Examen final de Cálculo Integral

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Examen final de Cálculo Integral"

Transcripción

1 Examen final de Cálculo Integral 8 de junio de (Soluciones) Cuestiones C Sí se puede asegurar que es integrable, como consecuencia del teorema 4. de los apuntes: Llamamos W y f : W R a la esfera y a la función del enunciado, respectivamente. Tomamos el paralelepípedo P [, ], que contiene a la esfera, y llamamos f : P R a la prolongación de f con ceros en todos los puntos de P \W. Entonces f es acotada y sus discontinuidades están contenidas en la unión de las gráficas de tres funciones de dos variables: α : {(x, y) R : x + y 4} R, α(x, y) 4 x y β : {(x, y) R : x + y 4} R, β(x, y) 4 x y γ : [, ] [, ] R, γ(x, y) x y. (Hace falta considerar también α y β, cuyas gráficas forman la superficie esférica, porque al prolongar la funicón inicial f con ceros pueden haberse introducido discontinuidades en puntos de la superficies esférica donde f era continua.) C Ver el apartado.6.(4) de los apuntes. C La fórmula F ds Σ + Σ que forma parte de la definición.8 de los apuntes. F N dσ, C 4 Sí, en el caso de campos vectoriales. Porque la fórmula de la definición.8 obliga a que si sustituimos F por F, cambie el signo del valor de la integral. No, en el caso de campos escalares. Porque la fórmula de la definición. no varía al cambiar un vector normal por su opuesto. C 5 El razonamiento utilizando el teorema de Stokes está en el apartado.4.(.a) de los apuntes. Alternativamente, aplicando el teorema de la ivergencia (y llamando W a la esfera y F al campo de clase C ), F ds ( F) dv dv, W + W W puesto que la divergencia del rotacional de un campo de clase C es siempre nula en todos los puntos.

2 Problemas P Primera forma de resolución. es una región simple en la dirección de las y. En efecto, donde {(x, y) R : x, ϕ (x) y ϕ (x)}, ϕ (x) { si x x si x siendo ϕ y ϕ funciones continuas en [, ]. Aplicando el Teorema.9, tenemos: ϕ (x) y da y dy dx 8 [ y ϕ (x) ] x [ x ] dx + [ y ] x [ (x ) x ] x dx 6. }, ϕ (x) x, y dy dx + x 8 dx x x y dy dx (x ) )dx Segunda forma de resolución. es una región simple en la dirección de las x. En efecto, donde {(x, y) R : y, ψ (y) x ψ (y)}, siendo ψ y ψ funciones continuas en [, ]. Aplicando el Teorema., tenemos: ψ (y) y da y dx dy ψ (y) [ y (y y )dy ψ (y) y, ψ (y) y +, ] y+ y [ y y dx dy ] 6. Y obtenemos el mismo resultado que en la primera forma de resolución. y(y + y)dy

3 P Vamos a exponer tres formas de resolver este problema. Antes de todo, observar que el cono y la semiesfera se cortan cuando x + y x y. Tomando como incógnita x + y, se obtiene que dicho corte tiene lugar cuando x + y, o equivalentemente, cuando z. Primera forma de resolución. El volumen pedido V es: V dx dy dz, () W donde W es la región simple en las z formada por los puntos (x, y, z) R tales que x, x y x, x y z x + y. Aplicando la fórmula de integrales triples reiteradas en (), integrando primero respecto de z y después respecto de y y x respectivamente, tenemos que: V x x x x x x +y dz dy dx () x y [ ( x + y ) ( ] x y ) dy dx ( x + y + x y )dy dx. x Pasando a coordenadas polares y aplicando el Teorema del Cambio de Variable (Teorema.): V π π r( r + r )dr dθ (r r + r r )dr dθ [ r π r ( r ) / / ] π. () Segunda forma de resolución. Vamos a calcular la integral de () utilizando coordenadas cilíndricas. Aplicando el Teorema del Cambio de Variable tenemos que V r dr dθ dz, (4) W donde W es la región simple en las z definida por: W {(r, θ, z) R : r, θ π, r z r}.

4 Aplicando la fórmula de integrales triples reiteradas en (4), integrando primero respecto de z y después respecto de r y θ respectivamente, tenemos que: V π π r r r dz dr dθ π (r r + r r )dr dθ. Y llegamos a la misma integral que en la primera linea de (). [ r ( r) ( ] r ) dr dθ Tercera forma de resolución. Se trata de calcular la integral triple de () cambiando el orden de integración respecto al utilizado en (). Ahora vamos a integrar primero respecto de x e y y posteriormente respecto de z. En primer lugar, observar que, para un z fijo:. En la semiesfera tenemos la circunferencia de centro (,, z) y radio (z ).. En el cono tenemos la circunferencia de centro (,, z) y radio z. Entonces: V dx dy dz + dx dy dz. La primera integral corresponde al volumen encerrado por la semiesfera desde z hasta el valor de z en el que ésta intersecta con el cono (z ). Sabemos que, para cada z, es el círculo de centro (,, z) y radio (z ). Esto implica que dx dy área de π( (z ) ). La segunda integral corresponde al volumen encerrado por el cono desde donde intersecta con la semiesfera (z ) hasta el valor máximo que puede tomar z en el cono (z ). Sabemos que, para cada z, es el círculo de centro (,, z) y radio z. Esto implica que dx dy área de π( z). Entonces: V π( (z ) )dz + π( z) dz π [z ] (z ) π [ ( z) Y obtenemos el mismo resultado que en la primera y segunda formas de resolución. ] π.

