Clase 14: Fórmula del Cambio de Variables

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Clase 14: Fórmula del Cambio de Variables"

Transcripción

1 Clase 4: Fórmula del Cambio de Variables C.J. Vanegas 4 de junio de 8 Recordemos.. Método de sustitución en integrales de una variable: b f(g(t))g (t) dt g(b) a g(a) f(s) ds s g(t) ds g (t)dt t a s g(a) t b s g(b) donde f es continua y s g(t) es una función C en [a, b]. Ahora supongamos que s g(t) es, además de C, inyectiva en [a, b], entonces g (t) o g (t) en [a, b] y reescribimos la fórmula como: b a f(g(t)) g (t) dt g(b) g(a) f(s) ds Ahora cambiemos de notación: Sea t u, g x, g(t) x(u), g (t) x (u) dx, dt du, du s x, ds dx y si I [a, b] y [g(a), g(b)] [x(a), x(b)] I entonces la fórmula queda: f(x(u)) dx I du du f(x) dx I Esta fórmula se generaliza a integrales dobles: I, I y dx du d(x, y) d(u, v)

2 Teorema (Fórmula del cambio de variables). Sean y regiones elementales en R y sean T :, T (u, v) (x(u, v), y(u, v)), C, - (salvo quizás en ) y además T ( ). Entonces para cualquier función integrable f : R se tiene: f(x, y) dxdy f(x(u, v), y(u, v)) (x, y) (u, v) dudv Ejemplo. Resolver (x y) dxdy, si es la región {(x, y) : x, + x y + x}, usando el cambio de variables x u, y v( + u). ibuje Solución. T no es T.L., T (u, v) (u, v( + u)). T es C pues cada coordenada lo es. (x, y) (u, v) + u, para u v + u Si u entonces puedo resolver de manera única u, v en función de x, y. x u u y v( + u) y v( + x) v y/( + x), x + x y + x y/( + x) v [, ] [, ]. f(x, y) x y, f(x(u, v), y(u, v)) f(u, v( + u)) u v( + u). f(x, y) dxdy (u v( + u))( + u) dudv (u v( + u))( + u) dvdu u + u v( + u) dvdu ( + u) du (u + u )v v (u + u ) 3 ( + u) du u + u3 3 ( + u)3 / + /3 4 + / 8/3

3 Ejemplo. Calcular la x y dxdy, en donde es la región limitada por las hipérbolasequilateras xy, xy y las rectas y x/ y y 3x, y en el primer cuadrante, usando el cambio: x (u/v) / y y (uv) /. ibuje la región. Solución. T no es lineal. T es -: (u/v) / (ũ/ṽ) / y (uv) / (ũṽ) / (u/v) (ũ/ṽ) y (uv) (ũṽ) si u, v, ũ, ṽ > u ũṽ v ũv ṽ v ũṽ v ṽ v ṽ, todos distintos de, u ũ. T es C para u, v. Resolvemos u, v en función de x, y: x (u/v) / y y (uv) / xy (u/v) / (uv) / ( u v u v)/ u y y x ( uv u/v )/ ( uv u )/ v. Luego: u xy, xy u y xy u u. v y/x, y x/ v / y y 3x v 3 / v 3. Observe que u, v son distintos de y positivos. Jacobiano: usamos (x,y) ( (u,v) (u,v) (x,y) ). En este caso es más fácil calcular (u,v) (u, v) (x, y) y x y/x + y/x y/x v y/x /x luego (x,y) (u,v) /v. Por otro lado (x,y). f(x, y) x y f(x(u, v), y(u, v)) f((u/v) /, (uv) / ) u v uv u, pues v Así: x y dxdy u v dudv 3 / u u v dvdu 3 ln(v) du / u (ln(3) + ln()) du u ln(6) 6 u3 ln(6) du ln(6) 6 8 ln(6) ln(6) 3

4 El cambio de variables a coordenadas polares f(x, y) dxdy f(r cos(θ), r sin(θ))r : dudv (Válida para T : - salvo quizás los puntos frontera de ). x r cos(θ) y y r sin(θ). Si queremos T inyectiva: r y θ π. Si r r, r constante en el plano rθ, entonces x + y r cos (θ) + r sin (θ) r, es decir, r cte (rectas) x + y (cte) (círculos). θ θ en el plano rθ corresponde a las rectas radiales y (tan(θ)x) en el plano xy: Si θ π, 3π x. Cuadriláteros curvilíneos limitados por sectores circulares y rectas radiales como por ejemplo {(x, y) : r x + y r, tan(θ )x y tan(θ )x} corresponden en el plano rθ al rectángulo [r, r ] [θ, θ ]. (x, y) Con respecto al Jacobiano: r. Si r (T no es - en r ) sigue siendo (r, θ) válida la fórmula porque r corresponde a uno de los lados de que es la gráfica de una curva suave y por lo tanto es irrelevante a efectos de integración. Sugerencia para usar el cambio de coordenadas polares: cuando en la región de integración se presentan anillos circulares o trozos de ellos. cuando en la función f(x, y) a integrar aparezca de alguna forma las expresiones: x + y y/o y x que se convertirían en r y tan(θ) respectivamente. Ejemplo 3. Calcular Solución 3. x a y x dxdy. región limitada por la elipse b x r cos θ a y r sin θ b a cos θ J b sin θ } x ar cos θ r y br sin θ θ π x a y b dxdy r ar sin θ br sin θ abr cos θ + abr sin θ abr a + y b. 4

