a n en las que n=1 s n = n + 1 Solución: a) Utilizando el criterios de D Alembert se obtiene que a n+1 n a n 3 > 1 n=1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "a n en las que n=1 s n = n + 1 Solución: a) Utilizando el criterios de D Alembert se obtiene que a n+1 n a n 3 > 1 n=1"

Transcripción

1 EJERCICIO DE FUNDAMENTO MATEMÁTICO eries. Estudia el carácter de las series (a El término general es a n en las que (b la suma parcial n-sima es a n n n+ 3 n, n,, 3,... s n n, n,, 3,... n + olución: a Utilizando el criterios de D Alembert se obtiene que a n+ lim 4 n a n 3 > y la serie diverge. b Claramente se ve que lim s n n Como s n es la suma parcial y converge, entonces la serie converge.. Estudia el campo de convergencia de la serie ( (n (x n 4 6 (n ( 3 (n +!! (x n (n!! olución: Aplicando el criterio de D Alembert a la serie de valores absolutos ( lim a n+ 3 n + n a n lim x x < n n + luego la serie converge para < x < < x < Para x y x la serie también es absolutamente convergente. e prueba utilizando el criterio de Raabe.

2 3. Considera la función y arccos(x. a Halla su desarrollo en potencias de x (McLaurin. b Justifica que el desarrollo anterior es útil para hallar I / arccos(x dx y expresa I como una serie numérica convergente. c Indica una cota del error cometido al tomar como valor de I la suma de los tres primeros términos de la serie obtenida en b. olución: a abemos que f(x arccos(x f (x x x 4 x( x4 / y teniendo en cuenta que ( m ( + x m + entonces + mx + ( x 4 / ( + ( x 4 / ( + ( m x + m(m x +! ( x 4 + ( m x + + n ( + x4 + 3! x8 + + y como n n! (n!! f (x x( x 4 / donde tomamos por definición (!!. cuenta que arccos( π entonces f(x π x + n n x n + m(m (m x 3 + 3! ( ( x n (n!! x 4n +, x < n n! n (n!! x 4n+ (n!! (n!! t 4n+ dx π (n!! n i integramos y tenemos en (n!! (n!!(4n + x4n+ π x 3 4 x6 + b El resultado obtenido nos vale para calcular el desarrollo en serie de la integral que nos piden / ( / I arccos(x π dx (n!! (n!!(4n + x4n+ dx n π / x (n!! (n!!(4n + (4n + 3 x4n+3 π 4 (n!! π (n!!(4n + (4n + 3 4n n ( x 4 n +

3 c e puede obtener una cota al error cometido utilizando estos tres primeros términos ya que tenemos para el resto una serie de potencias de la forma n a nx n donde los a n son positivos y decrecientes, donde a n x n a x n n x n a x x Analizar el carácter de las siguientes series utilizando los criterios indicados a b c n ln(n n+ n +n+5 n 3 n +5 ol: Div (Integral ol: Div (Comparación ol: Conv (Comparación d 3n+ ol: Conv (D Alembert 3 n e f n x n ol: Conv si x < (Raíz p ol: p > Conv; p < Div (Raabe ( 3 5 (n 4 6 (n 5. Clasifica las siguientes series a c e g 3+sin (n, ol.: conv b n 3n n +n, ol.: conv 5 n+ a n, a > ol.: conv d n! ( n+ ln(n, ol.: conv n 3 n n!, ol.: div f n n! n n, ol.: conv n ( n n n, ol.: conv h ( + n n, ol.: div 6. Obtener el radio de convergencia de las siguientes series de funciones a n x n n, ol.: x < b 3 n x n, ol.: x < 3 n x n c ol.: x < d e n x n, ol.:x n ( n x n+ n f sin(x, ol.:x R e (n +! x, ol.: x > n n g cos(x ( n xn (n!, ol.:x R h x n ex n!, ol.:x R n i ( n xn n, ol.: < x j x n n, ol.: x < 3

4 7. Utiliza el desarrollo de Taylor para aproximar la integral I. sin(x x dx. olución: abemos que luego y sin(x x sin(x sin(x n n ( n x n+ (n +! ( n x(n+ (n +! ( n x 4n (n +! x4 3! + x8 5! n Como la serie es absolutamente convergente para todo valor de x tenemos que I. n sin(x. dx x ( n x 4n (n +! dx n n. x 4n ( n (n +! dx ( n x 4n+ (n +!(4n + x x5 3!5 + x9 5!9 x x5 3 + x9 8 Como la serie es alternada y decreciente, con los dos primeros términos ya obtenemos una aproximación con error menor que 9 /8. Integración Múltiple. Cambiar el orden de integración de las siguientes integrales dobles (es conveniente dibujar las regiones en cuestión. a 4 dy f(x, ydx (ol.: dx f(x, ydy b a dx a x f(x, ydy (ol.: a dy a y f(x, ydx c 3 dx x x/3 f(x, ydy (ol.: dy 3y y/ f(x, ydx+ 9 dy 3 x+ y/ f(x, ydx d dy y f(x, ydx (ol.: dx 6 y 4 f(x, ydy+ 8 dx x x+ x+ e dy 3 f(x, ydx (ol.: dx 4+x f(x, ydy+ 3 dx f(x, ydy y f(x, ydy

