 x + y 0 0 = 400 [ cos θ] 0 = 800 El promedio es 800/ 54, C. 5. Calcular la integral 3 y xe y dx dy ) dr dθ = sen θ dθ = en el orden que aparece y cambiando el orden de integración. Haced un esquema del recinto de integración. Figura : Recinto de integración 4

5 La figura muestra la región de integración, es decir, Como región tipo I se tiene que R = {(x, y) y 9, y x 3} R = {(x, y) x 3, y x } Calculando la integral como región tipo I se tiene = 3 x xe y dydx = Como región de tipo II se obtiene 3 3 [ e x ex ] 3 = e (e8 9). = [9ey ] 9 y xe y dxdy = [xe y ] x dx = 3 ( ) xe x ex dx = [ x e y] 3 y dy = (9e y ye y ) dy = ye y dy = (9e9 9e) [yey ] 9 + = (9e9 9e 9e 9 + e + e 9 e) = e (e8 9). e y dy = 5

1. La tabla refleja las observaciones de elevación del terreno de puntos de coordenadas

1. La tabla refleja las observaciones de elevación del terreno de puntos de coordenadas E.T.S.I. Agrónomos Grado en Biotecnología Matemáticas II Examen extraordinario: soluciones 3 de junio de 214 Es importante que escriba con claridad y exprese con precisión los argumentos matemáticos que

Más detalles

E.T.S.I. Agrónomos Grado en Biotecnología Matemáticas II Examen final: soluciones. Parte I. 1 de junio de 2015

E.T.S.I. Agrónomos Grado en Biotecnología Matemáticas II Examen final: soluciones. Parte I. 1 de junio de 2015 E.T.S.I. Agrónomos Grado en Biotecnología Matemáticas II Examen final: soluciones 1 de junio de 215 Es importante que escribáis con claridad y expreséis con precisión los argumentos matemáticos que os

Más detalles

E.T.S.I. Agrónomos Grado en Biotecnología Matemáticas II 2 a prueba de la evaluación continua: soluciones

E.T.S.I. Agrónomos Grado en Biotecnología Matemáticas II 2 a prueba de la evaluación continua: soluciones E.T.S.I. Agrónomos Grado en Biotecnología Matemáticas II a prueba de la evaluación continua: soluciones 6 de mayo de 14 Es importante que escribáis con claridad y expreséis con precisión los argumentos

Más detalles

INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican:

INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican: INTEGACION EN VAIAS VAIABLES: Integrales dobles.. Evaluar las siguientes integrales iteradas: (x y + y )dy dx xye x+y dy dx ( x ln y)dy dx ln [((x + )(y + )] dx dy. 3 ; ; ; ln. 5. Sea I = [, ] [, 3]. Calcular

Más detalles

3 Integración en IR n

3 Integración en IR n a t e a POBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CUSO 29 21 3 Integración en I n 3.1 Integral múltiple. Problema 3.1 Calcula f en los siguientes casos: Q i) f(x, y) =

Más detalles

Integración múltiple: integrales dobles

Integración múltiple: integrales dobles Problemas propuestos con solución Integración múltiple: integrales dobles ISABEL MAEO epartamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice. Integrales iteradas 2. Teorema

Más detalles

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02 Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 0/02 x 2 + y 4. (a) Comprueba que el siguiente límite no existe lim (x,y) (0,0) x 2 + y. 2 (b) Busca una trayectoria a través de la

Más detalles

1. INTEGRALES MÚLTIPLES

1. INTEGRALES MÚLTIPLES 1. INTEGALES MÚLTIPLES 1. Calcular las siguientes integrales iteradas: 1. x x 7 y dy dx dx 1. x x y y dx dy 1 1 7. (1 + xy) dx dy 1 1 π/. x sen y dy dx 5. (x + y) dx dy 6/ 1 6. (x + y) 8 dx dy 616 5 1

Más detalles

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera EJECICIOS E CA LCULO II PAA GAOS E INGENIEI A Elaborados por omingo Pestana y Jose Manuel odrı guez, con Arturo de Pablo y Elena omera 3 3. Integracio n en n Integral mu ltiple. f en los siguientes casos:

Más detalles

APLICACIONES DE LA INTEGRAL DEFINIDA

APLICACIONES DE LA INTEGRAL DEFINIDA APLICACIONES DE LA INTEGRAL DEFINIDA Objetivo: El alumno analizará y comprenderá el uso y la aplicación de la integral definida en la resolución de problemas REGIONES PLANAS LIMITADAS POR DOS CURVAS Sean

Más detalles

SEGUNDO PARCIAL (3/6/2015)

SEGUNDO PARCIAL (3/6/2015) NOMBE Y nº de MATÍCULA: SEGUNDO PACIAL (3/6/15) 1.. (.5 ptos.) Calcular la integral doble: y sin(x ) dxdy, siendo el recinto acotado del primer cuadrante limitado por las curvas de ecuaciones respectivas

Más detalles

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 1 Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 215-1 El material relativo al temario puede ser consultado en la amplia bibliografía que allí se menciona o en alguno de los muchísimos

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS Examen de febrero EJECICIO ( h. 3 min.) 13 de junio de 9 1. En E 3 se considera el plano de ecuación x y z = 5. Se pide: a) Ecuaciones de la proyección ortogonal sobre dicho plano.

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

UNIVERSIDAD DE SEVILLA. DEPARTAMENTO DE ECONOMÍA APLICADA I. BOLETÍN DE PROBLEMAS DE MATEMÁTICAS I. GRADO EN ECONOMÍA.

UNIVERSIDAD DE SEVILLA. DEPARTAMENTO DE ECONOMÍA APLICADA I. BOLETÍN DE PROBLEMAS DE MATEMÁTICAS I. GRADO EN ECONOMÍA. UNIVERSIA E SEVILLA. EPARTAMENTO E ECONOMÍA APLICAA I. BOLETÍN E PROBLEMAS E MATEMÁTICAS I. GRAO EN ECONOMÍA. BLOQUE I: CÁLCULO IFERENCIAL. Tema 1: Funciones de una variable Problema 1 Estudiar la continuidad

Más detalles

Integración doble Integrales dobles sobre regiones no rectangulares

Integración doble Integrales dobles sobre regiones no rectangulares Nuestra intención es extender la definición de integral doble, de funciones continuas, sobre regiones más generales que el rectángulo. Para ello definiremos dos tipos de regiones en el plano, que llamaremos

Más detalles

Santiago, julio 6 del Tercera Solemne Cálculo Varias Variables. Nombre:

Santiago, julio 6 del Tercera Solemne Cálculo Varias Variables. Nombre: Nombre: Santiago, julio 6 del 26. Tercera Solemne Cálculo Varias Variables. 1. La temperatura en un punto (x, y) sobre una placa metalica es T (x, y) 4x 2 4xy + y 2. Una hormiga camina sobre la placa alrededor

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Cálculo Integral Agosto 2015

Cálculo Integral Agosto 2015 Cálculo Integral Agosto 5 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) (x 5 8x + 3x 3 ) ) (y 3 6y 6 5 + 8) dy 3) (y 3 + 5)(y + 3) dy 4) (t 3 + 3t + ) (t 3 + 5) dt 5) (3y

Más detalles

A) Hallar el volumen del sólido formado cuando la región del primer cuadrante limitada por Z 4. 1 x 4 1 dx. Z b. p (x) h (x) dx.

A) Hallar el volumen del sólido formado cuando la región del primer cuadrante limitada por Z 4. 1 x 4 1 dx. Z b. p (x) h (x) dx. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA I.T.I. Especialidad en Electricidad. Curso 4-5. Soluciones al Segundo Parcial de Fundamentos Matemáticos de la Ingeniería. PROBLEMA.- A) Hallar el volumen del

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

E.T.S.I. INFORMÁTICOS (UPM) SOLUCIONES EXAMEN FINAL (16/6/2014) 2 n 2 +n. n = (n 2 + 1) (n 2 3n) n n 2 3n = lím. n + 1 n. n 2 n = 3 2

E.T.S.I. INFORMÁTICOS (UPM) SOLUCIONES EXAMEN FINAL (16/6/2014) 2 n 2 +n. n = (n 2 + 1) (n 2 3n) n n 2 3n = lím. n + 1 n. n 2 n = 3 2 MATEMÁTICA APLICADA CÁLCULO E.T.S.I. INFORMÁTICOS UPM o G.I.I. SOLUCIONES EXAMEN FINAL 6/6/04 er EXAMEN PARCIAL. Calcule los siguientes ites, si existen: a n + n 3n. b n n + 3 n +n a El ite presenta una

Más detalles

Funciones de varias variables: continuidad derivadas parciales y optimización

Funciones de varias variables: continuidad derivadas parciales y optimización Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio

Más detalles

Instrucciones Las reglas para este examen son las siguentes.