5 P Mediante operaciones triviales obtenemos que ( ( F)(x, y, z) x z x ) ( z y i + xy z + ) z z y j + ( z + z ) k. (5) Primera forma de resolución. Vamos a calcular directamente la integral de superficie pedida. Parametrizamos Σ + utilizando coordenadas cilindrícas, con lo que los puntos (x, y, z) de Σ + se describen de la siguiente forma: x cosθ, y sinθ, z z, (θ,z) [, π] [, 4]. Siguiendo las notaciones de la página 8 de los apuntes de teoría, un vector normal a Σ + en cada punto es: n(θ,z) T θ (θ, z) T z (θ, z) ( sin θ, cosθ, ) (,, ) (cosθ, sin θ, ). Vemos cómo esta normal apunta hacia afuera, con lo que corresponde con la orientación considerada en el enunciado. Entonces, aplicando la efinición.8: Σ + F ds π 4 π 4 π 4 ( F)(r, θ)dz dθ ( z cos θ cosθ z sin θ, z cosθ sin θ + z z sin θ, z + z (cosθ, sin θ, )dz dθ ( z cos θ cos θ z sin θ cosθ z cos θ sin θ + sin θ ) z z sin θ dz dθ. Como puede observarse, a partir de este punto, para obtener el resultado final, hay que realizar bastantes operaciones. Resultan más sencillas, desde el punto de vista de las operaciones involucradas, las dos formas de resolución que se exponen a continuación. Segunda forma de resolución. Vamos a calcular la integral de superficie pedida aplicando el Teorema de Stokes. Teniendo en cuenta el apartado.b) de la página de los apuntes de teoría, el borde del cilindro es la unión de las dos circunferencias que lo límitan. En este caso, dichas circunferencias son: - la circunferencia c correspondiente a z, es decir, x + y, z. - la circunferencia c correspondiente a z 4, es decir, x + y, z 4. )

6 ichas circunferencias admiten las siguientes parametrizaciones: c (θ) (cosθ, sin θ, ), c (θ) (cosθ, sin θ, 4), θ [, π], con lo que c (θ) c (θ) ( sin θ, cos θ, ), θ [, π]. Entonces, aplicando el Teorema de Stokes y teniendo en cuenta las orientaciones para Σ + y Σ + consideradas en el punto 4 de la página de los apuntes de teoría, tenemos que F ds F ds F ds F ds. Σ + Σ + c c También, de acuerdo con las anteriores parametrizaciones de c y c y con la efinición., obtenemos: Σ + F ds π π π F(c (θ)) c (θ)dθ F(c (θ)) c (θ)dθ ( sin θ, cosθ + sinθ, cos θ sin θ) ( sin θ, cosθ, ) π ( 64 sinθ, cosθ + 4 sinθ, cos θ sin θ) ( sin θ, cosθ, )dθ π ( sin θ + + sinθ cosθ)dθ [ cosθ + θ + sin θ [ cosθ + 64 ] π π ( (θ sin θ cosθ) ( sin θ + 64 sin θ + cos θ + 4 sinθ cosθ)dθ ) ( ) ] π + (θ + sinθ cosθ) + 4 sin θ 64π (utilizar las tablas para las primitivas de sin θ y cos θ). Tercera forma de resolución. Finalmente, vamos a calcular la integral de superficie pedida aplicando el Teorema de la ivergencia. Sea W la región simple en R encerrada por la superficie Σ, es decir, W {(x, y, z) R : x + y, z 4}. Aplicando el Teorema de de la ivergencia (Teorema 4.), tenemos que F ds div( F)dx dy dz. W + W

7 Puesto de la divergencia de un rotacional es nula, lo anterior implica que W + F ds. Por otra parte, la frontera de W, W, es la unión de la superficie cilíndrica Σ del enunciado, de la tapa inferior del cilindro (que denotamos por Σ ) y de la tapa superior del cilindro (que denotamos por Σ ). Teniendo en cuenta las orientaciones mediante normales exteriores establecidas en el Teorema de la ivergencia (efinición 4.), la anterior fórmula se traduce en: F ds F ds + F ds, Σ + Σ + Σ + es decir, F ds Σ + Σ + F ds Σ + F ds. (6) Pasamos a calcular Σ + F ds e Σ + F ds. Observar que: Σ + es una superficie definida en forma explícita por z(x, y), (x, y), donde {(x, y) R : x + y }. El vector normal correspondiente a Σ + es n (,, ) (aplicar la expresión del vector normal para superficies en forma explícita, dada en la página 8 de los apuntes de teoría). Análogamente, Σ + es una superficie definida en forma explícita por z(x, y) 4, (x, y), done está definido como antes. El vector normal correspondiente a Σ + es también n (,, ). Entonces, aplicando la efinición.8, obtenemos F ds ( F)(x, y, ) (,, )dx dy. Σ + Además, ( F)(x, y, ) (,, ) tercera componente de ( F)(x, y, ) (la última igualdad se sigue de (5)). Por lo tanto, F ds dx dy (área de ) π. (7) Σ +

8 Análogamente: F ds ( F)(x, y, 4) (,, )dx dy Σ + 66π dx dy 66 (área de ) 66π (8) (en este caso, tercera componente de ( F)(x, y, 4) 66). Finalmente, aplicando (6), (7) y (8), F ds π 66π 64π. Σ + Y obtenemos el mismo resultado que en la segunda forma de resolución.