5 . Calcula el volumen de la esfera x + y + z a. i la densidad de la misma viene dada por δ(x, y, z (x + y + z /3, calcula su masa y la densidad media. olución: Para este problema, lo más apropiado es utilizar coordenadas esféricas x r sin(θ cos(ϕ y r sin(θ sin(ϕ x, y, z z r cos(θ J r sin(θ r, θ, ϕ y los límites de integración pasan a ser: r [, a], θ [, π], ϕ [, π], luego π π a V dx dy dz r sin(θdr dθ dϕ π dϕ R π sin(θdθ a r dr 4 3 πa3. La masa total será, teniendo en cuenta que δ r /3 π π a M δ(x, y, zdx dy dz r /3 r sin(θdr dθ dϕ πa/3. R y el promedio será P M V 9 a/3 3. Considera la intersección de una esfera de radio R con un cono cuyo vértice esta en el centro de la esfera y tiene una abertura de ángulo α. Calcula a El centro de gravedad de la figura (densidad constante. b La superficie total de la pieza y el centro de gravedad de la superficie. olución: a Por la simetría del problema, las coordenadas más apropiadas para resolver el problema son las coordenadas esféricas. x r sin(θ cos(ϕ y r sin(θ sin(ϕ z r cos(θ x, y, z J r sin(θ r, θ, ϕ i suponemos que la pieza esta situada con simetría de revolución respecto al eje z, y los límites de integración pasan a ser: r [, R], θ [, α], ϕ [, π]. En primer lugar calculamos el volumen de la pieza π α R V dx dy dz r sin(θdr dθ dϕ π dϕ D α sin(θdθ 5 R r dr 3 πr3 ( cos(α.

6 Obsérvese que si α π tenemos la esfera total y el volumen es V 4 3 πr3, y si α π/ tenemos el volumen de media esfera. Para calcular el centro de gravedad, por la simetría del problema tiene que estar en el eje z, por lo que sólo tenemos que calcular Z c.g. zdx dy dz π α R r cos(θr sin(θdr dθ dϕ V V V π dϕ D α cos(θ sin(θdθ R r 3 dr 3R( cos(α 6( cos(α. Obsérvese que si α π tenemos la esfera total y el centro de gravedad esta en el origen, Z c.g., y si α π/ tenemos media esfera, y su centro de gravedad es Z c.g. 3 8 R. b Para calcular la superficie de la pieza, primero calculamos la superficie de la parte esférica, e, y después la del cono, c. De las coordenadas polares, (r, θ, ϕ, en la parte esférica vemos que r R, siendo constante y θ [, α], ϕ [, π], mientras que para el cono tenemos que ahora la variable que es constante es θ α y r [, R], ϕ [, π]. π α x, y e x, z θ, ϕ y, z θ, ϕ J dθ dϕ θ, ϕ c π α π R π R R sin(θ dθ dϕ πr ( cos(α x, y J r, ϕ r sin(α dr dϕ πr sin(α + x, z y, z r, ϕ J dr dϕ r, ϕ NOTA: El área se puede obtener también fácilmente utilizando coordenadas cartesianas utilizando. Para la ecuación de la parte esférica utilizaríamos z R x y y para la ecuación del cono z m x + y, con x + y R sin(α. Las integrales dobles las resolveríamos utilizando coordenadas polares. e repiten las integrales anteriores multiplicando el integrando por z R cos(θ en e o por z r cos(α en c. Esto es, calculamos π α x, y Z e z x, z θ, ϕ y, z θ, ϕ J dθ dϕ θ, ϕ Z c π α π R π R R 3 cos(θ sin(θ dθ dϕ x, y z r, ϕ r cos(α sin(α dr dϕ 6 x, z y, z r, ϕ J dr dϕ r, ϕ

7 y Z c.g. ez e + c Z c e + c 4. Hallar el área de la superficie de un toro dado por las ecuaciones paramétricas x (b + a cos(θ cos(ϕ y (b + a cos(θ sin(ϕ z a sin(θ con b > a y θ [, π], ϕ [, π]. olución: Tras una operaciones obtenemos que x, y x, z θ, ϕ y, z θ, ϕ J a (b + a cos(θ θ, ϕ y por tanto A π π a (b + a cos(θ dθ dϕ 4 π a b 5. Hallar el área de la superficie del paraboloide z x + y, limitado por z. olución: A D + (z x + (z y dx dy π 6 ( Calcular el área de la parte del plano x + y + z a, limitada por x + y a, x, y, z. olución: A 3 4 π a. 7. Hallar el flujo del campo vectorai F (xz, yz, z a través de la porción de esfera de radio unidad que se encuentra en el primer octante. olución: La ecuación de la esfera en el primer octante viene dada por z f(x, y x y, x, y. En coordenadas cartesianas tenemos Φ F ds ( F f x F f y +F z dx dy 7 dx dy π 4.