5 ... J abr abr π πab r abr dθdr r r dr πab( 3 ( r ) 3 ) 3 πab Ejemplo 4. Calcular el área del anillo elíptico limitado por la elipse x +4y 4, x +4y 6 Solución 4. x + y ; x + y 4 x r cos θ, y r sin θ Si x x r cos θ, y r sin θ x + y r + y r, si x + y 4 r. : r, θ π. π dxdy r dθdr 4π 4π r r dr 4π( ) 6π Fórmula del cambio de variables para integrales triples Sean una región elemental en el espacio uvw, una región en el espacio xyz, T :, definida por T (u, v, w) (x(u, v, w), y(u, v, w), z(u, v, w)), de clase C e 5

6 inyectiva excepto quizás en un conjunto que es unión de gráficas de funciones de dos variables. Entonces: f(x, y, z) dxdydz donde f(x(u, v, w), y(u, v, w), z(u, v, w)) (x, y, z) (u, v, w) dudvdw (x, y, z) (u, v, w) det El valor absoluto del Jacobiano es igual al volumen del paralelepípedo determinado por las x u y u z u x v y v z v x w y w z w vectores columna y mide como T distorsiona el volumen de su dominio. Aplicación a coordenadas cilíndricas. Introducimos 3 nuevas coordenadas para un punto P (x, y, z) R 3, denotadas por r, θ, y z según las fórmulas: x r cos θ, y r sin θ, z z o en forma equivalente consideramos T : R 3 T (r, θ, z) (r cos θ, r sin θ, z) Llamamos a la terna (r, θ, z) coordenadas cilíndricas del punto P Para que T sea inyectiva: r <, θ < π, < z <. Recomendado: para problemas con simetría cilíndrica (simetría respecto a una recta). La ecuación de un cilindro x + y a se ve en coordenadas cilíndricas r a. Jacobiano: (x,y,z) r (r,θ,z) f(x, y, z) dxdydz f(r cos θ, r sin θ, z)r drdθdz Se usa por lo general cuando la región de integración consta de cilindros o planos de la forma Ax + By Ejemplo 5. Calcular + (x + y ) dxdydz, es la región limitada por el cono z x + y y el plano z. 6

7 Solución 5. x r cos θ, y r sin θ, z z. + (x + y ) + r 4. : z x + y z r y z z r, θ π. Luego... π π π 9 π r ( + r )r dzdrdθ ( + r )r( r) drdθ (r r + r 5 r 6 ) drdθ Ejemplo 6. Calcular el volumen de la región limitada por los paraboloides z x + y, z 4x + 4y, el cilindro y x y el plano y 3x. Solución 6. x 3, x y 3x z x + y z r. z 4x + 4y z 4r, luego r z 4r. Proyección en el plano xy: es la región comprendida entre la parábola y x : r sin θ r cos θ r sin θ, y la recta y 3x: r sin θ 3r cos θ θ arctan(3). Así cos θ r sin θ, θ arctan(3) cos θ dv sin θ cos θ sin θ cos θ 4r r 3r 3 drdθ sin 4 θ cos 8 θ dθ r dzdrdθ tan 4 θ( + tan θ) sec θ dθ, t 4 ( + t ) dt hacer t tan θ, dt sec θ dθ 7

Integración doble Integrales dobles sobre regiones no rectangulares

Integración doble Integrales dobles sobre regiones no rectangulares Nuestra intención es extender la definición de integral doble, de funciones continuas, sobre regiones más generales que el rectángulo. Para ello definiremos dos tipos de regiones en el plano, que llamaremos

Más detalles

Lectura 2 Ampliación de Matemáticas. Grado en Ingeniería Civil

Lectura 2 Ampliación de Matemáticas. Grado en Ingeniería Civil 1 / 12 Lectura 2 Ampliación de Matemáticas. Grado en Ingeniería Civil Curso Académico 2011-2012 Cambio de variables 2 / 12 Idea básica: en ocasiones, la utilización de variables apropiadas en lugar de

Más detalles

Análisis Matemático 2

Análisis Matemático 2 Análisis Matemático Resolución del coloquio de fecha 4/07/18 tema I con hipervínculos a videos on-line Autor: Martín Maulhardt Revisión: Fernando Acero y Ricardo Sirne Análisis Matemático II y II A Facultad

Más detalles

Integrales Dobles. Hermes Pantoja Carhuavilca. Matematica II. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos

Integrales Dobles. Hermes Pantoja Carhuavilca. Matematica II. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Integrales Dobles Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 76 CONTENIDO Integrales Dobles Introducción

Más detalles

Introducción al Cálculo. Integral en Varias Variables

Introducción al Cálculo. Integral en Varias Variables UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Introducción al Cálculo Integral en Varias Variables Ramón Bruzual Marisela Domínguez Caracas,