Examen final de Cálculo Integral

Examen final de Cálculo Integral Examen final de Cálculo Integral de junio de 11 (Soluciones) Cuestiones C 1 La respuesta es que la función es integrable, como consecuencia del Teorema 1.1 de los apuntes, o el Teorema del Capítulo 5 del

Más detalles

Capítulo 5. Integrales sobre curvas y superficies

Capítulo 5. Integrales sobre curvas y superficies Capítulo 5. Integrales sobre curvas y superficies 5.1. Integrales de funciones escalares sobre curvas 5.2. Integrales de campos vectoriales sobre curvas 5.3. Teorema de Green 5.4. Integrales sobre superficies

Más detalles

Cálculo Integral (1º de los Grados en Matemáticas y en Física, Universidad de Cantabria) Examen final, 12 de junio de Soluciones.

Cálculo Integral (1º de los Grados en Matemáticas y en Física, Universidad de Cantabria) Examen final, 12 de junio de Soluciones. Examen final, 1 de junio de 17 Soluciones Cuestiones C 1 ) En este caso la condición es necesaria y suciente. Que es necesaria se demuestra en el apartado 3 4 del teorema 1.33. Que es suciente se sigue

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 1 de Junio de x + x 2 y + y 3 =0, 2y + x 3 + xy 2 =0.

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 1 de Junio de x + x 2 y + y 3 =0, 2y + x 3 + xy 2 =0. ÁLULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 1 de Junio de 4 Ejercicio 1. Hallar los extremos absolutos de f (x, y) x + y e xy en el conjunto D (x, y) R : x + y 1 ª. Solución:

Más detalles

CAPÍTULO 10. Teoremas Integrales.

CAPÍTULO 10. Teoremas Integrales. CAPÍTULO 10 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

Certamen 2 - Mate 024 (Pauta)

Certamen 2 - Mate 024 (Pauta) Certamen - Mate 4 (Pauta) noviembre 6, 14 1. Calcular γ x 4 + y 4 1 dx + y 3 x 4 + y 4 1 dy en cada uno de los siguientes casos: a) γ es la curva x + y = 1 4 y se recorre en sentido positivo. b) γ es la

Más detalles

Matemáticas III Tema 6 Integrales de superficie

Matemáticas III Tema 6 Integrales de superficie Matemáticas III Tema 6 Integrales de superficie Rodríguez ánchez, F.J. Muñoz Ruiz, M.L. Merino Córdoba,. 214. OCW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia Creative Commons Attribution- NonComercial-hareAlike

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Soluciones de los ejercicios del segundo examen parcial

Soluciones de los ejercicios del segundo examen parcial Matemáticas III GIC, curso 5 6 Soluciones de los ejercicios del segundo examen parcial EJERCICIO. Considera la integral doble π π ibuja la región del plano XY en la que se está integrando. Usa el teorema

Más detalles

CAPÍTULO 11. Teoremas Integrales.

CAPÍTULO 11. Teoremas Integrales. CAPÍTULO 11 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

6. El teorema de la divergencia.

6. El teorema de la divergencia. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. Lección. Cálculo vectorial. 6. El teorema de la divergencia. Ya vimos una versión del teorema de Green en el plano que expresa la igualdad entre la integral doble

Más detalles

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8 ANALISIS MATEMATIO II (iencias- 2011) Integrales sobre curvas (o de línea) Trabajo Práctico 8 1. Evaluar las siguientes integrales curvilíneas γ f ds. (a) f(x, y, z) = x + y + z ; r(t) = (sen t, cos t,

Más detalles

Tarea 8. (xdy ydx) (1) A = 1 2. Por lo tanto el área es; [(Rcos(θ))(Rcos(θ)) (Rsin(θ))(Rsin(θ))] dθ (2) Reduciendo la expresiónnalmentese obtiene;

Tarea 8. (xdy ydx) (1) A = 1 2. Por lo tanto el área es; [(Rcos(θ))(Rcos(θ)) (Rsin(θ))(Rsin(θ))] dθ (2) Reduciendo la expresiónnalmentese obtiene; Tarea 8 1. Encuentre el área de el disco de radio R usando el teoréma de Green. e acuerdo con el teorema de Green, el área de la región es; A = 1 (xdy ydx) (1) Como es un discmo con centro en (, ) de radio

Más detalles

1. INTEGRALES MÚLTIPLES

1. INTEGRALES MÚLTIPLES 1. INTEGALES MÚLTIPLES 1. Calcular las siguientes integrales iteradas: 1. x x 7 y dy dx dx 1. x x y y dx dy 1 1 7. (1 + xy) dx dy 1 1 π/. x sen y dy dx 5. (x + y) dx dy 6/ 1 6. (x + y) 8 dx dy 616 5 1

Más detalles

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS.

