METAHEURISTICAS Ideas, Mitos, Soluciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "METAHEURISTICAS Ideas, Mitos, Soluciones"

Transcripción

1 METAHEURISTICAS Ideas, Mitos, Soluciones

2 OPTIMIZACION COMBINATORIA Qué es un problema de optimización combinatoria?

3 Cómo se modela matemáticamente un problema de optimización combinatoria? Minimizar (o maximizar) f(x) sujeto a g (x i ) b i i=1...m 1 h (x i ) = c i i= m 1 +1,... M x i ε Z función objetivo variables de decisión restricciones (No siempre se puede modelar exactamente así un problema de optimización combinatoria)

4 Ejemplos de problemas de optimización combinatoria: Problema de la suma de subconjuntos Determinación de caminos mínimos en grafos Flujo en redes Asignación de tareas Problema de la mochila Problemas de ruteo de vehículos. El problema del Viajante de comercio Diseño de redes de comunicaciones Ruteo en redes de comunicaciones VLSI

5 Planificación de tareas Asignación de recursos y horarios en instituciones educativas Minimizaron de desperdicios en el corte de materiales Localización de plantas Planificación financiera Problemas de energía Biología Computacional (secuenciamiento de ADN, árboles filogenéticos, doblamiento de proteínas) etc.

6 Cómo se resuelve un problema de optimización combinatoria? Enumeración completa o algoritmo de fuerza bruta. Sirve? COMPLEJIDAD COMPUTACIONAL Qué hacer? SOLUCIONES EXACTAS HEURISTICAS

7 Heurísticas clásicas HEURISTICAS Metaheurísticas o heurísticas modernas o sistemas inteligentes Cuándo usarlas? Problemas para los cuales no se conocen buenos algoritmos exactos Problemas difíciles de modelar

8 Porqué usarlas? Adaptabilidad a modificaciones de los datos o del problema una vez que ya se obtuvo un resultado. Fáciles de implementar y programar Basadas en tener una gran capacidad de cálculo No sólo para problemas de optimización combinatoria

9 Cómo se evalúan? problemas test problemas reales problemas generados al azar cotas inferiores

10 ESQUEMA GENERAL DE UN ALGORITMO DE DESCENSO (O BUSQUEDA LOCAL) S= conjunto de soluciones N(s) =soluciones vecinas de la solución s Elegir una solución inicial s 0 S Repetir Elegir s N(s 0 ) tal que f(s) < f(s 0 ) Reemplazar s 0 por s Hasta que f(s) > f(s 0 ) para todos los s N(s 0 )

11 Cómo determinar las soluciones vecinas de una solución s dada? Qué se obtiene con este procedimiento? Sirve? Optimos locales y globales Espacio de búsqueda

12 Ejemplo: Supongamos que tenemos el problema de asignar tareas a un sola máquina de modo a minimizar el tiempo total de ejecución. Cada trabajo j tiene un tiempo de procesamiento p j y una fecha de entrega d j. El objetivo es entonces minimizar T = j max {(C j d j ),0} donde C j es el momento en que se completa el trabajo j.

13 Como elegir las soluciones iniciales. A priori se puede tomar cualquier permutación de las tareas. Determinación de los vecinos de una solución dada: en este caso podemos tomar los que se obtengan de la solución actual cambiando la posición de un trabajo con otro. En un problema con 4 trabajos por ejemplo los vecinos de (1,2,3,4) serán: N(s) = {(1,3,2,4),(3,2,1,4),(1,2,4,3), (1,4,3,2),(2,1,3,4),(4,2,3,1)}

14 TECNICAS METAHEURISTICAS Simulated annealing (primeros trabajos 1953, 1983) Algoritmos Tabú Search (primeras aplicaciones a optimización combinatoria en 1986, basado en algunas ideas de los 70) Algoritmos genéticos y evolutivos (primeras ideas en los 60, en ese momento mayormente aplicaciones a problemas de IA). Algoritmos meméticos, BRKGA (1994, 2007) Scatter search and path relinking (1998) GRASP (1989) ISL Colonia de hormigas (1992) Redes neuronales (primeras ideas en los 60, resurgieron en los 80) otras.. Híbridos

15 Origen, motivación, exceso de nomenclatura, similitudes forzadas con problemas de la física y la biología por ejemplo, etc. Se usan en otros problemas, que no son de optimización combinatoria también.

16 TABU SEARCH CONCEPTOS BASICOS: Permitir elegir una solución vecina que no sea estrictamente mejor que la actual para salir de un mínimo local. Usar una lista Tabú de soluciones (o movimientos) para evitar que el algoritmo cicle. Usar una función de aspiración que permita en algunos casos elegir un elemento o movimiento Tabú.

17 ESQUEMA GENERAL DE TABU SEARCH Inicialización Elegir una solución inicial s en S Niter:=0 bestiter:=0 bestsol:= s T:= Inicializar la función de aspiración A Mientras ( f(s) > f(s*) y (niter- bestiter < nbmax) hacer niter := niter + 1 generar un conjunto V* de soluciones sv en N(s) que no sean Tabu o tales que A(f(s)) f(sv) elegir una solución s* que minimice f en V* actualizar la función de aspiración A y la lista Tabú T si f(s*) < f(bestsol) entonces bestsol:= s* bestiter := niter s:=s*

18 Qué hay que hacer para usar este esquema?: Determinar el conjunto de soluciones factibles S. Determinar la función objetivo f. Dar un procedimiento para generar los elementos de N(s), vecinos de s. Decidir el tamaño del conjunto V* N(s) que será considerado en cada iteración Definir el tamaño de la lista Tabú T. De ser posible definir una cota inferior para la función objetivo f. Definir la función de Aspiración A(z) para todos los valores z que puede tomar la función objetivo. Definir criterios de parada (nbmax y/o comparación con la cota inferior si la hay)

19 Ejemplo: seguimos con el ejemplo anterior de asignar tareas a un sola máquina de modo a minimizar el tiempo total de ejecución. Como construir el conjunto de soluciones posibles V*? En este caso, si, cuando la solución actual es (1,2,3,4) la lista Tabu, proveniente de los pasos anteriores del algoritmo es T= {(1,3,2,4),(3,1,2,4)(3,2,1,4)} Entonces V* tiene solo cuatro elementos (1,2,4,3), (1,4,3,2),(2,1,3,4),(4,2,3,1)}

20 Posibles reglas Tabu a usar en este caso: impedir todos los movimientos donde i ocupa la posición p(i) y j ocupa la posición p(j) impedir los movimientos donde alguna de las situaciones arriba suceda impedir que el trabajo i vuelva a una posición k con k < p(i) impedir que el trabajo i cambie de posición impedir que i y j cambien de posición Como elegir el tiempo de permanencia en la lista Tabu: valor fijo ( a ser ajustado en la experimentación) valor aleatorio entre un tmin y tmax dados a priori. valor variable de acuerdo al tamaño de la lista y las variaciones del valor de la función objetivo.

21 Ejemplos de criterios de aspiración: cuando todos los movimientos o vecinos posibles son Tabu, se elige alguno de ellos ( el menos tabu ) cuando con un movimiento tabu se obtiene una solución mejor que la mejor hasta ese momento (global o en la región)

22 MAS DETALLES de Tabu search... Uso de la memoria a largo plazo, en contraposición con la que se usa para manejar N(s), a corto plazo : Frecuencia : guardar información sobre atributos en una misma posición, movimientos que se repiten, datos sobre el valor de la solución cuando un atributo esta en una posición dada, etc. Lista de soluciones elite Intensificación Diversificación Camino de soluciones entre dos soluciones prometedoras. Etc.