Instrucciones Las reglas para este examen son las siguentes. Universidad de Puerto Rico Recinto de Río Piedras Departamento de Matemáticas MATE 3151; Examen Departamental II, 9 de abril de 2015 Apellidos: Nombre No. Estudiante: Profesor: Sección Instrucciones Las

Más detalles

Integrales dobles. Integrales dobles

Integrales dobles. Integrales dobles Integrales dobles Integrales iteradas b g2 (x) a g 1 (x) f(x, y) dydx ó d h2 (y) c h 1 (y) f(x, y) dxdy Los límites interiores de integración pueden ser variables respecto a la variable exterior de integración,

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas.

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas. CÁLCULO Práctica 4.2 Cálculo diferencial en varias variables (Curso 2017-2018) 1. Sean f, h: IR 2 IR funciones definidas del siguiente modo: x 3 f(x, y) = x 2, (x, y) (0, 0) + y2 a) Estudiar la continuidad

Más detalles

Tema 4: Integración de funciones de varias variables

Tema 4: Integración de funciones de varias variables Departamento de Matemáticas. Universidad de Jaén. Análisis Matemático II. Curso 29-21. Tema 4: Integración de funciones de varias variables 1. Evaluar las siguientes integrales iteradas e) f ) g) 1 2 1

Más detalles

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y),

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y), Problema. Calcula las derivadas parciales de las siguientes funciones: (a) f(x, y) = x + y cos(xy), (b) f(x, y) = x x + y, (c) f(x, y) = log x + y x y, (d) f(x, y) = arctan x + y x y, (e) f(x, y) = cos(3x)

Más detalles

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES 9.1. Diferenciación 9.1.1. DERIVADAS PARCIALES Derivadas parciales de una función de dos variables Se llaman primeras derivadas parciales de una función f(x, y) respecto de x e y a las funciones: f x (x,

Más detalles

APUNTES DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA GRADOS EN ECONOMÍA Y ADMINISTRACIÓN DE EMPRESAS PRIMER CURSO

APUNTES DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA GRADOS EN ECONOMÍA Y ADMINISTRACIÓN DE EMPRESAS PRIMER CURSO APUNTES E MATEMÁTICAS EXÁMENES RESUELTOS E MATEMÁTICAS I EPARTAMENTO E ECONOMÍA APLICAA I UNIVERSIA E SEVILLA GRAOS EN ECONOMÍA Y AMINISTRACIÓN E EMPRESAS PRIMER CURSO Jesús Muñoz San Miguel http://www.personal.us.es/jmiguel

Más detalles

SESIÓN 2 Splines e integración numérica

SESIÓN 2 Splines e integración numérica SESIÓN Splines e integración numérica ) Sea f x = x 4 para x [,] y sea s: [,] R el spline cúbico que aproxima a f definido a partir de los puntos de abscisas, y. Razona cual de las siguientes expresiones

Más detalles

CÁLCULO II Funciones de varias variables

CÁLCULO II Funciones de varias variables CÁLCULO II Funciones de varias variables Facultad de Informática (UPM) Facultad de Informática (UPM) () CÁLCULO II Funciones de varias variables 1 / 36 Funciones de varias variables Función vectorial de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas.

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas. CÁLCULO Práctica 4.2 Cálculo diferencial en varias variables (Curso 2016-2017) 1. Sean f, h: IR 2 IR funciones definidas del siguiente modo: x 3 f(x, y) = x 2, (x, y) (0, 0) + y2 a) Estudiar la continuidad

Más detalles

Capítulo 3. Integración multidimensional. 1. Integrales de Riemann en rectángulos

Capítulo 3. Integración multidimensional. 1. Integrales de Riemann en rectángulos Capítulo 3 Integración multidimensional 1. Integrales de Riemann en rectángulos Definición (Partición de rectángulos). Consideremos el rectángulo [a, b] [c, d] y sean P 1 = {a = x 0, x 1,..., x n = b}

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso PRUEBAS DE EVALUACIÓN

E.T.S.I. Industriales y Telecomunicación Curso PRUEBAS DE EVALUACIÓN E.T.S.I. Industriales y Telecomunicación Curso 00-0 A continuación se presentan 5 preguntas con 4 respuestas posibles. En cada pregunta hay una única respuesta correcta. Cada pregunta acertada y bien justificada

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

TERCER EXAMEN EJERCICIOS RESUELTOS

TERCER EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II G. I. T. I.) TERCER EXAMEN 4 EJERCICIOS RESUELTOS EJERCICIO. ) Dibuja la región limitada por la circunferencia de ecuación r = r θ) = senθ) y la lemniscata de ecuación r = r θ) = cosθ).