8 8. Hallar el área total y el área de la intersección encerrada por las elipses (a > b x a + y b, x b + y a. olución: Tomaremos coordenadas elípticas, pero estas coordenadas serán distintas para cada elipse. Para la elipse alargada según el eje x tendremos { x ar sin(α y br sin(α con r [, ] y aunque tenemos α [, π] no significa que α sea el ángulo de las coordenadas polares. Por ejemplo, por la simetría del problema, las dos elipses se cortarán cuando x y. Por tanto, si igualamos ar sin(α br sin(α tan(α a ( a α arctan b b Con esto, un cuarto del área total será 4 A tot arctan a b arctan a b a b r dr dα a b arctan a b El área de la intersección se obtiene repitiendo los mismos pasos, pero siguiendo la otra elipse, donde las coordenadas son { x br sin(α y ar sin(α En estas nuevas coordenadas, las dos elipses se cruzan para el siguiente ángulo br sin(α ar sin(α tan(α b ( b α arctan a a Con esto, un cuarto del área de la intersección será arctan b 4 A a int arctan b a a b r dr dα a b arctan b a 9. Considera el campo vectorial F (y, y, xz y la superficie delimitada por los planos x + z 4, z y el cilindro (x + y 4. a Calcular el volumen y el área de la pieza. b Hallar el flujo del campo a través de la cara superior de la pieza. c Calcular el flujo de F a través de la misma superficie y comprueba el Teorema de tokes. 8

9 olución: a El volumen es V (4 xdx dy y utilizando polares (desplazadas dos unidades en el eje x { x + r cos(α y r sin(α V π ( r cos(αr dr dα 8 π. Respecto al área, tenemos que la parte inferior vale 4π. La superior π π (z x + (z y + r dr dα r dr dα 4 π Para el área lateral, podemos utilizar lo estudiado en integrales curvilíneas 3 z dl donde C es la curva que describe el perímetro de la parte superior de la pieza. La podemos parametrizar como siguie: con t [, π] 3 C z dl π C x + cos(t y sin(t z 4 x cos(t (x + (y + (z dt π + sin (t dt Esta integral no tiene solución explícita en términos de funciones elementales y habría que evaluarla numéricamente. b Φ F ds ( F f x F f y + F z dx dy (y + x z dx dy c Es el ejercicio hecho en la práctica 3. 9

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 9 de Junio de 4 Primera parte Ejercicio. Un depósito subterráneo de gasolina tiene forma de cilindro elíptico con semieje orizontal a

Más detalles

Certamen 2 - Mate 024 (Pauta)

Certamen 2 - Mate 024 (Pauta) Certamen - Mate 4 (Pauta) noviembre 6, 14 1. Calcular γ x 4 + y 4 1 dx + y 3 x 4 + y 4 1 dy en cada uno de los siguientes casos: a) γ es la curva x + y = 1 4 y se recorre en sentido positivo. b) γ es la

Más detalles

Problemas de Análisis Vectorial y Estadístico

Problemas de Análisis Vectorial y Estadístico Relación 1. Funciones Γ y β 1. Función Gamma Definimos la función gamma Γ(p) como: Demostrar que: Γ(p) = t (p 1) e t dt para p> a) Γ(1) = 1 b) Integrando por partes, ver que Γ(p) = (p 1)Γ(p 1) para p>1

Más detalles

Integrales Múltiples.

Integrales Múltiples. CAPÍTULO 9 Integrales Múltiples. En este capítulo generalizamos las integrales definidas de una variable a dos y tres variables. La interpretación geométrica de las integrales definidas de una variable

Más detalles

Integrales Múltiples.

Integrales Múltiples. CAPÍTULO 8 Integrales Múltiples. En este capítulo generalizamos las integrales definidas de una variable a dos y tres variables. La interpretación geométrica de las integrales definidas de una variable

Más detalles

Examen final de Cálculo Integral

Examen final de Cálculo Integral Examen final de Cálculo Integral de junio de 11 (Soluciones) Cuestiones C 1 La respuesta es que la función es integrable, como consecuencia del Teorema 1.1 de los apuntes, o el Teorema del Capítulo 5 del

Más detalles

MÉTODOS MATEMÁTICOS II

MÉTODOS MATEMÁTICOS II MÉTODOS MATEMÁTICOS II (Licenciatura de Física. Curso 2007-2008) Boletín de problemas a evaluar correspondientes a los Temas I y II Fecha de entrega: Viernes, 23 de Noviembre de 2007 1. Calcula los siguientes

Más detalles

Integral Doble e Integral Triple

Integral Doble e Integral Triple www.cidse.itcr.ac.cr/revistamate Práctica 6 Integral Doble e Integral Triple Cambio de variable con coordenadas polares y coordenadas ciĺındricas. Cálculo Superior Instituto Tecnológico de Costa ica Escuela

Más detalles

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8 ANALISIS MATEMATIO II (iencias- 2011) Integrales sobre curvas (o de línea) Trabajo Práctico 8 1. Evaluar las siguientes integrales curvilíneas γ f ds. (a) f(x, y, z) = x + y + z ; r(t) = (sen t, cos t,

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE PLANO TANGENTE Y VECTOR NORMAL. AREA DE UNA SUPERFICIE 1) En cada uno de los siguientes ejercicios se presenta una S dada en forma paramétrica,

Más detalles

Soluciones de los ejercicios del segundo examen parcial

Soluciones de los ejercicios del segundo examen parcial Matemáticas III GIC, curso 5 6 Soluciones de los ejercicios del segundo examen parcial EJERCICIO. Considera la integral doble π π ibuja la región del plano XY en la que se está integrando. Usa el teorema

Más detalles

1. INTEGRALES MÚLTIPLES

1. INTEGRALES MÚLTIPLES 1. INTEGALES MÚLTIPLES 1. Calcular las siguientes integrales iteradas: 1. x x 7 y dy dx dx 1. x x y y dx dy 1 1 7. (1 + xy) dx dy 1 1 π/. x sen y dy dx 5. (x + y) dx dy 6/ 1 6. (x + y) 8 dx dy 616 5 1

Más detalles

TERCER EXAMEN EJERCICIOS RESUELTOS

TERCER EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II G. I. T. I.) TERCER EXAMEN 4 EJERCICIOS RESUELTOS EJERCICIO. ) Dibuja la región limitada por la circunferencia de ecuación r = r θ) = senθ) y la lemniscata de ecuación r = r θ) = cosθ).

