A) Hallar el volumen del sólido formado cuando la región del primer cuadrante limitada por Z 4. 1 x 4 1 dx. Z b. p (x) h (x) dx.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "A) Hallar el volumen del sólido formado cuando la región del primer cuadrante limitada por Z 4. 1 x 4 1 dx. Z b. p (x) h (x) dx."

Transcripción

1 ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA I.T.I. Especialidad en Electricidad. Curso 4-5. Soluciones al Segundo Parcial de Fundamentos Matemáticos de la Ingeniería. PROBLEMA.- A) Hallar el volumen del sólido formado cuando la región del primer cuadrante limitada por gira alrededor de la recta x =. y = x, y =8 x, x = B) a) Usar la regla de los trapecios con n =4para estimar el valor de la integral b) Calcular directamente la integral. Z 4 x 4 dx Solución: A) Tenemos que calcular el volumen de un sólido de revolución. Podemos aplicar el método de discos ó el método de capas. Puesto que el eje de giro es vertical y las curvas vienen expresadas de forma explícita, optaremos por el método de capas V = Z b a p (x) h (x) dx Para delimitar el intervalo de integración, calculamos la intersección de las curvas y = x, y =8 x, obteniendo que la abscisa del punto de corte en el primer cuadrante es x =. 8 h(x) p(x) La distancia de cada capa al eje de giro viene dada por p (x) =x + ylaalturadelacapapor h (x) =(8 x ) x. Por tanto V = Z b a p (x) h (x) dx = Z (x +) 8 x dx =.

2 B) a)sea f (x) =. Hacemos n =4yaplicamos el método de los trapecios para estimar el valor x 4 de la integral. En este caso x = b a = n 4 =, y nuestra partición del intervalo [, ] resulta: =x < 5 = x < =x < 7 = x < 4=x 4. Por tanto, Z 4 x 4 dx = b a n [f (x )+f (x )+f (x )+f (x )+f (x 4 )] = 4 µ µ 5 7 f () + f +f () + f + f (4) 4 = = = [ ] 4 =.48 b) Calculamos ahora la integral directamente. Buscaremos una primitiva de la función ello utilizamos la descomposición en fracciones simples. x 4 = (x ) (x +) = A x + B x + + Cx + D x + =A (x +) x + + B x + (x ) + (Cx + D)(x +)(x ) x 4. Para Dándole diferentes valores a la x, tenemos x = = 4B = x == 4A = x == A B D = x == 5A +5B +6C +D = = A =/4 B = /4 C = D = / Luego Z 4 x 4 dx = Z 4 /4 x + /4 x + + / x + dx = 4 ln x 4 ln x + arctgx 4 = ln 4 ln 5 arctg4+ arctg =.76

3 PROBLEMA.- A) Sea f (x, y) =e ax+y + bsen(x + y ). i) Determinar µr los valores de los parámetros a y b sabiendo que (, ) es un punto crítico de f yquef 4, =. ii) Para los valores de a =y b = Qué clase de punto crítico es el (, )? B) Hallar la ecuación del plano tangente a la superficie z =arctg y ³ x en el punto P,,. C) Hallarlalongituddelacurvasuaveatrozos C de la figura cuyas ecuaciones paramétricas son ½ x =cos t C : y =sen t [, ] t Solución: A) i) Puesto que el (, ) debe ser un punto crítico de la función f, las derivadas parciales primeras debendeanularseenestepunto.asípues, == ae ax+y +xb cos (x + y ) == a = x (,) (,) == ye ax+y +yb cos (x + y ) == = y (,) (,) Luego la función es de la forma f (x, y) =e y + µr bsen(x + y ). Si imponemos ahora la condición de que f 4, =, tenemos que µr ³ + f 4, = e + bsen = +b 4 = b = Luego f (x, y) =e y + sen x + y ii) Para decidir qué tipo de punto crítico es el (, ), aplicamos el criterio de las derivadas segundas.tenemos que f x = [cos(x + y ) x sen (x + y )] f x y = 4 xysen (x + y ) f y =(+4y ) e y 4 y sen (x + y )+ cos(x + y )

4 y, por tanto, H (, ) = µ + Como se verifica que det (H (, )) > y f >, el criterio de las derivadas parciales segundas nos x permite afirmar que (, ) es un mínimo relativo de f. B) La ecuación del plano tangente a una superficie z = f (x, y) en un punto (x,y,f(x,y )) viene dada por z = f (x,y )+ x (x,y )(x x )+ y (x,y )(y y ) En nuestro caso, como f (x, y) =arctg y, tenemos que x x = + y y x = y x + y, x y = + y x x = x x + y, = x (,) 4 = y (,) 4 Portanto,elplanotangentees z = 4 (x ) + ³ y x y +z 4 = 4 C) Teniendo en cuenta la simetría de la curva y aplicando la expresión integral para el cálculo de la longitud de la curva en ecuaciones paramétricas, se tiene que Z q Z l = 4 x (t) + y (t) dt =4 6 cos4 tsen t +6sen 4 t cos tdt = 4 Z 6 p cos tsen t (cos t + sen t)dt =4 Z 6costsentdt =sen t = Nota: Observar que no se puede calcular la longitud de la curva integrando en un intervalo mayor porquelacurvanoessuave. PROBLEMA.- Z A) Determinar C F dr siendo y C la curva indicada en la figura F (x, y) = x + xy i +x yj Comprobar que se verifica el teorema de Green.