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. Cálculo III, Examen Final. Semestre Primavera 1 Tiempo: 11 min. Problema 1 [1,5 puntos] La curvatura de una trayectoria

Más detalles

a n en las que n=1 s n = n + 1 Solución: a) Utilizando el criterios de D Alembert se obtiene que a n+1 n a n 3 > 1 n=1

a n en las que n=1 s n = n + 1 Solución: a) Utilizando el criterios de D Alembert se obtiene que a n+1 n a n 3 > 1 n=1 EJERCICIO DE FUNDAMENTO MATEMÁTICO eries. Estudia el carácter de las series (a El término general es a n en las que (b la suma parcial n-sima es a n n n+ 3 n, n,, 3,... s n n, n,, 3,... n + olución: a

Más detalles

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen Universidad Técnica Federico anta aría Coordinación de atemática IV Guía-Apunte de Preparación del CAR 2 do emestre 2011 Información Contenidos del Certamen Teorema de Green, Teorema de Green para Regiones

Más detalles

Lección 32: Algunas ideas sobre la integral doble. Introducción al Cálculo Infinitesimal I.T.I. Gestión

Lección 32: Algunas ideas sobre la integral doble. Introducción al Cálculo Infinitesimal I.T.I. Gestión Lección 32: Algunas ideas sobre la integral doble Introducción al Cálculo Infinitesimal I.T.I. Gestión Esquema: - Idea de integral doble - Teorema de Fubini - Cambio a coordenadas polares Integral doble

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Comentarios y ejemplos - Práctica 10

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Comentarios y ejemplos - Práctica 10 ANÁLII MATEMÁTICO II - Grupo Ciencias 218 Comentarios y ejemplos - Práctica 1 A. Parametrizaciones de superficies El concepto de parametrización de una superficie es análogo al de parametrización de una

Más detalles

Cálculo de Geodésicas en Superficies de Revolución

Cálculo de Geodésicas en Superficies de Revolución Cálculo de Geodésicas en Superficies de Revolución Superficies de Revolución Sea S R 3 la superficie de revolución obtenida al girar una curva regular del plano XZ que no corte al eje Z alrededor del mismo.

Más detalles

Capítulo 3. Integración multidimensional. 1. Integrales de Riemann en rectángulos

Capítulo 3. Integración multidimensional. 1. Integrales de Riemann en rectángulos Capítulo 3 Integración multidimensional 1. Integrales de Riemann en rectángulos Definición (Partición de rectángulos). Consideremos el rectángulo [a, b] [c, d] y sean P 1 = {a = x 0, x 1,..., x n = b}

Más detalles

Problemas de Análisis Vectorial y Estadístico

Problemas de Análisis Vectorial y Estadístico Relación 1. Funciones Γ y β 1. Función Gamma Definimos la función gamma Γ(p) como: Demostrar que: Γ(p) = t (p 1) e t dt para p> a) Γ(1) = 1 b) Integrando por partes, ver que Γ(p) = (p 1)Γ(p 1) para p>1

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de 2003

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de 2003 CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de Ejercicio 1. Calcular el volumen del elipsoide x a + y b + z c 1. Probar que el elipsoide de volumen máximo,

Más detalles

Teorema 1 (Cambio de Variable en R n ).

Teorema 1 (Cambio de Variable en R n ). Vamos a estudiar en este segundo capítulo sobre los cambios de variable para funciones de varias variables, algunos de los más habituales: los cambios de coordenadas a coordenadas polares en el plano,

Más detalles

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013 Análisis II - Análisis matemático II - Matemática 3 do. cuatrimestre de 3 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones.. Verificar el teorema de Stokes para el hemisferio

Más detalles

Integración múltiple: integrales triples

Integración múltiple: integrales triples Problemas propuestos con solución Integración múltiple: integrales triples ISABEL MARRERO epartamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Integrales iteradas 1. Teorema

Más detalles

Examen Final de Cálculo Vectorial MATE PREGUNTAS ABIERTAS TEMA A Diciembre 6 de Nombre: Código:

Examen Final de Cálculo Vectorial MATE PREGUNTAS ABIERTAS TEMA A Diciembre 6 de Nombre: Código: UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Examen Final de Cálculo Vectorial MATE 1207 PREGUNTAS ABIERTAS TEMA A Diciembre 6 de 2017 Este es un examen individual, no se permite el uso de libros,

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. er. cuatrimestre de 8 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones. Ejercicio. Verificar el teorema de Stokes para el

Más detalles

Capítulo 4. Integración

Capítulo 4. Integración Capítulo 4. Integración En este capítulo vamos a estudiar cómo se puede hacer integración con funciones multivariables. Estudiaremos los siguientes temas: 4.1. Integral de Riemann, teorema de Fubini. 4..