23 GRASP (Feo, T.,Resende, M., Greedy randomized adaptive search procedures, Journal of Global Optimization, 1995, pp 1,27) Esquema de un algoritmo GRASP Mientras no se verifique el criterio de parada ConstruirGreedyRandomizedSolución ( Solución) Búsqueda Local (Solución) ActualizarSolución (Solución, MejorSolución) End

24 Algoritmo ConstruirGreedyRandomizedSolución (Solución) En vez de usar un algoritmo goloso que elija el elemento más prometedor para agregar a la solución, en cada iteración se elige al azar entre los que cumplen que no pasan de un porcentaje α del valor del mejor elemento. Se puede limitar el tamaño de la lista de estos elementos. Algoritmo Búsqueda Local (Solución) Definición de intercambios

25 EJEMPLOS 1. Cubrimiento de conjuntos Dados n conjuntos P 1, P 2,..P n sea I = i P i y J ={1,2,.n} Un subconjunto J * de J es un cubrimiento si i J* P i = I El problema de recubrimiento mínimo (set covering problem) consiste en determinar un cubrimiento de I de cardinal mínimo ( o sea con la mínima cantidad de conjuntos P i )

26 Ejemplo: P 1 = { 1,2 }, P 2 = { 1,3 }, P 3 = { 2 }, P 4 = { 3 } Los cubrimientos mínimos tienen cardinal 2 y son: {P 1 P 2, } ó {P 1 P 4, } ó {P 2 P 3, }

27 Primer paso: ConstruirGreedyRandomizedSolución ( Solución) Un algoritmo goloso podría ser agregar al cubrimiento el conjunto que cubre la mayor cantidad de elementos de I sin cubrir. En este caso para el algoritmo GreedyRandomized consideramos como conjuntos candidatos a los que cubren al menos un porcentaje α del número cubierto por el conjunto determinado por el algoritmo goloso. También se puede limitar el tamño de la lista de candidatos a tener a lo sumo β elementos. Dentro de esta lista de conjuntos se elige uno al azar.

28 Segundo paso: Búsqueda Local (Solución) Para el algoritmo de descenso se definen los vecinos usando el siguiente procedimiento de intercambios: Un k,p-intercambio, con p < q, consiste en cambiar si es posible k-uplas del cubrimiento por p-uplas que no pertenezcan al mismo. Ejemplo: cambiar la 2-upla P 2 = { 1,3 } con la 1-upla P 4 = { 3 }

29 Ejemplo: P 1 = { 3,4 }, P 2 = { 3 }, P 3 = { 2 }, P 4 = { 2,3,4 }, P 5 = { 3,4,5 }, P 6 = { 1,4,5 }, P 7 = { 2,3 }, P 8 = { 4 } Tomamos α = 40% En la primer iteración la lista es {P 1, P 4, P 5,P 6, P 7 }. Supongamos que sale elegido al azar P 5.. Para el segundo paso la lista es {P 3, P 4,P 6, P 7 }. Si resultara elegido P 3 tendríamos el cubrimiento {P 3, P 5,P 6 } que no es óptimo y podriamos pasar al algoritmo de búsqueda local. Si en primer lugar hubiera resultado elegido P 6. y después hubiera salido P 4.hubieramos obtenido la solución óptima {P 4,P 6 }.

30 Resultados presentados en el trabajo de Feo y Resende: Testearon el algoritmo en problemas no muy grandes pero díficiles que aparecían en la literatura. Se lograron resolver problemas pequeños pero que aún no habían sido resueltos. Se hicieron 10 corridas para cada ejemplo con ß = 0.5,0.6,0.7,0.8,0.9. Se usaron solo 1,0 intercambios o sea sólo se eliminaron columnas superfluas.

31 Los ejemplos siguientes de GRASP los veremos más adelante después de ver los conceptos correspondientes de grafos.

32 2. Máximo conjunto independiente i) en este caso la medida para decidir que nodo agregar al conjunto independiente puede ser el grado. Se puede hacer un algoritmo goloso que en cada iteración agregue el nodo de menor grado. ii) En este caso el intercambio se hace de la siguiente forma: Si tenemos un conjunto independiente S de tamaño p, para cada k- upla de nodos en ese conjunto hacemos una búsqueda exhaustiva para encontrar el máximo conjunto independiente en el grafo inducido por los nodos de G que no son adyacentes a los nodos de S = S \ {v1...vk}. Si el conjunto N resultante es de cardinal mayor que S entonces S U N es un conjunto independiente mayor que S.

33 RESULTADOS Se testeó el algoritmo en grafos generados al azar de 1000 nodos (con ciertas condiciones). Se usó un máximo de 100 iteraciones y ß = 0.1. Se hizo un preprocesamiento para facilitar el trabajo de GRASP, que se corre en grafos más chicos que los originales.

34 3. Job Scheduling Problema: Un conjunto de tareas debe ser ejecutada en un único procesador. Hay tiempos no simétricos de transición entre tareas. Base del algoritmo: se construye un camino hamiltoniano en forma golosa. Se usa un procedimiento de intercambio de nodos para la búsqueda local.

35 4. A GRASP for graph planarization, (Resende, Ribeiro, 1995). Problema: Encontrar un subconjunto F de los ejes de G tal que el grafo G\F sea planar. Base: un algoritmo GRASP como primer paso de una heurística conocida que antes usaba un algoritmo goloso + heuristica de conjunto independiente + extension del subgrafo planar.

36 Tabu Search y GRASP se dan como ejemplo de técnicas metaheurísticas. Dar una idea de todas ellas y de sus numerosísimas aplicaciones abarca un curso completo o más. A continuación mencionamos dos referencias recientes de entra las muchas que dan un panorama completo sobre metaheurísticas: Gendreau, M., Potvin, J.»Handbook of Metaheuristics, Springer, Talbi, E.G. "Metaheuristics: from design to implementation", Wiley, 2009

Temario III Algoritmos Combinatorios y Metaheurísticas

Temario III Algoritmos Combinatorios y Metaheurísticas Temario III Algoritmos Combinatorios y Metaheurísticas Verificación y Validación de Software UNCo 1 Contenidos Combinación de Datos de Test Algoritmos Combinatorios Metaheurísticas Búsqueda Tabú Algoritmos

Más detalles

Scheduling Problem. Cuándo y dónde debo hacer cada trabajo?