5 B) Encontrar si existe una función potencial del campo vectorial F (x, y, z) =(xyz + senx) i+x zj+x yk Z ycalcular F dr siendo C una curva suave a trozos que va desde el punto (,, ) hasta el ³ C punto,,. Solución: A) El campo vectorial viene dado por F (x, y) =(x + xy ) i +x yj. Como la curva C es suave a trozos, consideramos los tres trozos de curva, es decir, las tres curvas C,C,C y escribimos unas ecuaciones paramétricas para cada una de ellas: C : ½ ½ x = t x = t y = t t [, ] C : y = t [, ] C : ½ x = y = t t [, ] Se tiene que Z F dr = C = Z Z Z F dr + F dr + F dr C C C Z t + t 5, t 4 (, t) dt + Z t, t (, ) dt + Z (, ) (, ) dt = Z t +5t 5 dt + Z tdt += t + 5t6 + t 6 =. Puesto que la región encerrada por la curva C es una región simplemente conexa con frontera suave a trozos y orientada en sentido antihorario, tiene que cumplirse el teorema de Green y la integral calculada anteriormente debe ser igual a RR ³ N M da. Lo comprobamos: R x y Z Z µ N R x M Z Z Z da = (4xy xy) dydx = xy Z dx = y x x x x 5 dx =. B) Para tener asegurada la existencia de una función potencial para el campo vectorial F (x, y, z) = (xyz + senx) i+x zj+x yk, comprobamos que se trata de un campo conservativo. Para ello, calculamos las derivadas parciales siguientes M y =xz M z =xy N z = x N x =xz P x =xy P y = x

6 y, puesto que M y = N x, M z = P x, N z = P, el campo vectorial es conservativo. Buscamos y ahora una función potencial f (x, y, z), esto es, una función verificando que x =xyz + senx () y = x z () z = x y () Integrando, por ejemplo, en la última ecuación con respecto a z, tenemos que f (x, y, z) =x yz + g (x, y) Si derivamos esta expresión con respecto a y, tenemos que y = x z + g que debe ser igual a y (), con lo cual g y =ydeaquíg (x, y) =h (x). Así f (x, y, z) =x yz + h (x). Finalmente, derivando con respecto x e igualando con (), tenemos que x =xyz + h (x) =xyz+senx h (x) =senx h (x) = cos x + C. Luego una función potencial viene dada por f (x, y, z) =x yz cos x Para calcular la integral de línea del campo vectorial F (x, y, z), al ser éste conservativo, podemos aplicar un de los teoremas fundamentales para las integrales de línea y entonces Z ³ F dr = f,, f (,, ) = 4 +. PROBLEMA 4.- C A) Hallar el volumen limitado por el paraboloide x +4y = z, el plano z =yloscilindros parabólicos y = x, x = y. B) Sea Q el sólido interior al cilindro x +y =4, exterioralasuperficie cónica z = p x +y, y por encima del plano z =. Se pide: a) Expresar en coordenadas esféricas el volumen del sólido. b) Expresar en coordenadas cilíndricas el volumen del sólido. c) Calcular el volumen del sólido. C) Combinar, cambiando el orden de integración, la suma de las dos integrales dobles en una sola, y dibujar la región de integración Z Z y y/ f (x, y) dxdy + Z 4 Z y/ f (x, y) dxdy

7 Solución: A)El sólido limitado por el paraboloide x +4y = z, el plano z =ylos cilindros parabólicos y = x, x = y eselqueseindicaenlafigura. y su volumen viene dado por Z Z V = R x +4y da siendo R la región del plano comprendida entre las curvas y = x, x = y, es decir, R = {(x, y) R : x, x y x}. Así, Z Z V = x +4y Z Z x da = x +4y dydx R x Z x Z Ã! = x y +4 y dx = x x +4 ( x) x 4 4 x6 dx x = 7 x7/ + 4x 5/ 5 5 x5 4 x 7 = 7 7. B) El sólido Q está limitado por las superficies x + y =4,z=y z = p x +y a) Si expresamos las superficies en coordenadas esféricas, se tiene que: La ecuación del cono en coordenadas esféricas es φ = arctg = 6 La ecuación del cilindro en coordenadas esféricas viene dada por: x + y =4= ρ sen φ cos θ + ρ sen φsen θ =4= ρ = sen φ

8 ½ Por tanto, el sólido se describe como Q = (ρ, θ, φ) : θ, y el volumen del sólido viene dado por la expresión 6 φ, ρ ¾ sen φ V = Z 6 Z Z sen φ ρ sen φdρdθdφ. b) En coordenadas cilíndricas, Q = (r, θ,z): θ, r, z r ª, yasí,el volumen viene dado por V = Z Z Z r rdzdrdθ. c) Calculamos el volumen utilizando las coordenadas cilíndricas ya que es más sencilla la integral iterada que se obtiene. Así V = Z Z Z r rdzdrdθ. = Z Z Z r drdθ = 6 8dθ =. C) Teniendo en cuenta la unión de las dos regiones que se describen en las dos integrales iteradas, tenemos que, cambiando el orden de integración, Z Z y f (x, y) dxdy + Z 4 Z f (x, y) dxdy = Z Z x y/ y/ x f (x, y) dydx.