Más detalles

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ,

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ, egundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de 216 Este es un examen individual, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. ecuerde apagar

Más detalles

Integrales de Superficie.

Integrales de Superficie. CAPÍTULO 9. Integrales de Superficie. Este capítulo cierra los tipos de integrales que estudiamos en el curso. Se practica el concepto de integral de superficie y se dan aplicaciones geométricas y físicas.

Más detalles

Tema 5: Funciones homogéneas

Tema 5: Funciones homogéneas Tema 5: Funciones homogéneas f se dice homogénea de grado α si se verifica: f(λ x) = λ α f( x), x, λ > 0 Propiedades: 1. Si f y g son homogéneas de grado α, entonces f ± g es también homogénea de grado

Más detalles

Integrales de Superficie.

Integrales de Superficie. CAPÍTULO 10 Integrales de Superficie. Este capítulo cierra los tipos de integrales que estudiamos en el curso. Se practica el concepto de integral de superficie y se dan aplicaciones geométricas y físicas.

Más detalles

Sea S = F r(w ) una supercie cerrada que limita una región en el espacio W R 3

Sea S = F r(w ) una supercie cerrada que limita una región en el espacio W R 3 4.3 Teorema de la ivergencia Gauss) ea = F r ) una supercie cerrada que limita una región en el espacio R 3 El teorema de la divergencia tambien conocido como teorema de Gauss) es una generalización del

Más detalles

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE PLANO TANGENTE Y VECTOR NORMAL. AREA DE UNA SUPERFICIE 1) En cada uno de los siguientes ejercicios se presenta una S dada en forma paramétrica,

Más detalles

AMPLIACIÓN DE CÁLCULO

AMPLIACIÓN DE CÁLCULO AMPLIACIÓN DE CÁLCULO Problemas propuestos Departamento de Matemáticas del Área Industrial Índice general Programa III Tema 1. Enunciados 1 Tema 2. Enunciados 6 Tema 3. Enunciados 12 Tema 4. Enunciados

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green ANÁLISIS MATEMÁTIO II - Grupo iencias 018 Práctica 9 ampos conservativos - Teorema de Green A. ampos conservativos 1. Mostrar que F x, y) = y cos x) i + x sen y) j no es un campo vectorial gradiente..

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0. ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x

Más detalles

Análisis Matemático 2

Análisis Matemático 2 Análisis Matemático Resolución del coloquio de fecha 4/07/18 tema I con hipervínculos a videos on-line Autor: Martín Maulhardt Revisión: Fernando Acero y Ricardo Sirne Análisis Matemático II y II A Facultad

Más detalles

Sistemas de Coordenadas

Sistemas de Coordenadas C.U. UAEM Valle de Teotihuacán Licenciatura en Ingeniería en Computación Sistemas de Coordenadas Unidad de Aprendizaje: Fundamentos de Robótica Unidad de competencia V Elaborado por: M. en I. José Francisco

Más detalles

Coordenadas Generalizadas en el Espacio

Coordenadas Generalizadas en el Espacio Capítulo 3 Coordenadas Generalizadas en el Espacio Las coordenadas cartesianas usuales en R 3 pueden verse también como un sistema de tres familias de superficies en el espacio, de modo que cada punto

Más detalles

Integrales Múltiples.

Integrales Múltiples. CAPÍTULO 8 Integrales Múltiples. En este capítulo generalizamos las integrales definidas de una variable a dos y tres variables. La interpretación geométrica de las integrales definidas de una variable

Más detalles

7. Cambio de variables en integrales triples.

7. Cambio de variables en integrales triples. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. Lección. Integrales múltiples. 7. Cambio de variables en integrales triples. El teorema del cambio de variables para integrales triples es análogo al de integrales

Más detalles

ANALISIS II 12/2/08 COLOQUIO TEMA 1

ANALISIS II 12/2/08 COLOQUIO TEMA 1 ANALISIS II //08 COLOQUIO TEMA Sea f : R R un campo vectorial C y C la curva parametrizada por: γ(t) = (cost, 0, sent) con t ɛ [0, π] Sabiendo que C f ds = 6 y que rot( f( ) = (z, ), calcular la integral

Más detalles

R se puede descomponer en un número finito de regiones simples (ó de tipo 3, como en matemáticas 5), El Teorema de Green

R se puede descomponer en un número finito de regiones simples (ó de tipo 3, como en matemáticas 5), El Teorema de Green El Teorema de Green 1 El Teorema de Green Enunciaremos el teorema de Green primero para un tipo especial de región de que llamaremos simple luego se extenderá a regiones más generales que se puedan descomponer

Más detalles

Parametrización de superficies Integrales de superficie. h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/

Parametrización de superficies Integrales de superficie. hp://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Parametrización de superficies Integrales de superficie h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Parametrización de una superficie en R 3 ea un dominio del espacio R 2, donde los puntos están definidos

Más detalles

Lección 3. Cálculo vectorial. 5. El teorema de Stokes.