Más detalles

Soluciones de los ejercicios del segundo examen parcial

Soluciones de los ejercicios del segundo examen parcial Matemáticas III GIC, curso 5 6 Soluciones de los ejercicios del segundo examen parcial EJERCICIO. Considera la integral doble π π ibuja la región del plano XY en la que se está integrando. Usa el teorema

Más detalles

INTEGRALES DE FUNCIONES DE VARIAS VARIABLES

INTEGRALES DE FUNCIONES DE VARIAS VARIABLES INTEGALES DE FUNCIONES DE VAIAS VAIABLES [Versión preliminar] Prof. Isabel Arratia Z. Integrales dobles sobre rectángulos La integral de iemann para una función f de dos variables se define de manera similar

Más detalles

Capítulo 4. Integración

Capítulo 4. Integración Capítulo 4. Integración En este capítulo vamos a estudiar cómo se puede hacer integración con funciones multivariables. Estudiaremos los siguientes temas: 4.1. Integral de Riemann, teorema de Fubini. 4..

Más detalles

( ) x y dxdy. x y dxdy y. sin 2θ 2 = = = x y dxdy. 3 4y y ln. 1

( ) x y dxdy. x y dxdy y. sin 2θ 2 = = = x y dxdy. 3 4y y ln.   1 Cálculo II Exámenes esueltos Tercer Parcial. Evaluar la integral, pasando a coordenadas polares: Solución: haciendo los siguientes cambios, ( ) 4y 4y 4y x y y 4y 4y 4 4 4y x y sin θ x y = r ( sinθcosθ

Más detalles

1. INTEGRALES MÚLTIPLES

1. INTEGRALES MÚLTIPLES 1. INTEGALES MÚLTIPLES 1. Calcular las siguientes integrales iteradas: 1. x x 7 y dy dx dx 1. x x y y dx dy 1 1 7. (1 + xy) dx dy 1 1 π/. x sen y dy dx 5. (x + y) dx dy 6/ 1 6. (x + y) 8 dx dy 616 5 1

Más detalles

INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican:

INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican: INTEGACION EN VAIAS VAIABLES: Integrales dobles.. Evaluar las siguientes integrales iteradas: (x y + y )dy dx xye x+y dy dx ( x ln y)dy dx ln [((x + )(y + )] dx dy. 3 ; ; ; ln. 5. Sea I = [, ] [, 3]. Calcular

Más detalles

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ,

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ, egundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de 216 Este es un examen individual, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. ecuerde apagar

Más detalles

Teorema de Cambio de Variables para Integrales Dobles

Teorema de Cambio de Variables para Integrales Dobles Universidad de Chile Facultad de Ciencias Físicas y Matemáticas epartamento de Ingeniería Matemática Cátedra - MA2A1 22 de Enero 2008 Teorema de Cambio de Variables para Integrales obles Cuál es la idea:

Más detalles

Integral de Superfície sobre funciones escalares

Integral de Superfície sobre funciones escalares Integral de uperfície sobre funciones escalares Consideremos el problema del cálculo de la masa total de una lámina, cuya forma es la de una superfície simple. upongamos que la lámina es muy delgada y

Más detalles

Integrales dobles. Integrales dobles

Integrales dobles. Integrales dobles Integrales dobles Integrales iteradas b g2 (x) a g 1 (x) f(x, y) dydx ó d h2 (y) c h 1 (y) f(x, y) dxdy Los límites interiores de integración pueden ser variables respecto a la variable exterior de integración,

Más detalles

CAPÍTULO 10. Teoremas Integrales.

CAPÍTULO 10. Teoremas Integrales. CAPÍTULO 10 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera EJECICIOS E CA LCULO II PAA GAOS E INGENIEI A Elaborados por omingo Pestana y Jose Manuel odrı guez, con Arturo de Pablo y Elena omera 3 3. Integracio n en n Integral mu ltiple. f en los siguientes casos:

Más detalles

Capítulo 5. Integrales sobre curvas y superficies

Capítulo 5. Integrales sobre curvas y superficies Capítulo 5. Integrales sobre curvas y superficies 5.1. Integrales de funciones escalares sobre curvas 5.2. Integrales de campos vectoriales sobre curvas 5.3. Teorema de Green 5.4. Integrales sobre superficies

Más detalles

3. Cambio de variables en integrales dobles.

3. Cambio de variables en integrales dobles. GADO DE INGENIEÍA AEOESPACIAL. CUSO. Lección. Integrales múltiples. 3. Cambio de variables en integrales dobles. Para calcular integrales dobles eiste, además del teorema de Fubini, otra herramienta fundamental

Más detalles

3 Integración en IR n

3 Integración en IR n a t e a POBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CUSO 29 21 3 Integración en I n 3.1 Integral múltiple. Problema 3.1 Calcula f en los siguientes casos: Q i) f(x, y) =

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

Cambio de variables. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna 1.