Más detalles

Gu ıa Departamento Matem aticas U.V.

Gu ıa Departamento Matem aticas U.V. Universidad de Valparaíso Instituto de Matemáticas Guía de Cálculo en Varias Variables Integración. Sean = [,] [,] {(x,y) : (x,y) < } y f : continua. a) Escriba lafuncióncaracterísticaχ demedianteunafunciónporparte,análogamente

Más detalles

Análisis Matemático. Grupo D. Examen 1

Análisis Matemático. Grupo D. Examen 1 Análisis Matemático. Grupo D. Examen Apellidos, Nombre y Firma: Importante: En la puntuación de los problemas no sólo se tendrá en cuenta la solución obtenida sino la exposición correcta de los razonamientos

Más detalles

El cuestionario virtual estara disponible los días 11, 12, 13, 14, 15 y 16 de enero.

El cuestionario virtual estara disponible los días 11, 12, 13, 14, 15 y 16 de enero. Fundamentos de Matematicas. Prueba de Evaluación a Distancia. Curso 016-17 Se debe marcar una sola respuesta correcta. Cada pregunta acertada suma 1 punto, las incorrectas restan 0.. Las preguntas en blanco

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

Soluciones de los ejercicios del segundo examen parcial

Soluciones de los ejercicios del segundo examen parcial Matemáticas III GIC, curso 5 6 Soluciones de los ejercicios del segundo examen parcial EJERCICIO. Considera la integral doble π π ibuja la región del plano XY en la que se está integrando. Usa el teorema

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

De x = 1 a x = 6, la recta queda por encima de la parábola.

De x = 1 a x = 6, la recta queda por encima de la parábola. Área entre curvas El área comprendida entre dos funciones es igual al área de la función que está situada por encima menos el área de la función que está situada por debajo. Ejemplos 1. Calcular el área

Más detalles

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x.

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. Área entre curvas Ejercicios resueltos 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. En primer lugar hallamos los puntos de corte de las dos funciones para conocer los límites

Más detalles

Problemas de Análisis Vectorial y Estadístico

Problemas de Análisis Vectorial y Estadístico Relación 1. Funciones Γ y β 1. Función Gamma Definimos la función gamma Γ(p) como: Demostrar que: Γ(p) = t (p 1) e t dt para p> a) Γ(1) = 1 b) Integrando por partes, ver que Γ(p) = (p 1)Γ(p 1) para p>1

Más detalles

EXAMEN DE MATEMÁTICAS I. Test

EXAMEN DE MATEMÁTICAS I. Test Primer Parcial 16 de febrero de 005 Test Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0. puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- Considerando

Más detalles

Integrales Dobles. Hermes Pantoja Carhuavilca. Matematica II. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos

Integrales Dobles. Hermes Pantoja Carhuavilca. Matematica II. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Integrales Dobles Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 76 CONTENIDO Integrales Dobles Introducción

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0. ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x

Más detalles

+ ax 2 + bx) x. ( 2 sen(x) 0 (a + b sen(x) sen(2x))2 dx sea mínima.

+ ax 2 + bx) x. ( 2 sen(x) 0 (a + b sen(x) sen(2x))2 dx sea mínima. Facultad de Ingeniería - IMERL Cálculo - Curso. Práctico 8. Integrales paramétricas e integrales iteradas dobles y triples. Integrales múltiples. Cambio de variables, áreas, volúmenes, sumas de Riemann

Más detalles

FACULTAD DE CIENCIAS DEL MAR. FUNDAMENTOS MATEMÁTICOS II. Convocatoria Extraordinaria de Diciembre de 2002.