Lección 3. Cálculo vectorial. 5. El teorema de Stokes. GRADO DE INGENIERÍA AEROESPAIAL. URSO. 5. El teorema de Stokes. En esta sección estudiaremos otro de los teoremas clásicos del análisis vectorial: el teorema de Stokes. Esencialmente se trata de una generalización

Más detalles

1 Terminar los ejercicios de la práctica realizada el día de hoy

1 Terminar los ejercicios de la práctica realizada el día de hoy Este documento contiene las actividades no presenciales propuestas al terminar la clase del día que se indica. e sobreentiende que también se debe realizar el estudio de lo explicado en clase aunque no

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 9 de Junio de 4 Primera parte Ejercicio. Un depósito subterráneo de gasolina tiene forma de cilindro elíptico con semieje orizontal a

Más detalles

Apuntes de Física II TERMODINÁMICA

Apuntes de Física II TERMODINÁMICA Apuntes de Física II TERMODINÁMICA Dr. Ezequiel del Río Departamento de Física Aplicada E.T.S. de Ingeniería Aeronáutica y del espacio Universidad Politécnica de Madrid 14 de febrero de 2017 ÍNDICE GENERAL

Más detalles

Enunciado y solución del cuarto certamen de Cálculo 3. Viernes 5 de Julio de 2013 Prof: Roberto Cabrales

Enunciado y solución del cuarto certamen de Cálculo 3. Viernes 5 de Julio de 2013 Prof: Roberto Cabrales nunciado y solución del cuarto certamen de álculo. Viernes 5 de Julio de 1 Prof: oberto abrales 1 puntos). ean f y g son campos escalares en y F un campo vectorial en. 1. puntos) Muestre que divrotf))..

Más detalles

SEMINARIO 1: ELEMENTOS DIFERENCIALES DE LÍNEA, SUPERFICIE Y VOLUMEN

SEMINARIO 1: ELEMENTOS DIFERENCIALES DE LÍNEA, SUPERFICIE Y VOLUMEN SEMINARIO 1: ELEMENTOS DIFERENCIALES DE LÍNEA, SUPERFICIE Y VOLUMEN Sistemas de coordenadas 3D Transformaciones entre sistemas Integrales de línea y superficie SISTEMA COORDENADO CARTESIANO O RECTANGULAR

Más detalles

Integrales Múltiples.

Integrales Múltiples. CAPÍTULO 9 Integrales Múltiples. En este capítulo generalizamos las integrales definidas de una variable a dos y tres variables. La interpretación geométrica de las integrales definidas de una variable

Más detalles

Integral Doble e Integral Triple

Integral Doble e Integral Triple www.cidse.itcr.ac.cr/revistamate Práctica 6 Integral Doble e Integral Triple Cambio de variable con coordenadas polares y coordenadas ciĺındricas. Cálculo Superior Instituto Tecnológico de Costa ica Escuela

Más detalles

Clase 14: Fórmula del Cambio de Variables

Clase 14: Fórmula del Cambio de Variables Clase 4: Fórmula del Cambio de Variables C.J. Vanegas 4 de junio de 8 Recordemos.. Método de sustitución en integrales de una variable: b f(g(t))g (t) dt g(b) a g(a) f(s) ds s g(t) ds g (t)dt t a s g(a)

Más detalles

Solución y Pautas de Corrección

Solución y Pautas de Corrección Universidad de los Andes Departamento de Matemáticas MATE127 Cálculo Vectorial Examen Final (1/12/29) 1 Prob. 1 2 3 4 5 Valor 1 1 1 1 1 5 Puntos Nombre: Código: Sección: Escriba todo su análisis si desea

Más detalles

AMPLIACIÓN DE CÁLCULO

AMPLIACIÓN DE CÁLCULO AMPLIACIÓN DE CÁLCULO Problemas propuestos Departamento de Matemáticas del Área Industrial Programa de Ampliación de Cálculo. Curso 2014/15 1. Cálculo de integrales múltiples Integrales dobles en rectángulos;

Más detalles

Vectores. Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Unidad Culhuacán.

Vectores. Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Unidad Culhuacán. Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Unidad Culhuacán. Vectores Autor: Ing. Jonathan Alejandro Cortés Montes de Oca. Vectores En el campo de estudio del Cálculo

Más detalles

Otras distribuciones multivariantes

Otras distribuciones multivariantes Trabajo A Trabajos Curso -3 Otras distribuciones multivariantes Clase esférica de distribuciones en R p Definición. Dado un vector aleatorio X = X,..., X p t, se dice que se distribuye en la clase esférica

Más detalles

Ayudantía 1. Recordando Cálculo Vectorial 06 de Marzo de 2018 Ayudante: Matías Henríquez -

Ayudantía 1. Recordando Cálculo Vectorial 06 de Marzo de 2018 Ayudante: Matías Henríquez - Pontificia Universidad Católica de Chile Facultad de Física FIS1533 - Electricidad y Magnetismo // 1-218 Profesor: Giuseppe De Nittis - gidenittis@uc.cl Ayudantía 1 Recordando Cálculo Vectorial 6 de Marzo

Más detalles

Integración doble Integrales dobles sobre regiones no rectangulares

Integración doble Integrales dobles sobre regiones no rectangulares Nuestra intención es extender la definición de integral doble, de funciones continuas, sobre regiones más generales que el rectángulo. Para ello definiremos dos tipos de regiones en el plano, que llamaremos