Cambio de variables. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna 1. Cambio de variables IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Introducción 1 2. Cambio de variables 1 2.1. El teorema del cambio de variables

Más detalles

Tema 5: Funciones homogéneas

Tema 5: Funciones homogéneas Tema 5: Funciones homogéneas f se dice homogénea de grado α si se verifica: f(λ x) = λ α f( x), x, λ > 0 Propiedades: 1. Si f y g son homogéneas de grado α, entonces f ± g es también homogénea de grado

Más detalles

1 Terminar los ejercicios de la práctica realizada el día de hoy

1 Terminar los ejercicios de la práctica realizada el día de hoy Este documento contiene las actividades no presenciales propuestas al terminar la clase del día que se indica. e sobreentiende que también se debe realizar el estudio de lo explicado en clase aunque no

Más detalles

Integral Doble e Integral Triple

Integral Doble e Integral Triple www.cidse.itcr.ac.cr/revistamate Práctica 6 Integral Doble e Integral Triple Cambio de variable con coordenadas polares y coordenadas ciĺındricas. Cálculo Superior Instituto Tecnológico de Costa ica Escuela

Más detalles

Examen Final de Cálculo Vectorial MATE PREGUNTAS ABIERTAS TEMA A Diciembre 6 de Nombre: Código:

Examen Final de Cálculo Vectorial MATE PREGUNTAS ABIERTAS TEMA A Diciembre 6 de Nombre: Código: UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Examen Final de Cálculo Vectorial MATE 1207 PREGUNTAS ABIERTAS TEMA A Diciembre 6 de 2017 Este es un examen individual, no se permite el uso de libros,

Más detalles

Examen final de Cálculo Integral

Examen final de Cálculo Integral Examen final de Cálculo Integral de junio de 11 (Soluciones) Cuestiones C 1 La respuesta es que la función es integrable, como consecuencia del Teorema 1.1 de los apuntes, o el Teorema del Capítulo 5 del

Más detalles

INTEGRALES MÚLTIPLES

INTEGRALES MÚLTIPLES INTEGALES MÚLTIPLES Introducción: Si f es una función definida sobre una región, la integral doble se puede interpretar como el volumen del sólido limitado superiormente por la superficie z = f(,, inferiormente

Más detalles

Integración múltiple: integrales dobles

Integración múltiple: integrales dobles Problemas propuestos con solución Integración múltiple: integrales dobles ISABEL MAEO epartamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice. Integrales iteradas 2. Teorema

Más detalles

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2.

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. 1 1 4, 0 1 a.- (, ) = 2 1 4, 1 2 2 1 < 3, 0 < 1 b.- (, ) = 1 1 < 3, 1 2 3 3 4,

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0. ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x

Más detalles

Superficies. Primera Forma Fundamental

Superficies. Primera Forma Fundamental Tema Superficies. Primera Forma Fundamental Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 005 006 Tema. Superficies. Primera Forma Fundamental 1. Curvas sobre superficies

Más detalles

Examen final de Cálculo Integral

Examen final de Cálculo Integral Examen final de Cálculo Integral 8 de junio de (Soluciones) Cuestiones C Sí se puede asegurar que es integrable, como consecuencia del teorema 4. de los apuntes: Llamamos W y f : W R a la esfera y a la

Más detalles

Superficies Parametrizadas y Áreas

Superficies Parametrizadas y Áreas Superficies Parametrizadas y Áreas 1 Superficies Parametrizadas y Áreas Hasta ahora hemos estudiado (tema de matemáticas 5) superficies definidas como gráficas de funciones de la forma z = f (x, y). El

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2007 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2007 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 6 de Junio de 7 Primera parte Ejercicio. Determinar los puntos de máxima y mínima pendiente de la gráfica de la función y = +x, x. Solución.

Más detalles

Lección 32: Algunas ideas sobre la integral doble. Introducción al Cálculo Infinitesimal I.T.I. Gestión

Lección 32: Algunas ideas sobre la integral doble. Introducción al Cálculo Infinitesimal I.T.I. Gestión Lección 32: Algunas ideas sobre la integral doble Introducción al Cálculo Infinitesimal I.T.I. Gestión Esquema: - Idea de integral doble - Teorema de Fubini - Cambio a coordenadas polares Integral doble

Más detalles

PEP 3. Responda 4 de los siguientes 9 problemas, escogiendo al menos uno de cada sección.

PEP 3. Responda 4 de los siguientes 9 problemas, escogiendo al menos uno de cada sección. Universidad de Santiago de Chile Cálculo odrigo Vargas do semestre 1 PEP Nombre: Nota: esponda de los siguientes 9 problemas, escogiendo al menos uno de cada sección. Sección 1. 1. Use coordenadas esféricas

Más detalles

1. Sea f una función definida en I = [1, 2] [1, 4] del siguiente modo: (x + y) 2, x y 2x, 0, en el resto.

1. Sea f una función definida en I = [1, 2] [1, 4] del siguiente modo: (x + y) 2, x y 2x, 0, en el resto. La integral múltiple Problemas resueltos. Sea f una función definida en I [, ] [, 4] del siguiente modo: { (x + y), x y x, f(x, y), en el resto. Indique, mediante un dibujo, la porción A del rectángulo

Más detalles

Cambio de variables en la integral múltiple.