1. INTEGRALES MÚLTIPLES

1. INTEGRALES MÚLTIPLES 1. INTEGALES MÚLTIPLES 1. Calcular las siguientes integrales iteradas: 1. x x 7 y dy dx dx 1. x x y y dx dy 1 1 7. (1 + xy) dx dy 1 1 π/. x sen y dy dx 5. (x + y) dx dy 6/ 1 6. (x + y) 8 dx dy 616 5 1

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 9 de Junio de 4 Primera parte Ejercicio. Un depósito subterráneo de gasolina tiene forma de cilindro elíptico con semieje orizontal a

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS Examen de febrero EJECICIO ( h. 3 min.) 13 de junio de 9 1. En E 3 se considera el plano de ecuación x y z = 5. Se pide: a) Ecuaciones de la proyección ortogonal sobre dicho plano.

Más detalles

Integrales de lı nea y de superficie

Integrales de lı nea y de superficie EJERIIO DE A LULO II PARA GRADO DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera 4 4.1 Integrales de lı nea y de superficie Integrales sobre curvas

Más detalles

Integración múltiple: integrales triples

Integración múltiple: integrales triples Problemas propuestos con solución Integración múltiple: integrales triples ISABEL MARRERO epartamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Integrales iteradas 1. Teorema

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

Tema 4: Integración de funciones de varias variables

Tema 4: Integración de funciones de varias variables Departamento de Matemáticas. Universidad de Jaén. Análisis Matemático II. Curso 29-21. Tema 4: Integración de funciones de varias variables 1. Evaluar las siguientes integrales iteradas e) f ) g) 1 2 1

Más detalles

2xy 3x 2 y 2 y(0) = 1

2xy 3x 2 y 2 y(0) = 1 ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA DEPARTAMENTO DE MATEMÁTICA APLICADA II Ingeniería Técnica Industrial. Especialidad en Mecánica Soluciones al Primer Parcial de Ampliación de Matemáticas. Curso

Más detalles

MÉTODOS MATEMÁTICOS II

MÉTODOS MATEMÁTICOS II MÉTODOS MATEMÁTICOS II (Licenciatura de Física. Curso 2007-2008) Boletín de problemas a evaluar correspondientes a los Temas I y II Fecha de entrega: Viernes, 23 de Noviembre de 2007 1. Calcula los siguientes

Más detalles

Cálculo Integral Agosto 2015

Cálculo Integral Agosto 2015 Cálculo Integral Agosto 5 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) (x 5 8x + 3x 3 ) ) (y 3 6y 6 5 + 8) dy 3) (y 3 + 5)(y + 3) dy 4) (t 3 + 3t + ) (t 3 + 5) dt 5) (3y

Más detalles

Ejercicios típicos del segundo parcial

Ejercicios típicos del segundo parcial Ejercicios típicos del segundo parcial El segundo examen parcial consiste en tres ejercicios prácticos y dos teóricos, aunque esta frontera es muy difusa. Por ejemplo, el primer ejercicio de esta serie,

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO: 017 PERÍODO: PRIMER TÉRMINO MATERIA: Cálculo de una variable PROFESOR: EVALUACIÓN:

Más detalles

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)

Más detalles

Integral Doble e Integral Triple

Integral Doble e Integral Triple www.cidse.itcr.ac.cr/revistamate Práctica 6 Integral Doble e Integral Triple Cambio de variable con coordenadas polares y coordenadas ciĺındricas. Cálculo Superior Instituto Tecnológico de Costa ica Escuela

Más detalles

Unidad 15 Integrales definidas. Aplicaciones

Unidad 15 Integrales definidas. Aplicaciones Unidad 15 Integrales definidas. Aplicaciones 3 SOLUCIONES 1. La suma superior es: La suma inferior es:. La suma superior es: s ( P) = ( 1) 3 + (3 ) 10 = 3 + 10 = 13 La suma inferior es: s ( P) = ( 1) 1+

Más detalles

1 Terminar los ejercicios de la práctica realizada el día de hoy

1 Terminar los ejercicios de la práctica realizada el día de hoy Este documento contiene las actividades no presenciales propuestas al terminar la clase del día que se indica. e sobreentiende que también se debe realizar el estudio de lo explicado en clase aunque no

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

AMPLIACIÓN DE CÁLCULO. Curso 2008/9. Hoja 1: Integración en varias variables.