Scheduling Problem. Cuándo y dónde debo hacer cada trabajo? Scheduling Problem Cuándo y dónde debo hacer cada trabajo? Ejemplos de problemas de asignación de recursos Fabricación de varios tipos de productos Asignación de turnos de trabajo Inversión financiera

Más detalles

DISEÑO DE METAHEURÍSTICOS HÍBRIDOS PARA PROBLEMAS DE RUTAS CON FLOTA HETEROGÉNEA (2 Parte) : GRASP Y CONCENTRACIÓN HEURÍSTICA

DISEÑO DE METAHEURÍSTICOS HÍBRIDOS PARA PROBLEMAS DE RUTAS CON FLOTA HETEROGÉNEA (2 Parte) : GRASP Y CONCENTRACIÓN HEURÍSTICA DISEÑO DE METAHEURÍSTICOS HÍBRIDOS PARA PROBLEMAS DE RUTAS CON FLOTA HETEROGÉNEA (2 Parte) : GRASP Y CONCENTRACIÓN HEURÍSTICA Cristina R. Delgado Serna Departamento de ECONOMÍA (Área de Economía Aplicada)

Más detalles

Metaheurísticas: una visión global *

Metaheurísticas: una visión global * Metaheurísticas: una visión global * Belén Melián, José A. Moreno Pérez, J. Marcos Moreno Vega DEIOC. Universidad de La Laguna 38271 La Laguna {mbmelian,jamoreno,jmmoreno}@ull.es Resumen Las metaheurísticas

Más detalles

Un algoritmo genético híbrido para resolver el EternityII. Rico, Martin; Ros, Rodrigo Directora: Prof. Dra. Irene Loiseau

Un algoritmo genético híbrido para resolver el EternityII. Rico, Martin; Ros, Rodrigo Directora: Prof. Dra. Irene Loiseau Un algoritmo genético híbrido para resolver el EternityII Rico, Martin; Ros, Rodrigo Directora: Prof. Dra. Irene Loiseau Temas Temas Introducción Eternity II Historia Descripción Demo Metaheurísticas Algoritmos

Más detalles

Métodos evolutivos de Optimización. Prof. Cesar de Prada Dpto. Ingeneiria de Sitemas y Automática Universidad de Valladolid

Métodos evolutivos de Optimización. Prof. Cesar de Prada Dpto. Ingeneiria de Sitemas y Automática Universidad de Valladolid Métodos evolutivos de Optimización Prof. Cesar de Prada Dpto. Ingeneiria de Sitemas y Automática Universidad de Valladolid Indice Introducción Método de Montecarlo Algoritmos genéticos Tabú Search Simulated

Más detalles

Modelos y Optimización I

Modelos y Optimización I Modelos y Optimización I María Inés Parnisari 7 de enero de 2012 Índice 1. Deniciones 2 2. Método Simplex 2 3. Problemas 4 4. Modelización 10 5. Heurísticas 10 1 1 Deniciones Investigación operativa: aplicación

Más detalles

Evaluación de la disponibilidad de los servicios desplegados sobre Volunteer Computing

Evaluación de la disponibilidad de los servicios desplegados sobre Volunteer Computing Evaluación de la disponibilidad de los servicios desplegados sobre Volunteer Computing Antonio Escot Praena Enginyeria Informàtica i Tècnica de Gestió Dirección del TFC Ángel A. Juan, PhD. Eva Vallada

Más detalles

Búsqueda Local. cbea (LSI-FIB-UPC) Inteligencia Artificial Curso 2011/2012 1 / 33

Búsqueda Local. cbea (LSI-FIB-UPC) Inteligencia Artificial Curso 2011/2012 1 / 33 Introducción Búsqueda Local A veces el camino para llegar a la solución no nos importa, buscamos en el espacio de soluciones Queremos la mejor de entre las soluciones posibles alcanzable en un tiempo razonable

Más detalles

Capítulo VI MÉTODOS DE SOLUCIÓN PARA JOB SHOP SCHEDULING

Capítulo VI MÉTODOS DE SOLUCIÓN PARA JOB SHOP SCHEDULING Capítulo VI MÉTODOS DE SOLUCIÓN PARA JOB SHOP SCHEDULING 6.1. HEURÍSTICAS CONVENCIONALES El problema de job shop scheduling (JSSP) es un problema muy importante [69]; está entre los problemas de optimización

Más detalles

Problemas de Rutas. Vicente Campos Aucejo Dpt. Estadística i Investigació Operativa Universitat de València vicente.campos@uv.es

Problemas de Rutas. Vicente Campos Aucejo Dpt. Estadística i Investigació Operativa Universitat de València vicente.campos@uv.es Problemas de Rutas Vicente Campos Aucejo Dpt. Estadística i Investigació Operativa Universitat de València vicente.campos@uv.es Resumen El objetivo de este trabajo es el de divulgar la existencia de un

Más detalles

&$3Ì78/2 $/*25,7026 (92/87,926 $9$1=$'26 3$5$ 763 6.1. INTRODUCCIÓN

&$3Ì78/2 $/*25,7026 (92/87,926 $9$1=$'26 3$5$ 763 6.1. INTRODUCCIÓN &$3Ì78/2 6.1. INTRODUCCIÓN Los primeros avances para solucionar el TSP, por medio de Algoritmos Evolutivos han sido introducidos por Goldberg y Lingle en [68] y Grefenstette en [72]. En éste área muchos

Más detalles

UNA SOLUCIÓN AL PROBLEMA DE SELECCIÓN DE CURSOS BASADO EN HEURÍSTICAS PARA EL CASO DE LA FISCT

UNA SOLUCIÓN AL PROBLEMA DE SELECCIÓN DE CURSOS BASADO EN HEURÍSTICAS PARA EL CASO DE LA FISCT UNA SOLUCIÓN AL PROBLEMA DE SELECCIÓN DE CURSOS BASADO EN HEURÍSTICAS PARA EL CASO DE LA FISCT Marco A. Coral 1, Yuliana Jáuregui 1, David Mauricio 1y 2 1 Universidad Inca Garcilaso de la Vega Facultad

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍA ELÉCTRICA PROGRAMA DE MAESTRÍA EN INGENIERÍA ELÉCTRICA

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍA ELÉCTRICA PROGRAMA DE MAESTRÍA EN INGENIERÍA ELÉCTRICA UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍA ELÉCTRICA PROGRAMA DE MAESTRÍA EN INGENIERÍA ELÉCTRICA ALGORITMOS GRASP Y SIMULATED ANNEALING COMO INICIALIZADORES DE BRANCH AND BOUND EN LA SOLUCIÓN

Más detalles

Algoritmos Heurísticos en Optimización Combinatoria

Algoritmos Heurísticos en Optimización Combinatoria Algoritmos Heurísticos en Optimización Combinatoria Rafael Martí Cunquero Departament d Estadística i Investigació Operativa Programa 1. Introducción 2. Calidad de los Algoritmos 3. El Problema del Viajante

Más detalles

Uso de una Colonia de Hormigas. para resolver Problemas de Programación. de Horarios

Uso de una Colonia de Hormigas. para resolver Problemas de Programación. de Horarios LABORATORIO NACIONAL DE INFORMÁTICA AVANZADA A. C. Centro de Enseñanza LANIA Uso de una Colonia de Hormigas para resolver Problemas de Programación de Horarios Tesis que presenta: Emanuel Téllez Enríquez

Más detalles

Algoritmos Genéticos Y

Algoritmos Genéticos Y Algoritmos Genéticos Y Optimización n Heurística Dr. Adrian Will Grupo de Aplicaciones de Inteligencia Artificial Universidad Nacional de Tucumán awill@herrera.unt.edu.ar Operadores de Mutación El operador

Más detalles

EXTENSIONES DE META-RAPS AL PROBLEMA DE MÁQUINAS PARALELAS NO RELACIONADAS

EXTENSIONES DE META-RAPS AL PROBLEMA DE MÁQUINAS PARALELAS NO RELACIONADAS 1 UNIVERSIDAD DEL BÍO-BÍO FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA INDUSTRIAL EXTENSIONES DE META-RAPS AL PROBLEMA DE MÁQUINAS PARALELAS NO RELACIONADAS TESIS PARA OBTENER EL GRADO DE MAGÍSTER

Más detalles

7. Conclusiones. 7.1 Resultados

7. Conclusiones. 7.1 Resultados 7. Conclusiones Una de las preguntas iniciales de este proyecto fue : Cuál es la importancia de resolver problemas NP-Completos?. Puede concluirse que el PAV como problema NP- Completo permite comprobar

Más detalles

Complejidad - Problemas NP-Completos. Algoritmos y Estructuras de Datos III

Complejidad - Problemas NP-Completos. Algoritmos y Estructuras de Datos III Complejidad - Problemas NP-Completos Algoritmos y Estructuras de Datos III Teoría de Complejidad Un algoritmo eficiente es un algoritmo de complejidad polinomial. Un problema está bien resuelto si se conocen

Más detalles

Algoritmos heurísticos y metaheurísticos para el problema de localización de regeneradores.