Cambio de variables en la integral múltiple. Cambio de variables en la integral múltiple. En este apartado vamos a generalizar la fórmula g(b) g(a) f(x) dx = b a f(g(t)) g (t) dt al caso de funciones de n variables. Como la región de integración

Más detalles

( ) () i ( ) ( ) ( ) cálculos. Por ejemplo, dada una región de integración D de la forma indicada en la figura (i) tenemos:

( ) () i ( ) ( ) ( ) cálculos. Por ejemplo, dada una región de integración D de la forma indicada en la figura (i) tenemos: Universidad iego Portales Facultad de Ingeniería. Instituto de Ciencias Básicas Asignatura: Cálculo III Laboratorio N 9, Integrales Multiples. Introducción. En este laboratorio estudiamos las integrales

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

9. DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES.

9. DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES. 9 DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES 91 Derivadas parciales y direccionales de un campo escalar La noción de derivada intenta describir cómo resulta afectada una función y = f(x) por un cambio

Más detalles

Integración en una variable (repaso)

Integración en una variable (repaso) Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 2 Práctica 8: Integración Integración en una variable (repaso). Calcular: sen x. 2π sen x. El área entre las curvas y = sen x, y =, x =, x

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Tema 2. Ejercicios propuestos

Tema 2. Ejercicios propuestos Tema 2. Ejercicios propuestos 1.- - Calcular 2.- - Calcular 3.- - Sea = x2 y2 dx dy, siendo = {(x, y) 2 : 1 x y 2, x y 4x}. (x2 +y2 )dx dy, donde = (x, y) 2 : x2 + y2 2y, x2 + y2 1, x 0. (x, y) 2 1 x 2

Más detalles

A) Hallar el volumen del sólido formado cuando la región del primer cuadrante limitada por Z 4. 1 x 4 1 dx. Z b. p (x) h (x) dx.

A) Hallar el volumen del sólido formado cuando la región del primer cuadrante limitada por Z 4. 1 x 4 1 dx. Z b. p (x) h (x) dx. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA I.T.I. Especialidad en Electricidad. Curso 4-5. Soluciones al Segundo Parcial de Fundamentos Matemáticos de la Ingeniería. PROBLEMA.- A) Hallar el volumen del

Más detalles

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8 ANALISIS MATEMATIO II (iencias- 2011) Integrales sobre curvas (o de línea) Trabajo Práctico 8 1. Evaluar las siguientes integrales curvilíneas γ f ds. (a) f(x, y, z) = x + y + z ; r(t) = (sen t, cos t,

Más detalles

Integrales Múltiples.

Integrales Múltiples. CAPÍTULO 9 Integrales Múltiples. En este capítulo generalizamos las integrales definidas de una variable a dos y tres variables. La interpretación geométrica de las integrales definidas de una variable

Más detalles

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES 9.1. Diferenciación 9.1.1. DERIVADAS PARCIALES Derivadas parciales de una función de dos variables Se llaman primeras derivadas parciales de una función f(x, y) respecto de x e y a las funciones: f x (x,

Más detalles

Integrales Múltiples.

Integrales Múltiples. CAPÍTULO 8 Integrales Múltiples. En este capítulo generalizamos las integrales definidas de una variable a dos y tres variables. La interpretación geométrica de las integrales definidas de una variable

Más detalles

Enunciado y solución del cuarto certamen de Cálculo 3. Viernes 5 de Julio de 2013 Prof: Roberto Cabrales

Enunciado y solución del cuarto certamen de Cálculo 3. Viernes 5 de Julio de 2013 Prof: Roberto Cabrales nunciado y solución del cuarto certamen de álculo. Viernes 5 de Julio de 1 Prof: oberto abrales 1 puntos). ean f y g son campos escalares en y F un campo vectorial en. 1. puntos) Muestre que divrotf))..

Más detalles

Teorema 1 (Cambio de Variable en R n ).

Teorema 1 (Cambio de Variable en R n ). Vamos a estudiar en este segundo capítulo sobre los cambios de variable para funciones de varias variables, algunos de los más habituales: los cambios de coordenadas a coordenadas polares en el plano,

Más detalles

Gu ıa Departamento Matem aticas U.V.

Gu ıa Departamento Matem aticas U.V. Universidad de Valparaíso Instituto de Matemáticas Guía de Cálculo en Varias Variables Integración. Sean = [,] [,] {(x,y) : (x,y) < } y f : continua. a) Escriba lafuncióncaracterísticaχ demedianteunafunciónporparte,análogamente

Más detalles

FACULTAD DE CIENCIAS DEL MAR. FUNDAMENTOS MATEMÁTICOS II. Convocatoria Extraordinaria de Diciembre de 2002.