FACULTAD DE CIENCIAS DEL MAR. FUNDAMENTOS MATEMÁTICOS II. Convocatoria Extraordinaria de Diciembre de 2002. FAULTAD DE IENIAS DEL MAR. FUNDAMENTOS MATEMÁTIOS II. onvocatoria Extraordinaria de Diciembre de. xydx x y dy a lo largo de la elipse.- alcular + ( ) contrario al de las agujas del reloj. x y + = recorrida

Más detalles

5.2. El teorema de Fubini. TEMA 5. INTEGRALES DE FUNCIONES DE DOS VARIABLES.

5.2. El teorema de Fubini. TEMA 5. INTEGRALES DE FUNCIONES DE DOS VARIABLES. Tema 5 Integrales de funciones de dos variables. 5.. La integral doble como volumen. La integral de una función de dos variables está relacionada con zf H,L el cálculo del volumen encerrado entre el plano

Más detalles

Tema 2. Funciones de varias variables El espacio n-dimensional. Definición 2.1

Tema 2. Funciones de varias variables El espacio n-dimensional. Definición 2.1 Tema Funciones de varias variables... El espacio n-dimensional. Definición. El espacio n-dimensional, cuyos elementos reciben el nombre de puntos, es el conjunto: R n = {x, x,..., x n )/x, x,..., x n R}.

Más detalles

PRIMER CONTROL. 13 de Noviembre de 2012.

PRIMER CONTROL. 13 de Noviembre de 2012. GRAO EN QUÍMICA. MATEMÁTICAS. (Evaluación continua) PRIMER CONTROL. 13 de Noviembre de 2012. 1.- Sea f : R 3 R 3 la aplicación lineal f(x, y, z) = (x + z, 2x + ay az, 4x + z), (a R) a) Matriz de la aplicación

Más detalles

ETSII Febrero Análisis Matemático.

ETSII Febrero Análisis Matemático. Departamento de Análisis Matemático ETSII Febrero 2000. Análisis Matemático. Problema 1. (1 punto) Calcular los siguientes ites: e x e senx x 0 x senx x π/4 (tgx)tg2x Problema 2. (2 puntos) Considérese

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x

Más detalles

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013 Análisis II - Análisis matemático II - Matemática 3 do. cuatrimestre de 3 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones.. Verificar el teorema de Stokes para el hemisferio

Más detalles

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009 ANÁLISIS I MATEMÁTICA ANÁLISIS II (Computación) Práctica 5 - Verano 2009 Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior. Calcular las derivadas

Más detalles

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ,

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ, egundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de 216 Este es un examen individual, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. ecuerde apagar

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Halla las dimensiones del rectángulo de área máxima inscrito en un triángulo isósceles de 6 metros de base (el lado desigual) y 4 metros de alto. Ejercicio 2.- Sean

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos

Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Análisis I Matemática I Análisis II (C) Cuat II - 2009 Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior 1. Calcular las derivadas

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. er. cuatrimestre de 8 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones. Ejercicio. Verificar el teorema de Stokes para el

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco

Más detalles

El cálculo de la viga superior no presenta mayores problemas, ya que su volumen corresponde al de un prisma recto cuyas dimensiones se indican:

El cálculo de la viga superior no presenta mayores problemas, ya que su volumen corresponde al de un prisma recto cuyas dimensiones se indican: Consideremos el problema: Usted es un ingeniero civil y se le ha encargado la tarea de construir un puente. Para ello necesita cubicar (dimensionar), para saber la cantidad de material necesario para hacer

Más detalles

Formulas de Newton-Cotes

Formulas de Newton-Cotes Formulas de Newton-Cotes. Usando las reglas del Trapecio, Punto Medio, Simpson y las formulas de Newton-Cotes abiertas con n =,, aproxime el valor de las siguientes Integrales. Construya una tabla para

Más detalles

Práctica 3: Integración de funciones

Práctica 3: Integración de funciones Práctica 3: Integración de funciones En esta práctica se estudiarán en una primera sección los comandos que permiten el cálculo de integrales indefinidas y definidas. Finalmente, se abordará el cálculo

Más detalles

Integrales de lı nea y de superficie

Integrales de lı nea y de superficie EJERIIO DE A LULO II PARA GRADO DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera 4 4.1 Integrales de lı nea y de superficie Integrales sobre curvas