Más detalles

Examen final de Cálculo Integral

Examen final de Cálculo Integral Examen final de Cálculo Integral 8 de junio de (Soluciones) Cuestiones C Sí se puede asegurar que es integrable, como consecuencia del teorema 4. de los apuntes: Llamamos W y f : W R a la esfera y a la

Más detalles

Integrales de Superficie.

Integrales de Superficie. CAPÍTULO 9. Integrales de Superficie. Este capítulo cierra los tipos de integrales que estudiamos en el curso. Se practica el concepto de integral de superficie y se dan aplicaciones geométricas y físicas.

Más detalles

Análisis Matemático I

Análisis Matemático I Universidad Nacional de La Plata Facultad de Ciencias Exactas Departamento de Matemática Análisis Matemático I Evaluación Final - Agosto de 26. Nombre: Dirección correo electrónico: Ejercicio. Sea f una

Más detalles

Integración múltiple: integrales triples

Integración múltiple: integrales triples Problemas propuestos con solución Integración múltiple: integrales triples ISABEL MARRERO epartamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Integrales iteradas 1. Teorema

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen del 14 de Septiembre de 2000 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen del 14 de Septiembre de 2000 Primera parte ÁLULO Primer curso de Ingeniero de Telecomunicación Examen del de Septiembre de Primera parte Ejercicio. Un flan tiene forma de tronco de paraboloide de revolución, siendo r y r losradiosdesusbasesyh su

Más detalles

Nombre y Apellidos: x (1 + ln(x)) si x > 0 f(x) = 0 si x = 0.

Nombre y Apellidos: x (1 + ln(x)) si x > 0 f(x) = 0 si x = 0. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria de Septiembre de Septiembre de 008 Nombre y Apellidos: DNI: (6.5 p.) ) Se considera la función f : [0,

Más detalles

y v 0, 0, 1 y v 1, 0, 1 se tiene la ecuación

y v 0, 0, 1 y v 1, 0, 1 se tiene la ecuación SUPERFICIES Mostraremos varios métodos para generar superficies y encontrar sus ecuaciones. 1. Superficies cilíndricas Dada una curva en el plano de ecuación y un vector con Γ 0, es decir, no horizontal,

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-112-4-V-1--217 CURSO: SEMESTRE: Primero CÓDIGO DEL CURSO: 112 TIPO DE EXAMEN: Examen Final Parcial FECHA DE

Más detalles

Lista de Ejercicios Complementarios

Lista de Ejercicios Complementarios Lista de Ejercicios omplementarios Matemáticas VI (MA-3) Verano. ean α >, β > y a, b R constantes. ea la superficie que es la porción del cono de ecuación z = α x + y que resulta de su intersección con

Más detalles

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen Universidad Técnica Federico anta aría Coordinación de atemática IV Guía-Apunte de Preparación del CAR 2 do emestre 2011 Información Contenidos del Certamen Teorema de Green, Teorema de Green para Regiones

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Integrales de Superficie.

Integrales de Superficie. CAPÍTULO 10 Integrales de Superficie. Este capítulo cierra los tipos de integrales que estudiamos en el curso. Se practica el concepto de integral de superficie y se dan aplicaciones geométricas y físicas.

Más detalles

Primer Parcial MA1002 Cálculo II ExMa

Primer Parcial MA1002 Cálculo II ExMa Primer Parcial MA1002 Cálculo II ExMa Cualquiera de los siguientes objetivos puede ser evaluado en el primer parcial. 1. Demostrar proposiciones que se cumplen para infinidad de números naturales, aplicando

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican:

INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican: INTEGACION EN VAIAS VAIABLES: Integrales dobles.. Evaluar las siguientes integrales iteradas: (x y + y )dy dx xye x+y dy dx ( x ln y)dy dx ln [((x + )(y + )] dx dy. 3 ; ; ; ln. 5. Sea I = [, ] [, 3]. Calcular

Más detalles

Hoja de Prácticas tema 4: Integrales múltiples. (xy +x 2 +y 2 )dydx =

Hoja de Prácticas tema 4: Integrales múltiples. (xy +x 2 +y 2 )dydx = Cálculo II EPS (Grado TICS) Curso - Hoja de Prácticas tema 4: Integrales múltiples. Calcular ( + + )da en la región = {(,) R :, }. ( + + )da = ( + + )dd = ( + + = = d 5 = + + 9 d = 49. . Calcular cos()dd

Más detalles

SEMINARIO 1: ELEMENTOS DIFERENCIALES DE LÍNEA, SUPERFICIE Y VOLUMEN

SEMINARIO 1: ELEMENTOS DIFERENCIALES DE LÍNEA, SUPERFICIE Y VOLUMEN SEMINARIO 1: ELEMENTOS DIFERENCIALES DE LÍNEA, SUPERFICIE Y VOLUMEN Sistemas de coordenadas 3D Transformaciones entre sistemas Integrales de línea y superficie SISTEMA COORDENADO CARTESIANO O RECTANGULAR

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green ANÁLISIS MATEMÁTIO II - Grupo iencias 018 Práctica 9 ampos conservativos - Teorema de Green A. ampos conservativos 1. Mostrar que F x, y) = y cos x) i + x sen y) j no es un campo vectorial gradiente..