FACULTAD DE CIENCIAS DEL MAR. FUNDAMENTOS MATEMÁTICOS II. Convocatoria Extraordinaria de Diciembre de 2002. FAULTAD DE IENIAS DEL MAR. FUNDAMENTOS MATEMÁTIOS II. onvocatoria Extraordinaria de Diciembre de. xydx x y dy a lo largo de la elipse.- alcular + ( ) contrario al de las agujas del reloj. x y + = recorrida

Más detalles

7. Cambio de variables en integrales triples.

7. Cambio de variables en integrales triples. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. Lección. Integrales múltiples. 7. Cambio de variables en integrales triples. El teorema del cambio de variables para integrales triples es análogo al de integrales

Más detalles

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy =

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy = TEOREMA E GREEN. 1. Calcular y dx x dy, donde es la frontera del cuadrado [ 1, 1] [ 1, 1] orientada en sentido contrario al de las agujas del reloj. Por el teorema de Green, si llamamos al interior del

Más detalles

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química UAM I Grupo 911 Febrero 213 Ejercicios Resueltos del Tema 2.2.6 Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: 1 7 y 9 12. Nota: Los ejercicios pueden contener errores,

Más detalles

11. Integrales múltiples.

11. Integrales múltiples. Tema 1. plicaciones del cálculo diferencial. urso 17/18 11. Integrales múltiples. En este tema nos vamos a centrar en tratar de integrar funciones de varias variables. eniremos los conceptos de integral

Más detalles

Problemas de Análisis Vectorial y Estadístico

Problemas de Análisis Vectorial y Estadístico Relación 1. Funciones Γ y β 1. Función Gamma Definimos la función gamma Γ(p) como: Demostrar que: Γ(p) = t (p 1) e t dt para p> a) Γ(1) = 1 b) Integrando por partes, ver que Γ(p) = (p 1)Γ(p 1) para p>1

Más detalles

Práctica 7. sen 2 x cos x dx. c) 3x 2 x 2 dx. f) 3. Hallar el área encerrada por las curvas:

Práctica 7. sen 2 x cos x dx. c) 3x 2 x 2 dx. f) 3. Hallar el área encerrada por las curvas: ANÁLISIS I MATEMÁTICA ANÁLISIS (Computación) Práctica 7 I. epaso: integración en una variable. Calcular: sen x. b) π sen x. c) El área entre las curvas y = sen x, y =, x =, x = π.. Calcular: x sen x. b)

Más detalles

CAPÍTULO 11. Teoremas Integrales.

CAPÍTULO 11. Teoremas Integrales. CAPÍTULO 11 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen Universidad Técnica Federico anta aría Coordinación de atemática IV Guía-Apunte de Preparación del CAR 2 do emestre 2011 Información Contenidos del Certamen Teorema de Green, Teorema de Green para Regiones

Más detalles

Cálculo III (0253) TEMA 3 INTEGRALES DOBLES Y TRIPLES Y SUS APLICACIONES. Semestre

Cálculo III (0253) TEMA 3 INTEGRALES DOBLES Y TRIPLES Y SUS APLICACIONES. Semestre Cálculo III (05) Semestre -009 TEMA INTEGRALES DOBLES Y TRIPLES Y SUS APLICACIONES Semestre -009 Octubre 009 U.C.V. F.I.U.C.V. CÁLCULO III (05) - TEMA Las notas presentadas a continuación tienen como único

Más detalles

CAPITULO 8. CURVAS Y SUPERFICIES Curvas en el plano

CAPITULO 8. CURVAS Y SUPERFICIES Curvas en el plano CAPITULO 8. CURVAS Y SUPERFICIES 8.. Curvas en el plano efinición.efinimos curva en el plano C α : [ a,b] R R t α ( t) ( x( t), y( t) ) que nos lleva a la ecuación paramétrica de la curva C : t [a,b],curva

Más detalles

Hoja de Prácticas tema 4: Integrales múltiples. (xy +x 2 +y 2 )dydx =

Hoja de Prácticas tema 4: Integrales múltiples. (xy +x 2 +y 2 )dydx = Cálculo II EPS (Grado TICS) Curso - Hoja de Prácticas tema 4: Integrales múltiples. Calcular ( + + )da en la región = {(,) R :, }. ( + + )da = ( + + )dd = ( + + = = d 5 = + + 9 d = 49. . Calcular cos()dd

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. 2do. cuatrimestre de 2015 Práctica 2 - Integrales de superficie. Definición.1. Una superficie paramétrica (superficie a secas para nosotros) es un conjunto

Más detalles

Capítulo 3. Integración multidimensional. 1. Integrales de Riemann en rectángulos

Capítulo 3. Integración multidimensional. 1. Integrales de Riemann en rectángulos Capítulo 3 Integración multidimensional 1. Integrales de Riemann en rectángulos Definición (Partición de rectángulos). Consideremos el rectángulo [a, b] [c, d] y sean P 1 = {a = x 0, x 1,..., x n = b}

Más detalles

Diferenciación SEGUNDA PARTE

Diferenciación SEGUNDA PARTE ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 4 - Primer Cuatrimestre 009 Diferenciación SEGUNDA PARTE Regla de la Cadena 1 Sean f(u, v, w) = u + v 3 + wu y g(x, y) = x sen(y) Además, tenemos