AMPLIACIÓN DE CÁLCULO. Curso 2008/9. Hoja 1: Integración en varias variables. AMPLIACIÓN DE CÁLCULO. Curso 2008/9. Hoja 1: Integración en varias variables. 1. Calcular para =[0, 1] [0, 3] las integrales (a) xydxdy. (b) xe y dxdy. (c) y 2 sin xdxdy. 2. Calcularlasintegralesdoblessiguientesenlosrecintosqueseindican:

Más detalles

Problemas resueltos del Boletín 4

Problemas resueltos del Boletín 4 Boletines de problemas de Matemáticas II Problemas resueltos del Boletín 4 Problema 1. Resolver el siguiente sistema de ecuaciones diferenciales: { y = 1 z, z = 1 } y Solución: Lo transformamos como sigue:

Más detalles

ANALISIS II 12/2/08 COLOQUIO TEMA 1

ANALISIS II 12/2/08 COLOQUIO TEMA 1 ANALISIS II //08 COLOQUIO TEMA Sea f : R R un campo vectorial C y C la curva parametrizada por: γ(t) = (cost, 0, sent) con t ɛ [0, π] Sabiendo que C f ds = 6 y que rot( f( ) = (z, ), calcular la integral

Más detalles

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación Soluciones de los ejercicios del examen de del 29 de junio de 27 Primero de Ingeniería de Telecomunicación Ejercicio a Justifica que la ecuación x 2 = x sen x+ cos x tiene exactamente dos soluciones reales.

Más detalles

3 Integración en IR n

3 Integración en IR n a t e a POBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CUSO 29 21 3 Integración en I n 3.1 Integral múltiple. Problema 3.1 Calcula f en los siguientes casos: Q i) f(x, y) =

Más detalles

Análisis Matemático 2

Análisis Matemático 2 Análisis Matemático Resolución del coloquio de fecha 4/07/18 tema I con hipervínculos a videos on-line Autor: Martín Maulhardt Revisión: Fernando Acero y Ricardo Sirne Análisis Matemático II y II A Facultad

Más detalles

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8 ANALISIS MATEMATIO II (iencias- 2011) Integrales sobre curvas (o de línea) Trabajo Práctico 8 1. Evaluar las siguientes integrales curvilíneas γ f ds. (a) f(x, y, z) = x + y + z ; r(t) = (sen t, cos t,

Más detalles

Encuentre para el alambre: a. Las coordenadas de su centro de masa. (3 puntos) b. Su momento de inercia respecto al eje x.

Encuentre para el alambre: a. Las coordenadas de su centro de masa. (3 puntos) b. Su momento de inercia respecto al eje x. CÁLCULO INTERMEDIO APLICADO (64) PRIMER PARCIAL (%) 5//9 Encuentre el área de la cerca indicada en la figura, que tiene por base la curva en coordenadas polares de ecuación r = + cos( θ ), con θ y se encuentra

Más detalles

Tema 3. Integrales dobles y triples y sus aplicaciones Septiembre {(x,y)/0 x 2, 0 y } x. I = f(x, y)dydx. 2 4 x. 2 4 x.

Tema 3. Integrales dobles y triples y sus aplicaciones Septiembre {(x,y)/0 x 2, 0 y } x. I = f(x, y)dydx. 2 4 x. 2 4 x. CÁLCULO III (05) Tema. Integrales dobles y triples y sus aplicaciones eptiembre 06. Dibuje la región de integración y calcule las integrales dobles siguientes: d. e. f. g. yda, donde es la región limitada

Más detalles

Problemas de Análisis Vectorial y Estadístico

Problemas de Análisis Vectorial y Estadístico Relación 1. Funciones Γ y β 1. Función Gamma Definimos la función gamma Γ(p) como: Demostrar que: Γ(p) = t (p 1) e t dt para p> a) Γ(1) = 1 b) Integrando por partes, ver que Γ(p) = (p 1)Γ(p 1) para p>1

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL. 1. (5 puntos) Bosquejar la región en el primer cuadrante que está

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL. 1. (5 puntos) Bosquejar la región en el primer cuadrante que está ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS RÚBRICA DE LA SEGUNDA EVALUACIÓN DE CÁLCULO DE UNA VARIABLE. (5 puntos) Bosquejar la región

Más detalles

7. Cambio de variables en integrales triples.

7. Cambio de variables en integrales triples. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. Lección. Integrales múltiples. 7. Cambio de variables en integrales triples. El teorema del cambio de variables para integrales triples es análogo al de integrales

Más detalles

Tema 2. Ejercicios propuestos

Tema 2. Ejercicios propuestos Tema 2. Ejercicios propuestos 1.- - Calcular 2.- - Calcular 3.- - Sea = x2 y2 dx dy, siendo = {(x, y) 2 : 1 x y 2, x y 4x}. (x2 +y2 )dx dy, donde = (x, y) 2 : x2 + y2 2y, x2 + y2 1, x 0. (x, y) 2 1 x 2

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0. ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green ANÁLISIS MATEMÁTIO II - Grupo iencias 018 Práctica 9 ampos conservativos - Teorema de Green A. ampos conservativos 1. Mostrar que F x, y) = y cos x) i + x sen y) j no es un campo vectorial gradiente..