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0. ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de 2003

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de 2003 CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de Ejercicio 1. Calcular el volumen del elipsoide x a + y b + z c 1. Probar que el elipsoide de volumen máximo,

Más detalles

Integración sobre superficies

Integración sobre superficies Problemas propuestos con solución Integración sobre superficies IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Parametrizaciones 1 2. Área de una superficie

Más detalles

Integrales de lı nea y de superficie

Integrales de lı nea y de superficie EJERIIO DE A LULO II PARA GRADO DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera 4 4.1 Integrales de lı nea y de superficie Integrales sobre curvas

Más detalles

Examen Final de Cálculo Vectorial MATE PREGUNTAS ABIERTAS TEMA A Diciembre 6 de Nombre: Código:

Examen Final de Cálculo Vectorial MATE PREGUNTAS ABIERTAS TEMA A Diciembre 6 de Nombre: Código: UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Examen Final de Cálculo Vectorial MATE 1207 PREGUNTAS ABIERTAS TEMA A Diciembre 6 de 2017 Este es un examen individual, no se permite el uso de libros,

Más detalles

Enunciado y solución del cuarto certamen de Cálculo 3. Viernes 5 de Julio de 2013 Prof: Roberto Cabrales

Enunciado y solución del cuarto certamen de Cálculo 3. Viernes 5 de Julio de 2013 Prof: Roberto Cabrales nunciado y solución del cuarto certamen de álculo. Viernes 5 de Julio de 1 Prof: oberto abrales 1 puntos). ean f y g son campos escalares en y F un campo vectorial en. 1. puntos) Muestre que divrotf))..

Más detalles

PROBLEMAS DE CÁLCULO I

PROBLEMAS DE CÁLCULO I INGENIERÍAS TÉCNICAS INDUSTRIALES PROBLEMAS DE CÁLCULO I UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas ING. TEC. IND. MECANICA, ELECTRICIDAD Y ELECTRÓNICA 24

Más detalles

Parametrización de superficies Integrales de superficie. h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/

Parametrización de superficies Integrales de superficie. hp://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Parametrización de superficies Integrales de superficie h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Parametrización de una superficie en R 3 ea un dominio del espacio R 2, donde los puntos están definidos

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 3 de Julio de 2001 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 3 de Julio de 2001 Primera parte ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. de Julio de Primera parte Ejercicio. Se considera la función definida por la determinación principal del arco tangente, es decir f (x) =

Más detalles

Capítulo 5. Integrales sobre curvas y superficies

Capítulo 5. Integrales sobre curvas y superficies Capítulo 5. Integrales sobre curvas y superficies 5.1. Integrales de funciones escalares sobre curvas 5.2. Integrales de campos vectoriales sobre curvas 5.3. Teorema de Green 5.4. Integrales sobre superficies

Más detalles

Integración doble Integrales dobles sobre regiones no rectangulares

Integración doble Integrales dobles sobre regiones no rectangulares Nuestra intención es extender la definición de integral doble, de funciones continuas, sobre regiones más generales que el rectángulo. Para ello definiremos dos tipos de regiones en el plano, que llamaremos

Más detalles

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera EJECICIOS E CA LCULO II PAA GAOS E INGENIEI A Elaborados por omingo Pestana y Jose Manuel odrı guez, con Arturo de Pablo y Elena omera 3 3. Integracio n en n Integral mu ltiple. f en los siguientes casos:

Más detalles

Integral de superficie.

Integral de superficie. Tema 4 Integral de superficie. 4.1 uperficies. Definición 4.1 ean IR 2 un conjunto conexo y κ: IR 3 una función continua. La imagen = κ se llama superficie descrita por κ. También se dice que κ es una

Más detalles

Matemáticas III Tema 6 Integrales de superficie

Matemáticas III Tema 6 Integrales de superficie Matemáticas III Tema 6 Integrales de superficie Rodríguez ánchez, F.J. Muñoz Ruiz, M.L. Merino Córdoba,. 214. OCW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia Creative Commons Attribution- NonComercial-hareAlike

Más detalles

( ) x y dxdy. x y dxdy y. sin 2θ 2 = = = x y dxdy. 3 4y y ln. 1

( ) x y dxdy. x y dxdy y. sin 2θ 2 = = = x y dxdy. 3 4y y ln.   1 Cálculo II Exámenes esueltos Tercer Parcial. Evaluar la integral, pasando a coordenadas polares: Solución: haciendo los siguientes cambios, ( ) 4y 4y 4y x y y 4y 4y 4 4 4y x y sin θ x y = r ( sinθcosθ