Más detalles

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO CÁLCULO II. Ejercicio de Examen Final Temas 1 y : Cálculo Diferencial y Optimización FECHA: 1/07/1 TIEMPO RECOMENDADO: 40 m Puntuación/TOTAL:,5/10 ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO w w 1. Dada

Más detalles

Facultad de Ingeniería Facultad de Tecnología Informática. Matemática Números reales Elementos de geometría analítica. Profesora: Silvia Mamone

Facultad de Ingeniería Facultad de Tecnología Informática. Matemática Números reales Elementos de geometría analítica. Profesora: Silvia Mamone Facultad de Ingeniería Facultad de Tecnología Informática Matemática Números reales Elementos de geometría analítica 0 03936 Profesora: Silvia Mamone UB Facultad de Ingeniería Facultad de Tecnología Informática

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO Opción A Ejercicio 1.- Sea la función f : (0, + ) R definida por f(x) = 1 +ln(x) donde ln denota la función x logaritmo neperiano. (a) [1 75 puntos] Halla los [ extremos ] absolutos de f (abscisas donde

Más detalles

AMPLIACIÓN DE CÁLCULO. Curso 2008/9. Hoja 1: Integración en varias variables.

AMPLIACIÓN DE CÁLCULO. Curso 2008/9. Hoja 1: Integración en varias variables. AMPLIACIÓN DE CÁLCULO. Curso 2008/9. Hoja 1: Integración en varias variables. 1. Calcular para =[0, 1] [0, 3] las integrales (a) xydxdy. (b) xe y dxdy. (c) y 2 sin xdxdy. 2. Calcularlasintegralesdoblessiguientesenlosrecintosqueseindican:

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-11--V---17 CURSO: Matemática Intermedia SEMESTRE: Segundo CÓDIGO DEL CURSO: 11 TIPO DE EXAMEN: Segundo Examen

Más detalles

2. Distancia entre dos puntos. Punto medio de un segmento

2. Distancia entre dos puntos. Punto medio de un segmento Geometría 1 Geometría anaĺıtica Una ecuación de primer grado con dos incógnitas x e y tiene infinitas soluciones Por ejemplo x + y = 3 tiene como soluciones (0, 3), (1, ), ( 1, 4), etc Hasta ahora se han

Más detalles

Examen Final de Cálculo Vectorial MATE PREGUNTAS ABIERTAS TEMA A Diciembre 6 de Nombre: Código:

Examen Final de Cálculo Vectorial MATE PREGUNTAS ABIERTAS TEMA A Diciembre 6 de Nombre: Código: UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Examen Final de Cálculo Vectorial MATE 1207 PREGUNTAS ABIERTAS TEMA A Diciembre 6 de 2017 Este es un examen individual, no se permite el uso de libros,

Más detalles

CÁLCULO VECTORIAL SEMESTRE

CÁLCULO VECTORIAL SEMESTRE SERIE # 3 ÁLULO VETORIAL SEMESTRE 009- ÁLULO VETORIAL SEMESTRE: 009-1 Página 1) Sea el campo vectorial F (x, y,z)= ( 3x+ yz)i+( x+ y ) j + ( xz) k F d r. alcular x = + y lo largo de la curva :, del punto

Más detalles

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1/ 25

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1/ 25 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1/ 25 P. Vásquez (UPRM) Conferencia 2/ 25 Integración Aproximada MATE 3032 Hay dos situaciones en las que es imposible encontrar el valor exacto de

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD

PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : (0,+ ) R la función definida por f(x) = 3x + 1 x. (a) [1 5 puntos] Determina los intervalos de crecimiento y de decrecimiento y los extremos relativos de f (puntos donde

Más detalles

Capítulo 4. Integración

Capítulo 4. Integración Capítulo 4. Integración En este capítulo vamos a estudiar cómo se puede hacer integración con funciones multivariables. Estudiaremos los siguientes temas: 4.1. Integral de Riemann, teorema de Fubini. 4..