Más detalles

S O L U C I Ó N y R Ú B R I C A

S O L U C I Ó N y R Ú B R I C A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO 08 PERÍODO PRIMER TÉRMINO MATERIA Cálculo de una variable PROFESORES EVALUACIÓN SEGUNDA

Más detalles

Solution: Sea R = r = x 2 +y 2 +z 2. (b) Cálculo directo. 1 x2 +y 2 +z 2 = 1 R. (c) f =

Solution: Sea R = r = x 2 +y 2 +z 2. (b) Cálculo directo. 1 x2 +y 2 +z 2 = 1 R. (c) f = Universidad de los Andes Departamento de Matemáticas MAT7 Cálculo Vectorial Tarea 3 Individual ntregue en clase a su profesor de la MAGISTRAL la semana 5 (Ma. 3 Vi. 6 Dic.). (4 points) [Rotacional, Divergencia,

Más detalles

Integración en una variable

Integración en una variable Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) er. Cuatrimestre - 7 Práctica 8: Integración Integración en una variable. Calcular: xsen x. sen x cos x. xe x. e x sen x. (f) 3x x + x.

Más detalles

Parametrización de superficies Integrales de superficie. h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/

Parametrización de superficies Integrales de superficie. hp://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Parametrización de superficies Integrales de superficie h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Parametrización de una superficie en R 3 ea un dominio del espacio R 2, donde los puntos están definidos

Más detalles

Tema 4: Integración de funciones de varias variables

Tema 4: Integración de funciones de varias variables Departamento de Matemáticas. Universidad de Jaén. Análisis Matemático II. Curso 29-21. Tema 4: Integración de funciones de varias variables 1. Evaluar las siguientes integrales iteradas e) f ) g) 1 2 1

Más detalles

Volumen de Revolución Ejemplo. Se obtiene al hacer girar una región limitada alrededor de un eje. Por ejemplo, si la función: f(x) x el eje 0x:

Volumen de Revolución Ejemplo. Se obtiene al hacer girar una región limitada alrededor de un eje. Por ejemplo, si la función: f(x) x el eje 0x: Volumen de Revolución Ejemplo Se obtiene al hacer girar una región limitada alrededor de un eje. Por ejemplo, si la función: f(x) x 2 1 gira sobre el eje 0x: Sólidos de Revolución conocidos ALGUNAS APLICACIONES

Más detalles

Vector Tangente y Vector Normal

Vector Tangente y Vector Normal Vector Tangente y Vector Normal enición. ada una supercie S = f) descrita por la función f : R 2 R 3 fu, v) = xu, v), yu, v), zu, v)) de clase c con u, v) y dado un punto u, v ) denimos los vectores f

Más detalles

MÉTODOS MATEMÁTICOS II

MÉTODOS MATEMÁTICOS II MÉTODOS MATEMÁTICOS II (Licenciatura de Física. Curso 2007-2008) Boletín de problemas a evaluar correspondientes a los Temas I y II Fecha de entrega: Viernes, 23 de Noviembre de 2007 1. Calcula los siguientes

Más detalles

Ejemplo La banda de Moebius parametrizada por. v = N f =

Ejemplo La banda de Moebius parametrizada por. v = N f = .4 Integral de Supercie funciones escalares Una supercie S R se dirá orientable si es posible decidir sin ambiguedad cuál es cada uno de los lados de la supercie Una función N : S R, denida en los puntos

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2005 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2005 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 005 Primera parte Ejercicio 1. Un espejo plano de dimensiones 80 cm y 90 cm, se rompe por una esquina según una recta. De

Más detalles

6. El teorema de la divergencia.

6. El teorema de la divergencia. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. Lección. Cálculo vectorial. 6. El teorema de la divergencia. Ya vimos una versión del teorema de Green en el plano que expresa la igualdad entre la integral doble

Más detalles

Integración en una variable (repaso)

Integración en una variable (repaso) Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 28 Práctica 8: Integración Integración en una variable (repaso). Calcular: xsen x. sen 2 x cos x. xe x2. e x sen x. 3x 2 x 2 + x 2. ln x. 2.

Más detalles

a n en las que n=1 s n = n + 1 Solución: a) Utilizando el criterios de D Alembert se obtiene que a n+1 n a n 3 > 1 n=1

a n en las que n=1 s n = n + 1 Solución: a) Utilizando el criterios de D Alembert se obtiene que a n+1 n a n 3 > 1 n=1 EJERCICIO DE FUNDAMENTO MATEMÁTICO eries. Estudia el carácter de las series (a El término general es a n en las que (b la suma parcial n-sima es a n n n+ 3 n, n,, 3,... s n n, n,, 3,... n + olución: a

Más detalles

CÁLCULO III (0253) EXAMEN DE REPARACIÓN 30/06/09. 3t 3t 3 3

CÁLCULO III (0253) EXAMEN DE REPARACIÓN 30/06/09. 3t 3t 3 3 CÁLCULO III (05) 0/06/09 a Estudie la curva de ecuación vectorial t t r(t) =,, + t + t tomando en cuenta: dominio, cortes con los ejes, signo, simetrías, asíntotas, puntos asintóticos, tangentes, puntos