Más detalles

Integración sobre superficies

Integración sobre superficies Problemas propuestos con solución Integración sobre superficies IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Parametrizaciones 1 2. Área de una superficie

Más detalles

Integrales de lı nea y de superficie

Integrales de lı nea y de superficie EJERIIO DE A LULO II PARA GRADO DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera 4 4.1 Integrales de lı nea y de superficie Integrales sobre curvas

Más detalles

El Teorema de Green. Una curva dada por r(t) = x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) Curva no simple

El Teorema de Green. Una curva dada por r(t) = x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) Curva no simple El Teorema de Green Una curva dada por r(t) x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) r(d) si c d. urva simple urva no simple urva orientada positivamente La curva

Más detalles

Clase 4. Campos Vectorialesy OperadoresDiferenciales

Clase 4. Campos Vectorialesy OperadoresDiferenciales lase 4. ampos Vectorialesy Operadoresiferenciales Un campo vectorial en R n es una función F : R n R n. i F es un campo vectorial, una línea de flujo (línea de corriente o curva integral) para F es una

Más detalles

El diferencial exterior

El diferencial exterior Capítulo 8 El diferencial exterior 1. El diferencial exterior En esta sección estudiaremos el operador diferencial entre formas. Definición 8.1. Sea ω una k-forma en R n, ω = ω dx. El diferencial dω es

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen del 14 de Septiembre de 2000 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen del 14 de Septiembre de 2000 Primera parte ÁLULO Primer curso de Ingeniero de Telecomunicación Examen del de Septiembre de Primera parte Ejercicio. Un flan tiene forma de tronco de paraboloide de revolución, siendo r y r losradiosdesusbasesyh su

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2005 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2005 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 005 Primera parte Ejercicio 1. Un espejo plano de dimensiones 80 cm y 90 cm, se rompe por una esquina según una recta. De

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

Teorema de Helmholtz.

Teorema de Helmholtz. c Rafael R. Boix y Francisco Medina 1 Teorema de Helmholtz. Enunciado Dados un campo escalar D = D(r y un campo vectorial solenoidal C = C(r (esto es, C(r =0 que toman valores no nulos en una región acotada

Más detalles

Superficies parametrizadas

Superficies parametrizadas 1 Universidad Simón Bolívar.. Preparaduría nº 1. christianlaya@hotmail.com ; @ChristianLaya Superficies parametrizadas Superficies parametrizadas: Una superficie parametrizada es una función donde D es

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2007 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2007 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 6 de Junio de 7 Primera parte Ejercicio. Determinar los puntos de máxima y mínima pendiente de la gráfica de la función y = +x, x. Solución.

Más detalles

3. Cambio de variables en integrales dobles.

3. Cambio de variables en integrales dobles. GADO DE INGENIEÍA AEOESPACIAL. CUSO. Lección. Integrales múltiples. 3. Cambio de variables en integrales dobles. Para calcular integrales dobles eiste, además del teorema de Fubini, otra herramienta fundamental

Más detalles

Superficies Parametrizadas y Áreas

Superficies Parametrizadas y Áreas Superficies Parametrizadas y Áreas 1 Superficies Parametrizadas y Áreas Hasta ahora hemos estudiado (tema de matemáticas 5) superficies definidas como gráficas de funciones de la forma z = f (x, y). El

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 3 de Julio de 2001 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 3 de Julio de 2001 Primera parte ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. de Julio de Primera parte Ejercicio. Se considera la función definida por la determinación principal del arco tangente, es decir f (x) =

Más detalles

( ) x y dxdy. x y dxdy y. sin 2θ 2 = = = x y dxdy. 3 4y y ln. 1

( ) x y dxdy. x y dxdy y. sin 2θ 2 = = = x y dxdy. 3 4y y ln.   1 Cálculo II Exámenes esueltos Tercer Parcial. Evaluar la integral, pasando a coordenadas polares: Solución: haciendo los siguientes cambios, ( ) 4y 4y 4y x y y 4y 4y 4 4 4y x y sin θ x y = r ( sinθcosθ

Más detalles

AUXILIAR 1 PROBLEMA 1

AUXILIAR 1 PROBLEMA 1 AUXILIAR 1 PROBLEMA 1 Calcular el campo eléctrico en cualquier punto del espacio, producido por una recta de carga infinita (con densidad lineal de carga λ0). Luego, aplicar el teorema de Gauss para obtener

Más detalles

Integral de superficie.

Integral de superficie. Tema 4 Integral de superficie. 4.1 uperficies. Definición 4.1 ean IR 2 un conjunto conexo y κ: IR 3 una función continua. La imagen = κ se llama superficie descrita por κ. También se dice que κ es una

Más detalles

Definir la Integral del campo vectorial F sobre una superficie S como una suma de Riemann.