Más detalles

MATE1207 Cálculo Vectorial Taller 1 Preparación P2 Repaso semana 12

MATE1207 Cálculo Vectorial Taller 1 Preparación P2 Repaso semana 12 Universidad de los Andes Departamento de Matemáticas MATE127 Cálculo Vectorial Taller 1 Preparación P2 Repaso semana 12 1. Encuentre, si existen, los máximos locales, mínimos locales y puntos de silla

Más detalles

Análisis Matemático I

Análisis Matemático I Universidad Nacional de La Plata Facultad de Ciencias Exactas Departamento de Matemática Análisis Matemático I Evaluación Final - Agosto de 26. Nombre: Dirección correo electrónico: Ejercicio. Sea f una

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 2000 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 2000 Primera parte ÁLULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 000 Primera parte Ejercicio 1. Entre todos los rectángulos del plano YOZ,inscritos en la parábola z = a y (siendo a>0) yconbaseenelejeoy

Más detalles

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x 1. Hallar κ de manera que el flujo saliente del campo f ( x, = (x + y + z, 6y a través de la frontera del cuerpo x + y + z 16 x + y κ, 0 < k < 4 f : R R un campo vectorial definido por:. Sea γ ( t ) =

Más detalles

3 Integración en IR n

3 Integración en IR n a t e a POBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CUSO 29 21 3 Integración en I n 3.1 Integral múltiple. Problema 3.1 Calcula f en los siguientes casos: Q i) f(x, y) =

Más detalles

ANALISIS II 12/2/08 COLOQUIO TEMA 1

ANALISIS II 12/2/08 COLOQUIO TEMA 1 ANALISIS II //08 COLOQUIO TEMA Sea f : R R un campo vectorial C y C la curva parametrizada por: γ(t) = (cost, 0, sent) con t ɛ [0, π] Sabiendo que C f ds = 6 y que rot( f( ) = (z, ), calcular la integral

Más detalles

1. Sea f una función definida en I = [1, 2] [1, 4] del siguiente modo: (x + y) 2, x y 2x, 0, en el resto.

1. Sea f una función definida en I = [1, 2] [1, 4] del siguiente modo: (x + y) 2, x y 2x, 0, en el resto. La integral múltiple Problemas resueltos. Sea f una función definida en I [, ] [, 4] del siguiente modo: { (x + y), x y x, f(x, y), en el resto. Indique, mediante un dibujo, la porción A del rectángulo

Más detalles

Pauta Auxiliar N 10 Aplicaciones de la Integral I Viernes 1 de Junio de 2012

Pauta Auxiliar N 10 Aplicaciones de la Integral I Viernes 1 de Junio de 2012 Pauta Auxiliar N Aplicaciones de la Integral I Viernes de Junio de P.- (P Examen Adicional - ) Sea A la región delimitada por las rectas y = x, y = ax, y = ax, a a) Calcule el área de A y el volumen del

Más detalles

Soluciones de los ejercicios del segundo examen parcial

Soluciones de los ejercicios del segundo examen parcial Matemáticas II (GIC, curso 5 6 Soluciones de los ejercicios del segundo examen parcial EJERCICIO. Halla el área que encierra la curva C dada en polares por r = + sen(θ. Solución: Primero debemos hallar

Más detalles

Nombre/Código: Septiembre Parcial II

Nombre/Código: Septiembre Parcial II 1 Cálculo II Sección 1 Guillermo Mantilla Nombre/Código: Septiembre 11 1 Parcial II Instrucciones: Duración 7mins. Durante el examen no son permitidos libros, notas, calculadoras, celulares o en general

Más detalles

Capítulo 4. Integración

Capítulo 4. Integración Capítulo 4. Integración En este capítulo vamos a estudiar cómo se puede hacer integración con funciones multivariables. Estudiaremos los siguientes temas: 4.1. Integral de Riemann, teorema de Fubini. 4..

Más detalles

Tema 4: Integración de funciones de varias variables

Tema 4: Integración de funciones de varias variables Departamento de Matemáticas. Universidad de Jaén. Análisis Matemático II. Curso 29-21. Tema 4: Integración de funciones de varias variables 1. Evaluar las siguientes integrales iteradas e) f ) g) 1 2 1

Más detalles

Universidad de Puerto Rico. Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas Examen Final Mate de mayo de 2016

Universidad de Puerto Rico. Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas Examen Final Mate de mayo de 2016 Universidad de Puerto Rico. Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas Examen Final Mate 332 5 de mayo de 26 Nombre. Sección Número de Estudiante Profesor Número de puntos disponibles:

Más detalles

Integración múltiple: integrales dobles

Integración múltiple: integrales dobles Problemas propuestos con solución Integración múltiple: integrales dobles ISABEL MAEO epartamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice. Integrales iteradas 2. Teorema

Más detalles

Ejercicios Tema 4: INTEGRAL DE SUPERFICIE (incluye ejercicios exámenes cursos anteriores)

Ejercicios Tema 4: INTEGRAL DE SUPERFICIE (incluye ejercicios exámenes cursos anteriores) Ejercicios Tema 4: INTEGRAL DE UPERFICIE (incluye ejercicios exámenes cursos anteriores) 1. Hallar el flujo del campo vectorial F x, y, z a través de la superficie total del cilindro x 2 y 2 R 2, 0 z h.