Más detalles

El Teorema de Green. Una curva dada por r(t) = x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) Curva no simple

El Teorema de Green. Una curva dada por r(t) = x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) Curva no simple El Teorema de Green Una curva dada por r(t) x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) r(d) si c d. urva simple urva no simple urva orientada positivamente La curva

Más detalles

6. Integrales triples.

6. Integrales triples. GRADO DE INGENIERÍA AEROESPACIAL. CRSO 0. Lección. Integrales múltiples. 6. Integrales triples. Integral triple en un prisma. El proceso para definir la integral triple f ( xyzdv,, ), de una función continua

Más detalles

Matemática II Tema 17: integrales dobles en coordenadas polares

Matemática II Tema 17: integrales dobles en coordenadas polares Matemática II Tema 7: integrales dobles en coordenadas polares 22 23 Índice Integrales dobles en coordenadas polares Coordenadas polares límites de integración Ejemplos de aplicación 2 Sustitución en integrales

Más detalles

SERIE # 4 CÁLCULO VECTORIAL

SERIE # 4 CÁLCULO VECTORIAL SERIE # 4 CÁLCULO VECTORIAL Página 1 1) Calcular 1 x y dy dx. 0 0 1 ) Evaluar la integral doble circunferencia x y 9. x 9 x da R, donde R es la región circular limitada por la 648 15 x y ) Calcular el

Más detalles

Sea S = F r(w ) una supercie cerrada que limita una región en el espacio W R 3

Sea S = F r(w ) una supercie cerrada que limita una región en el espacio W R 3 4.3 Teorema de la ivergencia Gauss) ea = F r ) una supercie cerrada que limita una región en el espacio R 3 El teorema de la divergencia tambien conocido como teorema de Gauss) es una generalización del

Más detalles

APLICACIONES DE LA INTEGRAL DEFINIDA

APLICACIONES DE LA INTEGRAL DEFINIDA APLICACIONES DE LA INTEGRAL DEFINIDA Objetivo: El alumno analizará y comprenderá el uso y la aplicación de la integral definida en la resolución de problemas REGIONES PLANAS LIMITADAS POR DOS CURVAS Sean

Más detalles

Primera parte: Ejercicios de Integrales Múltiples Integración de Funciones de Varias Variables, grupo A, curso 15/16 Francisco José Freniche Ibáñez

Primera parte: Ejercicios de Integrales Múltiples Integración de Funciones de Varias Variables, grupo A, curso 15/16 Francisco José Freniche Ibáñez Primera parte: Ejercicios de Integrales Múltiples Integración de Funciones de Varias Variables, grupo, curso 5/6 Francisco José Freniche Ibáñez. Demuestra que si I R es un intervalo y f : I R es una función

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO: 017 PERÍODO: PRIMER TÉRMINO MATERIA: Cálculo de una variable PROFESOR: EVALUACIÓN:

Más detalles

Práctica

Práctica UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE MATEMATICA HPV/ Práctica. 5141. Problema 1. Determinar el área de la región comprendida entre los gráficos de las ecuaciones

Más detalles

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0)

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0) facultad de ciencias exactas y naturales uba curso de verano 2006 ANALISIS II Computación Práctica 4 Derivadas parciales 1. Calcular (a) f xy y (2, 1) para f(x, y) = + x y (b) f z (1, 1, 1) para f(x, y,

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

Santiago, julio 6 del Tercera Solemne Cálculo Varias Variables. Nombre:

Santiago, julio 6 del Tercera Solemne Cálculo Varias Variables. Nombre: Nombre: Santiago, julio 6 del 26. Tercera Solemne Cálculo Varias Variables. 1. La temperatura en un punto (x, y) sobre una placa metalica es T (x, y) 4x 2 4xy + y 2. Una hormiga camina sobre la placa alrededor

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Comentarios y ejemplos - Práctica 10

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Comentarios y ejemplos - Práctica 10 ANÁLII MATEMÁTICO II - Grupo Ciencias 218 Comentarios y ejemplos - Práctica 1 A. Parametrizaciones de superficies El concepto de parametrización de una superficie es análogo al de parametrización de una

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-107-4-M-2-12-2017 CURSO: SEMESTRE: Vacaciones de Diciembre CÓDIGO DEL CURSO: 107 TIPO DE EXAMEN: Examen Final

Más detalles

La puntuación depende del modo de resolución.

La puntuación depende del modo de resolución. Grupo B 16/17 Ampliación de Cálculo En todos los casos, se pide contestar razonadamente La puntuación depende del modo de resolución Ejercicio 1 (15 puntos por apartado) Una semiesfera sólida de densidad

Más detalles

Funciones Reales de Varias Variables

Funciones Reales de Varias Variables Funciones Reales de Varias Variables Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 162 CONTENIDO Funciones

Más detalles

Suponga que f(x, y) está definida sobre una región rectangular R dada por

Suponga que f(x, y) está definida sobre una región rectangular R dada por INTEGRALES MULTIPLES. INTEGRALES DOBLES SOBRE RECTANGULOS. Suponga que f(x, y) está definida sobre una región rectangular R dada por R: a

Más detalles