Algoritmos heurísticos y metaheurísticos para el problema de localización de regeneradores. PROYECTO FIN DE CARRERA Ingeniería Informática Superior CURSO ACADÉMICO 2009-2010 Algoritmos heurísticos y metaheurísticos para el problema de localización de regeneradores. Alumno: Carlos Rodríguez Ortiz

Más detalles

Una heurística basada en memoria para el problema del diseño de recorridos en transporte público urbano

Una heurística basada en memoria para el problema del diseño de recorridos en transporte público urbano Una heurística basada en memoria para el problema del diseño de recorridos en transporte público urbano Antonio Mauttone María E. Urquhart Departamento de Investigación Operativa, Instituto de Computación,

Más detalles

Unidad Académica Profesional UAEM Tianguistenco, Paraje El Tejocote, San Pedro Tlaltizapán, Tianguistenco, México CP 52640

Unidad Académica Profesional UAEM Tianguistenco, Paraje El Tejocote, San Pedro Tlaltizapán, Tianguistenco, México CP 52640 Estudio de Tres Algoritmos Heurísticos para Resolver un Problema de Distribución con Ventanas de Tiempo: Sistema por Colonia de Hormigas, Búsqueda Tabú y Heurístico Constructivo de una Ruta Manuel González

Más detalles

Aplicación de la inteligencia artificial a la resolución del problema de asignación de estudiantes del departamento de PDI

Aplicación de la inteligencia artificial a la resolución del problema de asignación de estudiantes del departamento de PDI Aplicación de la inteligencia artificial a la resolución del problema de asignación de estudiantes del departamento de PDI Ricardo Köller Jemio Departamento de Ciencias Exactas e Ingeniería, Universidad

Más detalles

Un algoritmo evolutivo simple para el problema de asignación de tareas a procesadores

Un algoritmo evolutivo simple para el problema de asignación de tareas a procesadores Un algoritmo evolutivo simple para el problema de asignación de tareas a procesadores Pablo Ezzatti CeCal, Facultad de Ingeniería Universidad de la República, Uruguay pezzatti@fing.edu.uy Sergio Nesmachnow

Más detalles

Un algoritmo evolutivo simple para el problema de asignación de tareas a procesadores

Un algoritmo evolutivo simple para el problema de asignación de tareas a procesadores Un algoritmo evolutivo simple para el problema de asignación de tareas a procesadores Pablo Ezzatti CeCal, Facultad de Ingeniería Universidad de la República, Uruguay pezzatti@fing.edu.uy Sergio Nesmachnow

Más detalles

Un modelo híbrido de inteligencia computacional para resolver el problema de Job Shop Scheduling

Un modelo híbrido de inteligencia computacional para resolver el problema de Job Shop Scheduling Un modelo híbrido de inteligencia computacional para resolver el problema de Job Shop Scheduling Jacob Meneses Angel, Marcela Rivera Martínez, Luis René Marcial Castillo, Sandoval Solís Lourdes Benemérita

Más detalles

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ FACULTAD DE CIENCIAS E INGENIERÍA

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ FACULTAD DE CIENCIAS E INGENIERÍA TESIS PUCP Esta obra ha sido publicada bajo la licencia Creative Commons Reconocimiento-No comercial-compartir bajo la misma licencia 2.5 Perú. Para ver una copia de dicha licencia, visite http://creativecommons.org/licenses/by-nc-sa/2.5/pe/

Más detalles

Diseño Óptimo de una Red Multi-Capa (caso IP/MPLS sobre DWDM)

Diseño Óptimo de una Red Multi-Capa (caso IP/MPLS sobre DWDM) (caso IP/MPLS sobre DWDM) MSc. Ing. Claudio Risso Dr. Ing. Franco Robledo (crisso@fing.edu.uy) (frobledo@fing.edu.uy) Laboratorio de Probabilidad y Estadística (FING - UDELAR) Metaheurísticas y optimización

Más detalles

Una heurística para la asignación de máquinas a trabajos fijos

Una heurística para la asignación de máquinas a trabajos fijos VIII Congreso de Ingeniería de Organización Leganés, 9 y 10 de septiembre de 2004 Una heurística para la asignación de máquinas a trabajos fijos José Manuel García Sánchez, Marcos Calle Suárez, Gabriel

Más detalles

UNIVERSIDAD DE CONCEPCIÓN CHILE FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA INDUSTRIAL

UNIVERSIDAD DE CONCEPCIÓN CHILE FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA INDUSTRIAL UNIVERSIDAD DE CONCEPCIÓN CHILE FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA INDUSTRIAL APLICACIÓN DE HEURÍSTICAS GRASP AL PROBLEMA DE MÁQUINAS PARALELAS NO RELACIONADAS CON TIEMPOS DE SETUP DEPENDIENTES

Más detalles

PARA PROBLEMAS INDUSTRIALES DE CORTE, EMPAQUETADO Y OTROS RELACIONADOS

PARA PROBLEMAS INDUSTRIALES DE CORTE, EMPAQUETADO Y OTROS RELACIONADOS METAHEURíSTICAS HíBRIDAS PARALELAS PARA PROBLEMAS INDUSTRIALES DE CORTE, EMPAQUETADO Y OTROS RELACIONADOS Presentada para cumplir con los requerimientos del grado de DOCTOR EN CIENCIAS DE LA COMPUTACIÓN

Más detalles

Estado del Arte del Job Shop Scheduling Problem

Estado del Arte del Job Shop Scheduling Problem Estado del Arte del Job Shop Scheduling Problem Víctor Peña y Lillo Zumelzu Departamento de Informática, Universidad Técnica Federico Santa María Valparaíso, Chile vpena@inf.utfsm.cl 17 de mayo de 2006

Más detalles

Split Delivery Vehicle Routing Problem: Heuristic based Algorithms

Split Delivery Vehicle Routing Problem: Heuristic based Algorithms Split Delivery Vehicle Routing Problem: Heuristic based Algorithms Sandro Moscatelli Instituto de Computación, Facultad de Ingeniería Universidad de la República moscatel@fing.edu.uy Diciembre 2007 Resumen

Más detalles

Metaheurísticas basadas en Scatter Search y Path Relinking para resolver el Problema del Fuzzy Job Shop Scheduling