Más detalles

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ,

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ, egundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de 216 Este es un examen individual, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. ecuerde apagar

Más detalles

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x.

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. Área entre curvas Ejercicios resueltos 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. En primer lugar hallamos los puntos de corte de las dos funciones para conocer los límites

Más detalles

De x = 1 a x = 6, la recta queda por encima de la parábola.

De x = 1 a x = 6, la recta queda por encima de la parábola. Área entre curvas El área comprendida entre dos funciones es igual al área de la función que está situada por encima menos el área de la función que está situada por debajo. Ejemplos 1. Calcular el área

Más detalles

Integración sobre curvas

Integración sobre curvas Problemas propuestos con solución Integración sobre curvas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Integral de línea de campos escalares 1

Más detalles

SERIE # 4 CÁLCULO VECTORIAL

SERIE # 4 CÁLCULO VECTORIAL SERIE # 4 CÁLCULO VECTORIAL Página 1 1) Calcular 1 x y dy dx. 0 0 1 ) Evaluar la integral doble circunferencia x y 9. x 9 x da R, donde R es la región circular limitada por la 648 15 x y ) Calcular el

Más detalles

Volumen de Revolución Ejemplo. Se obtiene al hacer girar una región limitada alrededor de un eje. Por ejemplo, si la función: f(x) x el eje 0x:

Volumen de Revolución Ejemplo. Se obtiene al hacer girar una región limitada alrededor de un eje. Por ejemplo, si la función: f(x) x el eje 0x: Volumen de Revolución Ejemplo Se obtiene al hacer girar una región limitada alrededor de un eje. Por ejemplo, si la función: f(x) x 2 1 gira sobre el eje 0x: Sólidos de Revolución conocidos ALGUNAS APLICACIONES

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

1.6 Ejercicios resueltos

1.6 Ejercicios resueltos Apuntes de Ampliación de Matemáticas 1.6 Ejercicios resueltos Ejercicio 1.1 En cada uno de los siguientes casos a A {(x,y R : 1 < x < 1, 1 < y < 1}. b A {(x,y R : 1 < x + y < 4}. c A {(x,y R : y > 0}.

Más detalles

Soluciones de los ejercicios del segundo examen parcial

Soluciones de los ejercicios del segundo examen parcial Matemáticas III GIC, curso 5 6 Soluciones de los ejercicios del segundo examen parcial EJERCICIO. Considera la integral doble π π ibuja la región del plano XY en la que se está integrando. Usa el teorema

Más detalles

6. El teorema de la divergencia.

6. El teorema de la divergencia. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. Lección. Cálculo vectorial. 6. El teorema de la divergencia. Ya vimos una versión del teorema de Green en el plano que expresa la igualdad entre la integral doble

Más detalles

GUÍA DE EJERCICIOS - INTEGRALES MÚLTIPLES

GUÍA DE EJERCICIOS - INTEGRALES MÚLTIPLES GUÍA DE EJERIIOS - INTEGRALES MÚLTIPLES 1. Escriba la expresión que permite calcular por integrales dobles: a. El área de una región plana R. b. El volumen de un sólido V, de altura z = f(x,y). c. La masa

Más detalles

Gu ıa Departamento Matem aticas U.V.

Gu ıa Departamento Matem aticas U.V. Universidad de Valparaíso Instituto de Matemáticas Guía de Cálculo en Varias Variables Integración. Sean = [,] [,] {(x,y) : (x,y) < } y f : continua. a) Escriba lafuncióncaracterísticaχ demedianteunafunciónporparte,análogamente

Más detalles

Capítulo 3: Cálculo integral

Capítulo 3: Cálculo integral (Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia Contenidos La integral indefinida Propiedades básicas de la integral indefinida Métodos de integración: por

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. er. cuatrimestre de 8 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones. Ejercicio. Verificar el teorema de Stokes para el

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

INTEGRAL DEFINIDA. senx. sen PROBLEMAS. 1º-Calcular las siguientes integrales definidas: E[x]dx

INTEGRAL DEFINIDA. senx. sen PROBLEMAS. 1º-Calcular las siguientes integrales definidas: E[x]dx INTEGRAL DEFINIDA. PROBLEMAS. º-Calcular las siguientes integrales definidas: π sen. ln(+ )d. d. + sen - cos -π +. d.5 -) - ( - d.6 E[]d -.7 E[] d.8 cos d - º-Calcular el área limitada por las gráficas

Más detalles

SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones:

SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: SERIE SUPERFICIES 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: 4x C z 0 y que se genera por rectas perpendiculares al plano: x + y + 3z + = 0.-Sea la superficie

Más detalles

FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Ingeniería Técnica Industrial. Especialidades Electricidad, Electrónica y Mecánica. EUP Sevilla Curso

FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Ingeniería Técnica Industrial. Especialidades Electricidad, Electrónica y Mecánica. EUP Sevilla Curso FUNDAMENTOS MATEMÁTIOS DE LA INGENIERÍA Ingeniería Técnica Industrial. Esecialidades Electricidad, Electrónica y Mecánica. EUP Sevilla urso 8-9 Bloque III: álculo diferencial e integral de funciones de

Más detalles

Universidad Autónoma del Estado de México Unidad Académica Profesional Nezahualcóyotl Lic. en Ingeniería en Sistemas Inteligentes.