Definir la Integral del campo vectorial F sobre una superficie S como una suma de Riemann. .7. Integral de superfície de campos vectoriales. Otra de las aplicaciones importantes de la integral de superficies, es cuando se integra un campo vectorial sobre ella. El significado que adquiere este

Más detalles

SERIE # 4 CÁLCULO VECTORIAL

SERIE # 4 CÁLCULO VECTORIAL SERIE # 4 CÁLCULO VECTORIAL Página 1 1) Calcular 1 x y dy dx. 0 0 1 ) Evaluar la integral doble circunferencia x y 9. x 9 x da R, donde R es la región circular limitada por la 648 15 x y ) Calcular el

Más detalles

Tarea 9. H ds = E ds (2)

Tarea 9. H ds = E ds (2) Tarea 9. ea una supercie con frontera y suponga que E es un campo eléctrico que es perpendicular a - Muestre que el ujo magnético inducido a través de es constante en el tiempo. (Use la Ley de Faraday)

Más detalles

Operadores diferenciales

Operadores diferenciales Apéndice A Operadores diferenciales A.1. Los conceptos de gradiente, divergencia y rotor Sobre el concepto de gradiente. Si f r) es una función escalar, entonces su gradiente, en coordenadas cartesianas

Más detalles

Matemáticas III Tema 5 Integrales de línea

Matemáticas III Tema 5 Integrales de línea Matemáticas III Tema 5 Integrales de línea Rodríguez Sánchez, F.J. Muñoz Ruiz, M.L. Merino órdoba, S. 14. OW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia reative ommons ttribution- Nonomercial-Sharelike

Más detalles

7 Teoremas de la divergencia y de Stokes

7 Teoremas de la divergencia y de Stokes 7 Teoremas de la divergencia y de Stokes Si X es una hipersuperficie en R n que admite una normal unitaria continua ν : X R n, escribiremos X, ν) para indicar la variedad orientada formada por X y la orientación

Más detalles

Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 14 de Junio de 2000

Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 14 de Junio de 2000 ÁLULO Primer curso de ngeniero de elecomunicación egundo Examen Parcial. de Junio de Ejercicio. Hallar los extremos absolutos de la función f (x, y, z) =x + y + z, en el conjunto A = (x, y, z) R 3 : x

Más detalles

Sistemas no lineales

Sistemas no lineales Tema 4 Sistemas no lineales Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 2005 2006 Tema 4. Sistemas no lineales 1. Sistemas no lineales de ecuaciones diferenciales. Integrales

Más detalles

EXPRESIÓN PARA LA DIVERGENCIA EN COORDENADAS CARTESIANAS.

EXPRESIÓN PARA LA DIVERGENCIA EN COORDENADAS CARTESIANAS. c Rafael R. Boix y Francisco Medina 1 EXPRESIÓN PARA LA DIVERGENCIA EN COORDENADAS CARTESIANAS. Consideremos un punto P 0 del espacio tridimensional de coordenadas cartesianas (x 0, y 0, z 0 ). Consideremos

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

5.2. El teorema de Fubini. TEMA 5. INTEGRALES DE FUNCIONES DE DOS VARIABLES.

5.2. El teorema de Fubini. TEMA 5. INTEGRALES DE FUNCIONES DE DOS VARIABLES. Tema 5 Integrales de funciones de dos variables. 5.. La integral doble como volumen. La integral de una función de dos variables está relacionada con zf H,L el cálculo del volumen encerrado entre el plano

Más detalles

Soluciones de los ejercicios del examen final de la primera convocatoria

Soluciones de los ejercicios del examen final de la primera convocatoria Matemáticas III GI, curso 2015 2016 oluciones de los ejercicios del examen final de la primera convocatoria EJERIIO 1. De un campo escalar fx, y, z se sabe que es de clase R 3 y que su gradiente en el

Más detalles

Integrales dobles. Integrales dobles

Integrales dobles. Integrales dobles Integrales dobles Integrales iteradas b g2 (x) a g 1 (x) f(x, y) dydx ó d h2 (y) c h 1 (y) f(x, y) dxdy Los límites interiores de integración pueden ser variables respecto a la variable exterior de integración,

Más detalles

Ayudantía 6. Ley de Gauss 22 de Marzo de 2018 Ayudante: Matías Henríquez -

Ayudantía 6. Ley de Gauss 22 de Marzo de 2018 Ayudante: Matías Henríquez - Pontificia Universidad Católica de Chile Facultad de Física FI533 - Electricidad y Magnetismo // -28 Profesor: Giuseppe De Nittis - gidenittis@uc.cl. Fórmulas y constantes.. Ley de Gauss Ayudantía 6 Ley

Más detalles

MA2112 Departamento de Matemáticas. f.ds = γ. ABC, con A(1, 0, 2), B(1, 3, 0), C(0, 1, -1) y f = (P, Q, R) = ( z, x+y, x).

MA2112 Departamento de Matemáticas. f.ds = γ. ABC, con A(1, 0, 2), B(1, 3, 0), C(0, 1, -1) y f = (P, Q, R) = ( z, x+y, x). VRANO D 24 UNIVRSIDAD SIMON BOLIVAR P2A.- un segundo examen parcial de alguna fecha anterior. 1.- Calcule la integral : γ f.ds = γ Pdx+Qdy+Rdz, siendo γ la poligonal ABC, con A(1,, 2), B(1, 3, ), C(, 1,

Más detalles