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2007 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2007 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 6 de Junio de 7 Primera parte Ejercicio. Determinar los puntos de máxima y mínima pendiente de la gráfica de la función y = +x, x. Solución.

Más detalles

CAPÍTULO 10. Teoremas Integrales.

CAPÍTULO 10. Teoremas Integrales. CAPÍTULO 10 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

Teorema 1 (Cambio de Variable en R n ).

Teorema 1 (Cambio de Variable en R n ). Vamos a estudiar en este segundo capítulo sobre los cambios de variable para funciones de varias variables, algunos de los más habituales: los cambios de coordenadas a coordenadas polares en el plano,

Más detalles

A) Hallar el volumen del sólido formado cuando la región del primer cuadrante limitada por Z 4. 1 x 4 1 dx. Z b. p (x) h (x) dx.

A) Hallar el volumen del sólido formado cuando la región del primer cuadrante limitada por Z 4. 1 x 4 1 dx. Z b. p (x) h (x) dx. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA I.T.I. Especialidad en Electricidad. Curso 4-5. Soluciones al Segundo Parcial de Fundamentos Matemáticos de la Ingeniería. PROBLEMA.- A) Hallar el volumen del

Más detalles

Capítulo 3. Integración multidimensional. 1. Integrales de Riemann en rectángulos

Capítulo 3. Integración multidimensional. 1. Integrales de Riemann en rectángulos Capítulo 3 Integración multidimensional 1. Integrales de Riemann en rectángulos Definición (Partición de rectángulos). Consideremos el rectángulo [a, b] [c, d] y sean P 1 = {a = x 0, x 1,..., x n = b}

Más detalles

INTEGRALES MÚLTIPLES

INTEGRALES MÚLTIPLES INTEGALES MÚLTIPLES Introducción: Si f es una función definida sobre una región, la integral doble se puede interpretar como el volumen del sólido limitado superiormente por la superficie z = f(,, inferiormente

Más detalles

Cálculo Integral Agosto 2015

Cálculo Integral Agosto 2015 Cálculo Integral Agosto 5 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) (x 5 8x + 3x 3 ) ) (y 3 6y 6 5 + 8) dy 3) (y 3 + 5)(y + 3) dy 4) (t 3 + 3t + ) (t 3 + 5) dt 5) (3y

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. er. cuatrimestre de 8 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones. Ejercicio. Verificar el teorema de Stokes para el

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Comentarios y ejemplos - Práctica 10

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Comentarios y ejemplos - Práctica 10 ANÁLII MATEMÁTICO II - Grupo Ciencias 218 Comentarios y ejemplos - Práctica 1 A. Parametrizaciones de superficies El concepto de parametrización de una superficie es análogo al de parametrización de una

Más detalles

Parametrización de curvas Integrales de linea. h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/

Parametrización de curvas Integrales de linea. hp://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Parametrización de curvas Integrales de linea h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Curvas en el espacio En el espacio, una curva se define por el corte de dos superficies. La forma más general

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-0---M-00-0 CURSO: Matemática Intermedia SEMESTRE: Primero CÓDIGO DEL CURSO: 0 TIPO DE EXAMEN: Eamen Final

Más detalles

7. Cambio de variables en integrales triples.

7. Cambio de variables en integrales triples. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. Lección. Integrales múltiples. 7. Cambio de variables en integrales triples. El teorema del cambio de variables para integrales triples es análogo al de integrales

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO: 017 PERÍODO: PRIMER TÉRMINO MATERIA: Cálculo de una variable PROFESOR: EVALUACIÓN:

Más detalles

Ejercicios Tercer Parcial del curso MA-1003.

Ejercicios Tercer Parcial del curso MA-1003. Ejercicios para MA 1003: álculo III 1 UNIVERIDAD DE OTA RIA FAULTAD DE IENIA EUELA DE MATEMÁTIA DEPARTAMENTO DE MATEMÁTIA APLIADA MA-1003 álculo III I ILO 2018 Ejercicios Tercer Parcial del curso MA-1003.

Más detalles

U de Talca. Funciones y series de potencias Introducción. Temas Métodos para determinar series de potencias de nuevas funciones.

U de Talca. Funciones y series de potencias Introducción. Temas Métodos para determinar series de potencias de nuevas funciones. Sesión 28 Funciones y series de potencias Temas Métodos para determinar series de potencias de nuevas funciones. 28. Introducción Colin Maclaurin Escocés. (698-6. Capacidades Conocer y aplicar el método

Más detalles

Cambio de variables. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna 1.

Cambio de variables. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna 1. Cambio de variables IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Introducción 1 2. Cambio de variables 1 2.1. El teorema del cambio de variables

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. 2do. cuatrimestre de 2015 Práctica 2 - Integrales de superficie. Definición.1. Una superficie paramétrica (superficie a secas para nosotros) es un conjunto

Más detalles

Geometría de masas: Cálculos del tensor de Inercia

Geometría de masas: Cálculos del tensor de Inercia Departamento: Física Aplicada Mecánica acional (ngeniería ndustrial) Curso 007-08 eometría de masas: Cálculos del tensor de nercia Tensor de inercia de una varilla delgada. Calculo del tensor de inercia