Más detalles

INGENIERÍA DE TELECOMUNICACIÓN PRÁCTICA 8

INGENIERÍA DE TELECOMUNICACIÓN PRÁCTICA 8 Laboratorio: Curvas paramétricas En el applet de la figura siguiente puedes representar curvas dadas en paramétricas. Los valores a introducir son: xt: La expresión de x(t) yt: La expresión de y(t) x1t:

Más detalles

1 a 0 a 1 1 F 32 (2) /2

1 a 0 a 1 1 F 32 (2) /2 ESCUELA UNIVESITAIA POLITÉCNICA DE SEVILLA Ingeniería Técnica Industrial. Especialidad en Electricidad. Fundamentos Matemáticos de la Ingeniería Curso 00-006. Soluciones correspondientes al examen de la

Más detalles

Funciones reales de varias variables

Funciones reales de varias variables PROBLEMAS DE CÁLCULO II Curso 2-22 2 Funciones reales de varias variables. Dibuja las curvas de niveles,,..., 5 y la representación gráfica de las siguientes funciones a) f(x, y) = 5 x y b) f(x, y) = x

Más detalles

Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica

Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Luis Alvarez León Univ. de Las Palmas de G.C. Luis Alvarez León () Métodos Numéricos Univ. de Las Palmas de G.C. 1 /

Más detalles

todos los puntos de U, y las funciones df : U R m son continuas en x, entonces F es diferenciable en x.

todos los puntos de U, y las funciones df : U R m son continuas en x, entonces F es diferenciable en x. clase C 1 clase C p 1. clase C 1 Consideremos U un abierto de R n, y F : U R m. Si para cada x U existe df (x), podemos definir una función df : U R m df (x) = ( 1 (x),..., m (x)) y tiene sentido estudiar

Más detalles

Métodos Numéricos: Solución de los ejercicios Tema 3: Integración Numérica

Métodos Numéricos: Solución de los ejercicios Tema 3: Integración Numérica Métodos Numéricos: Solución de los ejercicios Tema : Integración Numérica Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Febrero 8, versión.4

Más detalles

PARTE ELECTIVA. Solo 4 preguntas de la parte electiva. tan(xy) = x y sec2 (xy)(y + xy ) = y xy y 2

PARTE ELECTIVA. Solo 4 preguntas de la parte electiva. tan(xy) = x y sec2 (xy)(y + xy ) = y xy y 2 PARTE ELECTIVA. Solo 4 preguntas de la parte electiva.. a) Si tan(xy) = x dy halle y dx. Solución. Derivando implícitamente ( puntos) Despejando y tan(xy) = x y sec (xy)(y + xy ) = y xy y y = y( y sec

Más detalles

Selectividad Matemáticas II septiembre 2017, Andalucía (versión 2)

Selectividad Matemáticas II septiembre 2017, Andalucía (versión 2) Selectividad Matemáticas II septiembre 07, Andalucía versión ) Pedro González Ruiz 6 de septiembre de 07. Opción A Problema. Una imprenta recibe un encargo para realizar una tarjeta rectangular con las

Más detalles

Soluciones de los ejercicios del examen de Análisis Matemático Primer curso de Ingeniería Informática - Febrero de 2005

Soluciones de los ejercicios del examen de Análisis Matemático Primer curso de Ingeniería Informática - Febrero de 2005 Soluciones de los ejercicios del examen de Primer curso de Ingeniería Informática - Febrero de 25 Ejercicio. A Dados los puntos A, y 2,2, calcula el camino más corto para ir de A a pasando por un punto

Más detalles

Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas.

Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas. Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas. 1.- El polinomio p 3 (x) = 2 (x + 1) + x(x + 1) 2x(x + 1)(x 1) interpola a los primeros cuatro datos de la tabla x

Más detalles

Preparando Selectividad Solución Selectividad - Modelo 06

Preparando Selectividad Solución Selectividad - Modelo 06 página 1/11 Preparando Selectividad Solución Selectividad - Modelo 06 Modelo 06. Opción A. Ejercicio 1 a) Realiza un dibujo aproximado de la gráfica de la función f (x)= { 4 x+12 si x 1 x 2 4 x+3 si x>

Más detalles

Tema 7. Integrales múltiples

Tema 7. Integrales múltiples Tema 7 Integrales múltiples 7.. efinición. En esta sección estudiamos el cálculo de la integral de una función real de dos variables denominada integral doble. Se puede utilizar el esquema del tema anterior

Más detalles

Selectividad Matemáticas II junio 2012, Andalucía

Selectividad Matemáticas II junio 2012, Andalucía Selectividad Matemáticas II junio 0, Andalucía Pedro González Ruiz 0 de junio de 0. Opción A Problema. Sea la función f : R R definida por f(x) = e x (x ).. Calcular las asíntotas de f.. Hallar los extremos

Más detalles