Metaheurísticas basadas en Scatter Search y Path Relinking para resolver el Problema del Fuzzy Job Shop Scheduling FACULTAD DE CIENCIAS UNIVERSIDAD DE CANTABRIA Proyecto Fin De Carrera Metaheurísticas basadas en Scatter Search y Path Relinking para resolver el Problema del Fuzzy Job Shop Scheduling (Scatter Search

Más detalles

Problema de Programación Lineal

Problema de Programación Lineal Problema de Programación Lineal Introducción La optimización es un enfoque que busca la mejor solución a un problema. Propósito: Maximizar o minimizar una función objetivo que mide la calidad de la solución,

Más detalles

Descripción inicial del sistema. Descripción final del sistema. Estado 1 Estado 2 Estado n

Descripción inicial del sistema. Descripción final del sistema. Estado 1 Estado 2 Estado n Búsqueda en Inteligencia Artificial Fernando Berzal, berzal@acm.org Búsqueda en I.A. Introducción Espacios de búsqueda Agentes de búsqueda Uso de información en el proceso de búsqueda Búsqueda sin información

Más detalles

Algoritmos Genéticos. Algoritmos Genéticos. Introducción a la Computación Evolutiva. Tercera Clase: Algoritmos Genéticos

Algoritmos Genéticos. Algoritmos Genéticos. Introducción a la Computación Evolutiva. Tercera Clase: Algoritmos Genéticos Introducción a la Computación Evolutiva Tercera Clase: Algoritmos Genéticos Algoritmos Genéticos Desarrollados en USA durante los años 70 Autores principales: J. Holland, K. DeJong, D. Goldberg Aplicados

Más detalles

ANEXO 20 METODOLOGÍA PLAN DE TRANSMISIÓN

ANEXO 20 METODOLOGÍA PLAN DE TRANSMISIÓN ANEXO 20 METODOLOGÍA PLAN DE TRANSMISIÓN METODOLOGÍA 1. DETERMINACIÓN DEL PLAN DE EXPANSIÓN En la Figura 1 se muestra el flujograma de la metodología específica con la cual se determina el plan de expansión

Más detalles

18:15 19:15 13.5. Reunión de la red HEUR. Sala Andalucía 3. 19:30 21:00 Acto de Inauguración y Conferencia Invitada CEDI2005. Miércoles, 14 Septiembre

18:15 19:15 13.5. Reunión de la red HEUR. Sala Andalucía 3. 19:30 21:00 Acto de Inauguración y Conferencia Invitada CEDI2005. Miércoles, 14 Septiembre IVCongresoEspañolde Metaheurísticas,Algoritmos EvolutivosyBioinspirados MAEB 05 18:15 19:15 13.5.ReunióndelaredHEUR SalaAndalucía3 19:30 21:00 ActodeInauguraciónyConferencia InvitadaCEDI2005 Miércoles,14Septiembre

Más detalles

Programación Lineal Entera

Programación Lineal Entera Programación Lineal Entera P.M. Mateo y David Lahoz 2 de julio de 2009 En este tema se presenta un tipo de problemas formalmente similares a los problemas de programación lineal, ya que en su descripción

Más detalles

ALGORITMOS EVOLUTIVOS APLICADOS A PROBLEMAS DE DISEÑO DE REDES CONFIABLES

ALGORITMOS EVOLUTIVOS APLICADOS A PROBLEMAS DE DISEÑO DE REDES CONFIABLES ALGORITMOS EVOLUTIVOS APLICADOS A PROBLEMAS DE DISEÑO DE REDES CONFIABLES Autor: Ing. Héctor Enrique Magnago Director Local: Lic. Francisco Javier Díaz Director Externo: Mg. José Luís Hernández Tesis presentada

Más detalles

El agente viajero: un algoritmo determinístico

El agente viajero: un algoritmo determinístico El agente viajero: un algoritmo determinístico López E. * Salas O. ** Murillo A. *** Costa Rica Resumen Se implementa un algoritmo correspondiente al método Búsqueda Tabú, llamado EraDeterminístico, experimentado

Más detalles

Algoritmos de Optimización basados en Colonias de Hormigas aplicados al Problema de Asignación Cuadrática y otros problemas relacionados

Algoritmos de Optimización basados en Colonias de Hormigas aplicados al Problema de Asignación Cuadrática y otros problemas relacionados Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Departamento de Informática Trabajo Final para alcanzar el grado de Licenciado en Ciencias de la Computación Algoritmos

Más detalles

6th International Conference on Industrial Engineering and Industrial Management. XVI Congreso de Ingeniería de Organización. Vigo, July 18-20, 2012

6th International Conference on Industrial Engineering and Industrial Management. XVI Congreso de Ingeniería de Organización. Vigo, July 18-20, 2012 6th International Conference on Industrial Engineering and Industrial Management. XVI Congreso de Ingeniería de Organización. Vigo, July 18-20, 2012 Un algoritmo genético híbrido para el equilibrado de

Más detalles

Parte I Introducción 1

Parte I Introducción 1 Índice General Presentación Prefacio v vii Parte I Introducción 1 Capítulo I: Introducción a los metaheurísticos 3 M. Laguna, C. Delgado 1 Problemas de optimización difíciles.................. 3 2 Enfoques

Más detalles

Resumen de técnicas para resolver problemas de programación entera. 15.053 Martes, 9 de abril. Enumeración. Un árbol de enumeración

Resumen de técnicas para resolver problemas de programación entera. 15.053 Martes, 9 de abril. Enumeración. Un árbol de enumeración 5053 Martes, 9 de abril Ramificación y acotamiento () Entregas: material de clase Resumen de técnicas para resolver problemas de programación entera Técnicas de enumeración Enumeración completa hace una

Más detalles

Algoritmos de Colonia de Hormigas para el Problema del Viajante de Comercio por Familias y para el Problema de Ruteo de Vehículos por Familias

Algoritmos de Colonia de Hormigas para el Problema del Viajante de Comercio por Familias y para el Problema de Ruteo de Vehículos por Familias Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Computación Algoritmos de Colonia de Hormigas para el Problema del Viajante de Comercio por Familias y para el Problema

Más detalles

Algoritmos Genéticos

Algoritmos Genéticos Introducción a la Computación Evolutiva Tercera Clase: Algoritmos Genéticos Algoritmos Genéticos Desarrollados en USA durante los años 70 Autores principales: J. Holland, K. DeJong, D. Goldberg Aplicados

Más detalles

TÉCNICAS DE PLANIFICACIÓN Y CONTROL DE PROYECTOS 1

TÉCNICAS DE PLANIFICACIÓN Y CONTROL DE PROYECTOS 1 Técnicas de planificación y control de proyectos Andrés Ramos Universidad Pontificia Comillas http://www.iit.comillas.edu/aramos/ Andres.Ramos@comillas.edu TÉCNICAS DE PLANIFICACIÓN Y CONTROL DE PROYECTOS

Más detalles

A L G O R I T M O S E VO L U T I VO S A P L I C A D O S A L A G E N E R AC I Ó N D E H O R A R I O S PA R A C O L E G I O

A L G O R I T M O S E VO L U T I VO S A P L I C A D O S A L A G E N E R AC I Ó N D E H O R A R I O S PA R A C O L E G I O E S C U E L A P O L I T É C N I C A N A C I O N A L F A C U L T A D D E C I E N C I A S D E P A R T A M E N T O D E M A T E M Á T I C A S A L G O R I T M O S E VO L U T I VO S A P L I C A D O S A L A G

Más detalles

DISEÑO Y OPTIMIZACION DE RUTAS Y FRECUENCIAS EN EL TRANSPORTE COLECTIVO URBANO, MODELOS Y ALGORITMOS.