Más detalles

Tema 2. Ejercicios propuestos

Tema 2. Ejercicios propuestos Tema 2. Ejercicios propuestos 1.- - Calcular 2.- - Calcular 3.- - Sea = x2 y2 dx dy, siendo = {(x, y) 2 : 1 x y 2, x y 4x}. (x2 +y2 )dx dy, donde = (x, y) 2 : x2 + y2 2y, x2 + y2 1, x 0. (x, y) 2 1 x 2

Más detalles

ÍNDICE. 4 Círculos Ecuaciones de los círculos / Ecuación estándar de un círculo Problemas resueltos Problemas complementarios

ÍNDICE. 4 Círculos Ecuaciones de los círculos / Ecuación estándar de un círculo Problemas resueltos Problemas complementarios ÍNDICE 1 Sistemas de coordenadas lineales. Valor absoluto. Desigualdades... 01 Un sistema de coordenadas lineales / Intervalos finitos / Intervalos infinitos / Desigualdades 2 Sistema de coordenadas rectangulares...

Más detalles

AMPLIACIÓN DE CÁLCULO

AMPLIACIÓN DE CÁLCULO AMPLIACIÓN DE CÁLCULO Problemas propuestos Departamento de Matemáticas del Área Industrial Programa de Ampliación de Cálculo. Curso 2014/15 1. Cálculo de integrales múltiples Integrales dobles en rectángulos;

Más detalles

AMPLIACIÓN DE CÁLCULO

AMPLIACIÓN DE CÁLCULO AMPLIACIÓN DE CÁLCULO Problemas propuestos Departamento de Matemáticas del Área Industrial Índice general Programa III Tema 1. Enunciados 1 Tema 2. Enunciados 6 Tema 3. Enunciados 12 Tema 4. Enunciados

Más detalles

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2.

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. 1 1 4, 0 1 a.- (, ) = 2 1 4, 1 2 2 1 < 3, 0 < 1 b.- (, ) = 1 1 < 3, 1 2 3 3 4,

Más detalles

Apellidos:... Nombre:... Examen

Apellidos:... Nombre:... Examen Cálculo Numérico I. Grado en Matemáticas y doble grado Física/Matemáticas. 16 de junio de 017 Curso 016/017. Apellidos:... Nombre:... Examen 1. Explicar razonadamente si las siguientes afirmaciones son

Más detalles

ANÁLISIS REAL Y COMPLEJO. INGENIERÍA TELEMÁTICA EXAMEN FEBRERO 2003

ANÁLISIS REAL Y COMPLEJO. INGENIERÍA TELEMÁTICA EXAMEN FEBRERO 2003 EXAMEN FEBRERO 23 La ecuación e x 1 x = admite la raíz real x =. Probar que no puede tener otra. Justi car porqué es impropia y calcular la integral Z 2 1 dx x p ln x Estudiar la continuidad y las derivadas

Más detalles

Funciones reales de varias variables

Funciones reales de varias variables PROBLEMAS DE CÁLCULO II Curso 2-22 2 Funciones reales de varias variables. Dibuja las curvas de niveles,,..., 5 y la representación gráfica de las siguientes funciones a) f(x, y) = 5 x y b) f(x, y) = x

Más detalles

Cálculo de Geodésicas en Superficies de Revolución

Cálculo de Geodésicas en Superficies de Revolución Cálculo de Geodésicas en Superficies de Revolución Superficies de Revolución Sea S R 3 la superficie de revolución obtenida al girar una curva regular del plano XZ que no corte al eje Z alrededor del mismo.

Más detalles

Tarea 3 - Vectorial

Tarea 3 - Vectorial Tarea 3 - Vectorial 5. Part :. -.3.. Hallar las lineas de flujo σ(t) de los campos vectoriales F (x, y) = x, 4y y G(x, y) = x ı y j que cumplen σ() = (, ). olución: Las lineas de flujo del campo vectorial

Más detalles

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013 Análisis II - Análisis matemático II - Matemática 3 do. cuatrimestre de 3 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones.. Verificar el teorema de Stokes para el hemisferio

Más detalles

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2008

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2008 Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 8 MA- Practica: semana y/o Ejercicios sugeridos para la semana y/o. Cubre el siguiente material: Propiedades de la

Más detalles

Teorema de Cambio de Variables para Integrales Dobles

Teorema de Cambio de Variables para Integrales Dobles Universidad de Chile Facultad de Ciencias Físicas y Matemáticas epartamento de Ingeniería Matemática Cátedra - MA2A1 22 de Enero 2008 Teorema de Cambio de Variables para Integrales obles Cuál es la idea:

Más detalles

Práctica

Práctica UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE MATEMATICA HPV/ Práctica. 5141. Problema 1. Determinar el área de la región comprendida entre los gráficos de las ecuaciones

Más detalles

GUÍA DE EJERCICIOS - INTEGRALES MÚLTIPLES

GUÍA DE EJERCICIOS - INTEGRALES MÚLTIPLES GUÍA DE EJERIIOS - INTEGRALES MÚLTIPLES 1. Escriba la expresión que permite calcular por integrales dobles: a. El área de una región plana R. b. El volumen de un sólido V, de altura z = f(x,y). c. La masa

Más detalles

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación Soluciones de los ejercicios del examen de del 29 de junio de 27 Primero de Ingeniería de Telecomunicación Ejercicio a Justifica que la ecuación x 2 = x sen x+ cos x tiene exactamente dos soluciones reales.

Más detalles