Universidad Autónoma del Estado de México Unidad Académica Profesional Nezahualcóyotl Lic. en Ingeniería en Sistemas Inteligentes. Universidad Autónoma del Estado de México Unidad Académica Profesional Nezahualcóyotl Lic. en Ingeniería en Sistemas Inteligentes. PROBLEMARIO Unidad de aprendizaje: CÁLCULO III Autor: Dr. Israel Gutiérrez

Más detalles

LA INTEGRAL DEFINIDA. APLICACIONES

LA INTEGRAL DEFINIDA. APLICACIONES 13 LA INTEGRAL DEFINIDA. APLICACIONES REFLEXIONA Y RESUELVE Dos trenes Un Talgo y un tren de mercancías salen de la misma estación, por la misma vía y en idéntica dirección, uno tras otro, casi simultáneamente.

Más detalles

Aplicaciones físicas

Aplicaciones físicas Problemas propuestos con solución Aplicaciones físicas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ulles Índice 1 Integral doble: valor medio 1 2 Integral doble:

Más detalles

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x 1. Hallar κ de manera que el flujo saliente del campo f ( x, = (x + y + z, 6y a través de la frontera del cuerpo x + y + z 16 x + y κ, 0 < k < 4 f : R R un campo vectorial definido por:. Sea γ ( t ) =

Más detalles

ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica Industrial, Especialidad de Electricidad

ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica Industrial, Especialidad de Electricidad ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica Industrial, Especialidad de Electricidad Fundamentos Matemáticos de la Ingeniería Diciembre de 5. Primera parte Tiempo: horas. Se recuerda

Más detalles

Integración múltiple: integrales dobles

Integración múltiple: integrales dobles Problemas propuestos con solución Integración múltiple: integrales dobles ISABEL MAEO epartamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice. Integrales iteradas 2. Teorema

Más detalles

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera EJECICIOS E CA LCULO II PAA GAOS E INGENIEI A Elaborados por omingo Pestana y Jose Manuel odrı guez, con Arturo de Pablo y Elena omera 3 3. Integracio n en n Integral mu ltiple. f en los siguientes casos:

Más detalles

6. Integrales triples.

6. Integrales triples. GRADO DE INGENIERÍA AEROESPACIAL. CRSO 0. Lección. Integrales múltiples. 6. Integrales triples. Integral triple en un prisma. El proceso para definir la integral triple f ( xyzdv,, ), de una función continua

Más detalles

S O L U C I Ó N y R Ú B R I C A

S O L U C I Ó N y R Ú B R I C A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO 08 PERÍODO PRIMER TÉRMINO MATERIA Cálculo de una variable PROFESORES EVALUACIÓN SEGUNDA

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen del 14 de Septiembre de 2000 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen del 14 de Septiembre de 2000 Primera parte ÁLULO Primer curso de Ingeniero de Telecomunicación Examen del de Septiembre de Primera parte Ejercicio. Un flan tiene forma de tronco de paraboloide de revolución, siendo r y r losradiosdesusbasesyh su

Más detalles

PEP 3. Responda 4 de los siguientes 9 problemas, escogiendo al menos uno de cada sección.

PEP 3. Responda 4 de los siguientes 9 problemas, escogiendo al menos uno de cada sección. Universidad de Santiago de Chile Cálculo odrigo Vargas do semestre 1 PEP Nombre: Nota: esponda de los siguientes 9 problemas, escogiendo al menos uno de cada sección. Sección 1. 1. Use coordenadas esféricas

Más detalles

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera:

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera: PROBLEMA 1 A una esfera maciza de radio unidad se le hace una perforación cilíndrica siguiendo un eje diametral de la esfera. Suponiendo que el cilindro es circular de radio, con y que el eje que se usa

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES ) 3-1. Calcular, para las siguientes funciones. a) fx, y) x cos x sen y b) fx, y) e xy c) fx, y) x + y ) lnx + y )

Más detalles

1 a 0 a 1 1 F 32 (2) /2

1 a 0 a 1 1 F 32 (2) /2 ESCUELA UNIVESITAIA POLITÉCNICA DE SEVILLA Ingeniería Técnica Industrial. Especialidad en Electricidad. Fundamentos Matemáticos de la Ingeniería Curso 00-006. Soluciones correspondientes al examen de la

Más detalles

Guía Semanas 13 y RESUMEN. Universidad de Chile. Ingeniería Matemática. Triedro de vectores y factores escalares. Supongamos que r.