DISEÑO Y OPTIMIZACION DE RUTAS Y FRECUENCIAS EN EL TRANSPORTE COLECTIVO URBANO, MODELOS Y ALGORITMOS. DISEÑO Y OPTIMIZACION DE RUTAS Y FRECUENCIAS EN EL TRANSPORTE COLECTIVO URBANO, MODELOS Y ALGORITMOS. Antonio Mauttone, Héctor Cancela, María Urquhart {mauttone cancela urquhart}@fing.edu.uy Departamento

Más detalles

Búsqueda tabú y evolución genética para el árbol de expansión capacitado de costo mínimo

Búsqueda tabú y evolución genética para el árbol de expansión capacitado de costo mínimo Búsqueda tabú y evolución genética para el árbol de expansión capacitado de costo mínimo Efraín Ruiz Dept. d Estadística i Investigació Operativa Universitat Politècnica de Catalunya Jordi Girona, 1-3.

Más detalles

PREPROCESADO DE DATOS PARA MINERIA DE DATOS

PREPROCESADO DE DATOS PARA MINERIA DE DATOS Ó 10.1007/978-3-319-02738-8-2. PREPROCESADO DE DATOS PARA MINERIA DE DATOS Miguel Cárdenas-Montes Frecuentemente las actividades de minería de datos suelen prestar poca atención a las actividades de procesado

Más detalles

Combinación de Algoritmos Evolutivos y Técnicas Heurísticas para Problemas de Scheduling

Combinación de Algoritmos Evolutivos y Técnicas Heurísticas para Problemas de Scheduling Combinación de Algoritmos Evolutivos y Técnicas Heurísticas para Problemas de Scheduling Ramiro Varela, Javier Blanco, Camino Rodríguez, Jorge Puente y César Alonso Centro de Inteligencia Artificial. Universidad

Más detalles

Métodos Heurísticos en Inteligencia Artificial

Métodos Heurísticos en Inteligencia Artificial Métodos Heurísticos en Inteligencia Artificial Javier Ramírez rez-rodríguez Ana Lilia Laureano-Cruces Universidad Autónoma Metropolitana Métodos Heurísticos en Inteligencia Artificial Los problemas de

Más detalles

5. AJUSTE DE PARÁMETROS DE LA BÚSQUEDA TABÚ

5. AJUSTE DE PARÁMETROS DE LA BÚSQUEDA TABÚ 5.Ajuste de parámetros de la búsqueda tabú 5. AJUSTE DE PARÁMETROS DE LA BÚSQUEDA TABÚ El algoritmo de Búsqueda Tabú (TS) utiliza un gran número de parámetros asociados a distintas etapas de la resolución.

Más detalles

Representación, Codificación en un AG Población Inicial. Aptitud. Estrategia de Selección. Cruce, Mutación, Reemplazo. Condición de Parada.

Representación, Codificación en un AG Población Inicial. Aptitud. Estrategia de Selección. Cruce, Mutación, Reemplazo. Condición de Parada. Computación n Evolutiva: Algoritmos Genéticos 1.- Metaheurísticos. Computación Evolutiva: Algoritmos Genéticos 2.- Conceptos principales de un Algoritmo Genético 3.- Estructura de un Algoritmo Genético

Más detalles

Julian López Franco Universidad de La Salle Carrera 2 No. 10 70 Bogotá, Colombia jullopez@unisalle.edu.co

Julian López Franco Universidad de La Salle Carrera 2 No. 10 70 Bogotá, Colombia jullopez@unisalle.edu.co ESTRATEGIAS PARA EL DISEÑO E HIBRIDACIÓN DE UNA METAHEURÍSTICA BASADA EN BÚSQUEDA DISPERSA QUE RESUELVA EL PROBLEMA MDVRP MULTIOBJETIVO: COSTO Y BALANCEO DE CARGA Julian López Franco Universidad de La

Más detalles

Algoritmos para CSP 1

Algoritmos para CSP 1 Algoritmos para CSP 1 1. Técnicas de Consistencia, o Inferenciales I. Inferencia, o consistencia completa Proceso que permite la síntesis de todas las restricciones de un problema en una única restricción

Más detalles

Programación de tareas, un reto diario en la empresa

Programación de tareas, un reto diario en la empresa Programación de tareas, un reto diario en la empresa Pedro Sánchez Martín Ingeniero del ICAI (1993) y Doctor en Ingeniería Industrial por la UPCO (1998). Profesor del Departamento de Organización Industrial

Más detalles

ALGORITMO GRASP HIBRIDO PARA RESOLVER UNA NUEVA VARIANTE DEL PROBLEMA DE LA DIVERSIDAD MAXIMA

ALGORITMO GRASP HIBRIDO PARA RESOLVER UNA NUEVA VARIANTE DEL PROBLEMA DE LA DIVERSIDAD MAXIMA ALGORITMO GRASP HIBRIDO PARA RESOLVER UNA NUEVA VARIANTE DEL PROBLEMA DE LA DIVERSIDAD MAXIMA Fernando Sandoya Instituto de Ciencias Matemáticas, Escuela Superior Politécnica del Litoral Campus G. Galindo,

Más detalles

Algoritmos Genéticos Y

Algoritmos Genéticos Y Algoritmos Genéticos Y Optimización n Heurística Dr. Adrian Will Grupo de Aplicaciones de Inteligencia Artificial Universidad Nacional de Tucumán awill@herrera.unt.edu.ar Optimización n Tradicional Problemas

Más detalles

SISI / TS / AG / SR SIMULADOR DE SISTEMAS DE INVENTARIOS ESTOCASTICOS

SISI / TS / AG / SR SIMULADOR DE SISTEMAS DE INVENTARIOS ESTOCASTICOS 62 CAPITULO 3 SISI / TS / AG / SR SIMULADOR DE SISTEMAS DE INVENTARIOS ESTOCASTICOS En este capítulo se describe de manera general lo que es SISI / TS / AG / SR y se explica cada una de las opciones que

Más detalles

Desarrollo de algoritmos genéticos, de recocido simulado e híbridos para la planificación de un taller flexible

Desarrollo de algoritmos genéticos, de recocido simulado e híbridos para la planificación de un taller flexible X Congreso de Ingeniería de Organización Valencia, 7 y 8 de septiembre de 2006 Desarrollo de algoritmos genéticos, de recocido simulado e híbridos para la planificación de un taller flexible Sara Lumbreras

Más detalles

Proyecto ANaLog - Informe de Progreso

Proyecto ANaLog - Informe de Progreso Proyecto ANaLog - Informe de Progreso ITI-SAC-019 Anna I. Esparcia Alcázar: anna@iti.upv.es Lidia Lluch Revert: lillure@iti.upv.es Grupo Sistemas Adaptativos Complejos Mayo 2006 Este proyecto ha sido financiado

Más detalles

Algoritmos exactos y heurísticos para minimizar el adelantamiento y retraso ponderados en una máquina con una fecha de entrega común

Algoritmos exactos y heurísticos para minimizar el adelantamiento y retraso ponderados en una máquina con una fecha de entrega común Algoritmos... en una máquina con una fecha de entrega común Algoritmos exactos y heurísticos para minimizar el adelantamiento y retraso ponderados en una máquina con una fecha de entrega común R. Alvarez-Valdés,

Más detalles

Inteligencia Artificial para desarrolladores Conceptos e implementación en C#

Inteligencia Artificial para desarrolladores Conceptos e implementación en C# Introducción 1. Estructura del capítulo 19 2. Definir la inteligencia 19 3. La inteligencia de los seres vivos 22 4. La inteligencia artificial 24 5. Dominios de aplicación 26 6. Resumen 28 Sistemas expertos

Más detalles

Un estudio holístico de la selección y planificación temporal de carteras de proyectos

Un estudio holístico de la selección y planificación temporal de carteras de proyectos Un estudio holístico de la selección y planificación temporal de carteras de proyectos Carazo, Ana F. Envío: Mayo de 2008. Universidad Pablo de Olavide (Sevilla). Departamento de Economía, Métodos Cuantitativos

Más detalles

Resolución de problemas

Resolución de problemas Inteligencia en Redes de Comunicaciones Resolución de problemas Julio Villena Román jvillena@it.uc3m.es El problema de resolver problemas La resolución de problemas es uno de los procesos básicos de razonamiento

Más detalles

MODELOS DE PLANIFICACIÓN

MODELOS DE PLANIFICACIÓN MODELOS DE PLANIFICACIÓN Santiago de Compostela, Octubre 2006 1 s jk C max P Jm prmt L max NP Rm tree C j Algoritmos wj U j Uj Calendarios Fm prec w j U j Práctica CONTENIDO. Contents 1 Descripción del

Más detalles

Introducción a los Algoritmos Genéticos. Tomás Arredondo Vidal 17/4/09

Introducción a los Algoritmos Genéticos. Tomás Arredondo Vidal 17/4/09 Introducción a los Algoritmos Genéticos Tomás Arredondo Vidal 17/4/09 Esta charla trata de lo siguiente: Introducción a algunos aspectos de los algoritmos genéticos. Introducción a algunas aplicaciones

Más detalles

Algoritmos sobre Grafos

Algoritmos sobre Grafos Sexta Sesión 27 de febrero de 2010 Contenido Deniciones 1 Deniciones 2 3 4 Deniciones sobre Grafos Par de una lista de nodos y una lista de enlaces, denidos a su vez como pares del conjunto de nodos.

Más detalles

Secuenciación de una línea mixed-model mediante un algoritmo exacto Pág. 1. Resumen

Secuenciación de una línea mixed-model mediante un algoritmo exacto Pág. 1. Resumen Secuenciación de una línea mixed-model mediante un algoritmo exacto Pág. 1 Resumen En una línea de montaje de productos mixtos, aquella que es responsable de la producción de diversas variaciones de un

Más detalles

TEMA 3 PROFESOR: M.C. ALEJANDRO GUTIÉRREZ DÍAZ 2 3. PROCESAMIENTO DE CONSULTAS DISTRIBUIDAS

TEMA 3 PROFESOR: M.C. ALEJANDRO GUTIÉRREZ DÍAZ 2 3. PROCESAMIENTO DE CONSULTAS DISTRIBUIDAS 1 1 BASES DE DATOS DISTRIBUIDAS TEMA 3 PROFESOR: M.C. ALEJANDRO GUTIÉRREZ DÍAZ 2 3. PROCESAMIENTO DE CONSULTAS DISTRIBUIDAS 3.1 Metodología del procesamiento de consultas distribuidas 3.2 Estrategias de

Más detalles

Flujo Máximo. Agustín J. González ELO320: Estructura de Datos y Algoritmos 1er. Sem. 2002

Flujo Máximo. Agustín J. González ELO320: Estructura de Datos y Algoritmos 1er. Sem. 2002 Flujo Máximo Agustín J. González ELO320: Estructura de Datos y Algoritmos 1er. Sem. 2002 1 Introducción Así como modelamos los enlaces de una red y sus nodos como un grafo dirigido, podemos interpretar

Más detalles

DISEÑO Y DESARROLLO DE UN SISTEMA DE APOYO A LAS DECISIONES DE RUTEO MARITIMO PARA UN PROVEEDOR DE ALIMENTOS DE LA INDUSTRIA DEL

DISEÑO Y DESARROLLO DE UN SISTEMA DE APOYO A LAS DECISIONES DE RUTEO MARITIMO PARA UN PROVEEDOR DE ALIMENTOS DE LA INDUSTRIA DEL UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA INDUSTRIAL DISEÑO Y DESARROLLO DE UN SISTEMA DE APOYO A LAS DECISIONES DE RUTEO MARITIMO PARA UN PROVEEDOR DE

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Programación Lineal Entera

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Programación Lineal Entera Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 11 de septiembre de 2003 1. Introducción Un LP donde se requiere que todas las variables sean enteras se denomina un problema

Más detalles

Comportamiento de los parámetros principales de un Algoritmo Genético para el Flow Shop Scheduling

Comportamiento de los parámetros principales de un Algoritmo Genético para el Flow Shop Scheduling Comportamiento de los parámetros principales de un Algoritmo Genético para el Flow Shop Scheduling Yunior César Fonseca Reyna Universidad de Granma E-mail: fonseca@udg.co.cu Temática: Inteligencia Artificial

Más detalles

Método Multi-Arranque aplicado al problema del Strip Packing Problem bidimensional

Método Multi-Arranque aplicado al problema del Strip Packing Problem bidimensional Método Multi-Arranque aplicado al problema del Strip Packing Problem bidimensional Alfonso Fernández Timón 1 y Abraham Duarte Muñoz 2 Resumen--Strip Packing Problem en dos dimensiones pertenece a la categoría

Más detalles

ROS: Servicio de Optimización en Internet

ROS: Servicio de Optimización en Internet 1/20 : Servicio de Optimización en Internet Enrique Alba, José Nieto y Francisco Chicano 2/20 Optimización Combinatoria Un problema de optimización combinatoria está formado por: Variables: x 1, x 2,...,

Más detalles

OPTIMIZACIÓN DEL PROBLEMA DEL AGENTE VIAJERO USANDO EL SISTEMA DE COLONIA DE HORMIGAS Y BUSQUEDA GREEDY

OPTIMIZACIÓN DEL PROBLEMA DEL AGENTE VIAJERO USANDO EL SISTEMA DE COLONIA DE HORMIGAS Y BUSQUEDA GREEDY OPTIMIZACIÓN DEL PROBLEMA DEL AGENTE VIAJERO USANDO EL SISTEMA DE COLONIA DE HORMIGAS Y BUSQUEDA GREEDY Esquivel Estrada Jaime*, Ordoñez Arizmendi Armando*, Ortiz Servín Juan José**. *Universidad Autónoma

Más detalles

OPTIMIZACIÓN DE TRANSFORMACIONES LINEALES DE DATOS MEDIANTE BUSQUEDA LOCAL

OPTIMIZACIÓN DE TRANSFORMACIONES LINEALES DE DATOS MEDIANTE BUSQUEDA LOCAL OPTIMIZACIÓN DE TRANSFORMACIONES LINEALES DE DATOS MEDIANTE BUSQUEDA LOCAL INGENIERIA INFORMATICA AUTOR: FRANCISCO GODOY MUÑOZ-TORRERO TUTOR: JOSE MARIA VALLS FERRAN CO-DIRECTOR: RICARDO ALER MUR Contenidos

Más detalles

ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS

ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS EtsiIngenio Inteligencia Artificial 1 Raposo López Alejandro Sánchez Palacios Manuel Resumen dibujo de grafos mediante algoritmos genéticos

Más detalles

Resolución del Problema de Set-Covering utilizando un Algoritmo Genético

Resolución del Problema de Set-Covering utilizando un Algoritmo Genético Resolución del Problema de Set-Covering utilizando un Algoritmo Genético Pablo Itaim Ananias Valparaíso, 20 de Junio del 2005 Resumen El Set Covering Problem (SCP)es un problema clásico, que consiste en

Más detalles

Una permutación eficiente para minimizar la suma de los tiempos de acabado de "n" trabajos en "m" máquinas Freddy Abarca R. fabarca@ic-itcr.ac.