Guía Semanas 13 y RESUMEN. Universidad de Chile. Ingeniería Matemática. Triedro de vectores y factores escalares. Supongamos que r. 1. RESUMEN Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables 08-1 Ingeniería Matemática Guía Semanas 13 y 14 Triedro de vectores y factores

Más detalles

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2 Integrales. Calcular las siguientes integrales: i) d ii) d 6 iii) sen d i) Operando se tiene: d = / / / / d = 7 / / / / / = c = c 7 7 ii) Ajustando constantes se tiene: d 6d = 6 c 6 6 iii) Haciendo el

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las

Más detalles

Unidad 15 Integrales definidas. Aplicaciones

Unidad 15 Integrales definidas. Aplicaciones Unidad 15 Integrales definidas. Aplicaciones PÁGINA 363 SOLUCIONES 1. La solución: Lo que nos pide el problema es hallar el área del recinto rayado. Este recinto es un trapecio y su area es:. Queda: x

Más detalles

MATE1207 Cálculo Vectorial Taller 1 Preparación P2 Repaso semana 12

MATE1207 Cálculo Vectorial Taller 1 Preparación P2 Repaso semana 12 Universidad de los Andes Departamento de Matemáticas MATE127 Cálculo Vectorial Taller 1 Preparación P2 Repaso semana 12 1. Encuentre, si existen, los máximos locales, mínimos locales y puntos de silla

Más detalles

FACULTAD DE CIENCIAS DEL MAR. FUNDAMENTOS MATEMÁTICOS II. Convocatoria Extraordinaria de Diciembre de 2002.

FACULTAD DE CIENCIAS DEL MAR. FUNDAMENTOS MATEMÁTICOS II. Convocatoria Extraordinaria de Diciembre de 2002. FAULTAD DE IENIAS DEL MAR. FUNDAMENTOS MATEMÁTIOS II. onvocatoria Extraordinaria de Diciembre de. xydx x y dy a lo largo de la elipse.- alcular + ( ) contrario al de las agujas del reloj. x y + = recorrida

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Superficies. Primera Forma Fundamental

Superficies. Primera Forma Fundamental Tema Superficies. Primera Forma Fundamental Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 005 006 Tema. Superficies. Primera Forma Fundamental 1. Curvas sobre superficies

Más detalles

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013 Análisis II - Análisis matemático II - Matemática 3 do. cuatrimestre de 3 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones.. Verificar el teorema de Stokes para el hemisferio

Más detalles

APLICACIONES DE LA INTEGRAL DEFINIDA

APLICACIONES DE LA INTEGRAL DEFINIDA CAPÍTULO XI. APLICACIONES DE LA INTEGRAL DEFINIDA SECCIONES A. Áreas de figuras planas. B. Cálculo de volúmenes. C. Longitud de curvas planas. D. Ejercicios propuestos. 37 A. ÁREAS DE FIGURAS PLANAS. En

Más detalles

+ ax 2 + bx) x. ( 2 sen(x) 0 (a + b sen(x) sen(2x))2 dx sea mínima.

+ ax 2 + bx) x. ( 2 sen(x) 0 (a + b sen(x) sen(2x))2 dx sea mínima. Facultad de Ingeniería - IMERL Cálculo - Curso. Práctico 8. Integrales paramétricas e integrales iteradas dobles y triples. Integrales múltiples. Cambio de variables, áreas, volúmenes, sumas de Riemann

Más detalles

Cálculo Integral INTEGRAL INDEFINIDA. INTEGRAL DEFINIDA. APLICACIONES

Cálculo Integral INTEGRAL INDEFINIDA. INTEGRAL DEFINIDA. APLICACIONES INTEGRAL INDEFINIDA. INTEGRAL DEFINIDA. APLICACIONES. Halla una primitiva de: e) f) g) h) i) j) + 7 +. Halla el área comprendida entre la función y = ( ) ( ), el eje X y las rectas = 0, =. Sol: 98 u..

Más detalles

Licenciatura en Matemáticas Soluciones del examen final de Cálculo de septiembre de sena + 4sen(a/2) + 9sen(a/3) + + n 2 sen(a/n) n 2.

Licenciatura en Matemáticas Soluciones del examen final de Cálculo de septiembre de sena + 4sen(a/2) + 9sen(a/3) + + n 2 sen(a/n) n 2. Licenciatura en Matemáticas Soluciones del examen final de de septiembre de 00 Ejercicio 1. (a) Calcular: lím n sena + 4sen(a/) + 9sen(a/3) + + n sen(a/n) n (a + 1)(a + ) (a + n) (b) Estudiar la convergencia

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

AMPLIACIÓN DE CÁLCULO

AMPLIACIÓN DE CÁLCULO AMPLIACIÓN DE CÁLCULO Problemas propuestos Departamento de Matemáticas del Área Industrial Índice general Programa III Tema 1. Enunciados 1 Tema 2. Enunciados 6 Tema 3. Enunciados 12 Tema 4. Enunciados

Más detalles

Funciones reales de varias variables

Funciones reales de varias variables PROBLEMAS DE CÁLCULO II Curso 2-22 2 Funciones reales de varias variables. Dibuja las curvas de niveles,,..., 5 y la representación gráfica de las siguientes funciones a) f(x, y) = 5 x y b) f(x, y) = x

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CASTILLA Y LEÓN CONVOCATORIA SEPTIEMBRE 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Prueba A Problemas a) f(x) x El denominador de f(x) nunca se anula; por

Más detalles

Clase 14: Fórmula del Cambio de Variables

Clase 14: Fórmula del Cambio de Variables Clase 4: Fórmula del Cambio de Variables C.J. Vanegas 4 de junio de 8 Recordemos.. Método de sustitución en integrales de una variable: b f(g(t))g (t) dt g(b) a g(a) f(s) ds s g(t) ds g (t)dt t a s g(a)

Más detalles

La puntuación depende del modo de resolución.