Una permutación eficiente para minimizar la suma de los tiempos de acabado de n trabajos en m máquinas Freddy Abarca R. fabarca@ic-itcr.ac. Una permutación eficiente para minimizar la suma de los tiempos de acabado de "n" trabajos en "m" máquinas Freddy Abarca R. fabarca@ic-itcr.ac.cr El problema de la asignación de cargas de trabajo, a pesar

Más detalles

PLANIFICACIÓN DE RUTAS TURÍSTICAS BAJO UN ENFOQUE MULTICRITERIO

PLANIFICACIÓN DE RUTAS TURÍSTICAS BAJO UN ENFOQUE MULTICRITERIO Planificación de rutas turísticas bajo un enfoque multicriterio PLANIFICACIÓN DE RUTAS TURÍSTICAS BAJO UN ENFOQUE MULTICRITERIO R. Caballero, M. González, J. Molina, A. Peláez y B. Rodríguez Universidad

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS ESCUELA DE GRADUADOS PROYECTO DE GRADUACIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS ESCUELA DE GRADUADOS PROYECTO DE GRADUACIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS ESCUELA DE GRADUADOS PROYECTO DE GRADUACIÓN PREVIO A LA OBTENCIÓN DEL TITULO DE: MAGÍSTER EN CONTROL DE OPERACIONES Y GESTIÓN

Más detalles

Propuesta de un algoritmo genético para la programación diaria de los pedidos de una empresa del sector de la construcción

Propuesta de un algoritmo genético para la programación diaria de los pedidos de una empresa del sector de la construcción 5 th International Conference on Industrial Engineering and Industrial Management XV Congreso de Ingeniería de Organización Cartagena, 7 a 9 de Septiembre de 2011 Propuesta de un algoritmo genético para

Más detalles

INVESTIGACION OPERATIVA INTRODUCCION. Introducción

INVESTIGACION OPERATIVA INTRODUCCION. Introducción INVESTIGACION OPERATIVA INTRODUCCION Introducción Estructura del Curso 1. Introducción y modelamiento: 2 semanas 2. Programación Lineal: 2 semanas 3. Programación Lineal Entera: 1 semana 4. Teoría de Grafos:

Más detalles

HEURISTIC FOR SCHEDULING OF PROJECTS WITH RESTRICTION OF RESOURCES UN HEURÍSTICO PARA PLANEACIÓN DE PROYECTOS CON RESTRICCIÓN DE RECURSOS

HEURISTIC FOR SCHEDULING OF PROJECTS WITH RESTRICTION OF RESOURCES UN HEURÍSTICO PARA PLANEACIÓN DE PROYECTOS CON RESTRICCIÓN DE RECURSOS HEURISTIC FOR SCHEDULING OF PROJECTS WITH RESTRICTION OF RESOURCES UN HEURÍSTICO PARA PLANEACIÓN DE PROYECTOS CON RESTRICCIÓN DE RECURSOS Juan C. Rivera, Luis F. Moreno, F. Javier Díaz, Gloria E. Peña

Más detalles

Integrantes: Leonardo Tilli (leotilli@gmail.com) Fernando Hernández (matematicas527@yahoo.es)

Integrantes: Leonardo Tilli (leotilli@gmail.com) Fernando Hernández (matematicas527@yahoo.es) UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Departamento de Computación Trabajo Práctico de Metaheurística Segundo cuatrimestre 2010 Implementación de un Algoritmo basado en la

Más detalles

Implementación del algoritmo UEGO sobre el entorno Matlab como alternativa al toolbox de optimización

Implementación del algoritmo UEGO sobre el entorno Matlab como alternativa al toolbox de optimización Implementación del algoritmo UEGO sobre el entorno Matlab como alternativa al toolbox de optimización Victoria Plaza Leiva Universidad de Almería Abstract Global optimization algorithms are widely used

Más detalles

? 50 30 20 20 emplear NA 0,788 0,367879 se queda s a 150 275 70-125 se pone s en s a 15 58 200-43 se pone s en s a

? 50 30 20 20 emplear NA 0,788 0,367879 se queda s a 150 275 70-125 se pone s en s a 15 58 200-43 se pone s en s a 350 MR Versión 1 1 Prueba Parcial 1/5 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA: INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Computación Evolutiva CÓDIGO: 350 MOMENTO: Primera Parcial VERSIÓN:

Más detalles

Problema de Localización de Plantas con Capacidades y Distancias Limitadas

Problema de Localización de Plantas con Capacidades y Distancias Limitadas Problema de Localización de Plantas con Capacidades y Distancias Limitadas M. Albareda-Sambola, E. Fernández, G. Laporte Universitat Politècnica de Catalunya HEC-Montréal Reunión de coordinación Red Española

Más detalles

Tema 3: Problemas de Satisfacción de Restricciones

Tema 3: Problemas de Satisfacción de Restricciones Tema 3: Problemas de Satisfacción de Restricciones Universidad de Granada Tema 3: Satisfacción de Restricciones Contenido Problemas de satisfacción de restricciones Métodos de búsqueda Búsqueda local para

Más detalles

Investigación de operaciones en acción: Heurísticas para la solución del TSP

Investigación de operaciones en acción: Heurísticas para la solución del TSP Investigación de operaciones en acción: Heurísticas para la solución del TSP Roger Z. Ríos Mercado* José Luis González Velarde** Abstract One of the most common and difficult problem in the theory of optimization

Más detalles

INSTITUTO POLITÉCNICO NACIONAL

INSTITUTO POLITÉCNICO NACIONAL INSTITUTO POLITÉCNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE INGENIERÍA Y CIENCIAS SOCIALES Y ADMINISTRATIVAS SECCIÓN DE ESTUDIO DE POSGRADO PROPUESTA DE ALGORITMO DE SOLUCIÓN PARA EL PROBLEMA

Más detalles

Universidad Autónoma de Nuevo León

Universidad Autónoma de Nuevo León Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica División de Estudios de Posgrado Programación pieza-molde-máquina en planeación de producción mediante una Búsqueda Local

Más detalles

Maestría en Ciencias de la Computación

Maestría en Ciencias de la Computación Maestría en Ciencias de la Computación Avance de tesis: Algoritmos heurísticos aplicados al despacho económico considerando funciones de costo no convexas y zonas muertas de ciclos combinados Presenta:

Más detalles