La puntuación depende del modo de resolución. Grupo B 16/17 Ampliación de Cálculo En todos los casos, se pide contestar razonadamente La puntuación depende del modo de resolución Ejercicio 1 (15 puntos por apartado) Una semiesfera sólida de densidad

Más detalles

a n en las que n=1 s n = n + 1 Solución: a) Utilizando el criterios de D Alembert se obtiene que a n+1 n a n 3 > 1 n=1

a n en las que n=1 s n = n + 1 Solución: a) Utilizando el criterios de D Alembert se obtiene que a n+1 n a n 3 > 1 n=1 EJERCICIO DE FUNDAMENTO MATEMÁTICO eries. Estudia el carácter de las series (a El término general es a n en las que (b la suma parcial n-sima es a n n n+ 3 n, n,, 3,... s n n, n,, 3,... n + olución: a

Más detalles

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2.

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. 1 1 4, 0 1 a.- (, ) = 2 1 4, 1 2 2 1 < 3, 0 < 1 b.- (, ) = 1 1 < 3, 1 2 3 3 4,

Más detalles

Unidad 10 Integrales definidas. Aplicaciones

Unidad 10 Integrales definidas. Aplicaciones Unidad Integrales definidas. Aplicaciones PÁGINA 5 SOLUCIONES. Las áreas quedan: A u A u A 5 u. El área del recinto viene dada por : ( ) ( ) Área d,5 u PÁGINA 9 SOLUCIONES. La solución queda: Directo:

Más detalles

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A Eámenes de Matemáticas de Selectividad ndalucía resueltos http://qui-mi.com/ Eamen de Selectividad Matemáticas JUNIO - ndalucía OPCIÓN. Sea f : R R definida por: f ( a b c. a [7 puntos] Halla a b y c para

Más detalles

PRÁCTICA COORDENADAS CILÍNDRICAS Y ESFÉRICAS CURSO CÁLCULO II. Práctica 3 (21/02/2017) Coordenadas cilíndricas

PRÁCTICA COORDENADAS CILÍNDRICAS Y ESFÉRICAS CURSO CÁLCULO II. Práctica 3 (21/02/2017) Coordenadas cilíndricas PRÁCTICA COORDENADAS CILÍNDRICAS Y ESFÉRICAS CURSO 016-017 CÁLCULO II Prácticas Matlab Práctica 3 (1/0/017) Objetivos o Estudiar los sistemas de coordenadas cilíndricas y esféricas. 3 o Definir regiones

Más detalles

gradiente de una función? Para esos valores, calcule la función potencial.

gradiente de una función? Para esos valores, calcule la función potencial. CAMPOS CONSERVATIVOS. FUNCIÓN POTENCIAL 1. Sea F = 4xy 3x ( z (, 2x (, 2x, z. Demuestre que Fdl trayectoria C. es independiente de la 2. Dado el campo vectorial F = 3x ( + 2y y ( e 3, 2x 2ye 3. Es posible

Más detalles

ANÁLISIS DE FUNCIONES

ANÁLISIS DE FUNCIONES ANÁLISIS DE FUNCIONES.- Calcula f() de manera que f () = Ln( + ) y que f(0) = 0. (nota: Ln significa logaritmo neperiano). Universidad de Andalucía Se trata de resolver la integral que hemos de hacerlo

Más detalles

COORDENADAS POLARES O CILÍNDRICAS

COORDENADAS POLARES O CILÍNDRICAS COORDENADAS POLARES O CILÍNDRICAS Para definir la posición de un punto en un plano (o en el espacio) podemos utilizar distintos tipos de coordenadas, siendo las más normales las coordenadas rectangulares

Más detalles

Unidad 9 Integrales indefinidas

Unidad 9 Integrales indefinidas Unidad 9 Integrales indefinidas PÁGINA SOLUCIONES. La solución es: a) F ( ) + 8; F( ), 5 b) F() cos ; F( ) cos + c) F ( ) e + ; F( ) e d) F ( ) ln( + ) + 5; F( ) ln( + ). La solución en cada caso: a) F

Más detalles

ESCUELA MILITAR DE INGENIERIA CÁLCULO II Misceláneas de problemas 2013

ESCUELA MILITAR DE INGENIERIA CÁLCULO II Misceláneas de problemas 2013 ESCUELA MILITAR DE INGENIERIA CÁLCULO II Misceláneas de problemas 2013 Tema: Aplicaciones de las Derivadas Parciales. 1. Demuestre que el plano tangente al cono z = a 2 x 2 + b 2 y 2 pasa por el origen.

Más detalles