Método de Sustitución

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Método de Sustitución"

Transcripción

1 Método de Sustitución El nombre de este método nos indica qué es lo que vamos a hacer: para resolver el S.E.L. de dos ecuaciones con dos incógnitas vamos a «despejar» una de las incógnitas de una de las ecuaciones, vamos a sustituir este despeje en la otra ecuación y así tenemos un problema de una ecuación lineal con una incógnita. Después resolvemos esta ecuación lineal y encontramos el valor de una de las variables. Para encontrar el otro valor podemos sustituir el valor de la variable conocida en el despeje que hicimos antes y terminamos. El siguiente ejemplo te muestra el procedimiento. x + y = 10 x y = Ejemplo 1 Este ejemplo es el primero que estudiamos con el método de eliminación, así que ya conocemos la solución de este sistema: x = 6, y = 4. Primero vamos a despejar una variable de alguna de las ecuaciones. Vamos a despejar y de la primera ecuación. Para esto, sumamos en ambos lados de la primera ecuación x, y así obtenemos: x + x + y = 10 x y = 10 x Ahora utilizamos este despeje para sustituirlo en la otra ecuación. La sustitución es válida en este procedimiento porque si y = 10 x, entonces, los valores de x y de y satisfacen a la primera ecuación. Pero también deben satisfacer a la otra ecuación, por eso sustituimos ese valor de y, pues en ambas ecuaciones debe ser el mismo. Aquí está la sustitución: x y = x (10 x) = Observa que ahora tenemos solamente una ecuación con una sola incógnita. Obtuvimos esto porque la condición que impone la primera ecuación ya está incluida en esta nueva ecuación lineal. Y esto se incluyó cuando sustituimos el despeje que obtuvimos de ella. Ahora debemos realizar las operaciones indicadas y resolver para encontrar el valor de la única variable que se encuentra en la ecuación: x 10 + x = x = + 10 x = 1 x = 6 1/7

2 Vemos que el valor de x es el que ya conocíamos. Ahora vamos a calcular el valor de y. Para esto sustituimos el valor de x que acabamos de encontrar en el despeje que hicimos antes: y = 10 x = 10 6 = 4 Y de nuevo, el valor que encontramos coincide con el resultado correcto. Para decidir qué variable despejar y de qué ecuación, es una buena idea identificar la variable que tenga coeficiente igual a uno en una de las ecuaciones. Esto te facilitará los cálculos posteriores. Ejemplo x + y = 18 3 x 4 y = 5 Primero observamos que la variable y en la primera ecuación tiene coeficiente igual a uno. Por eso, vamos a despejar esa variable de esa ecuación: x + y = 18 y = 18 x Ahora sustituimos este despeje en la otra ecuación: 3 x 4 y = 5 3 x 4 (18 x) = 5 Ahora vamos a realizar las operaciones indicadas para a encontrar el valor de la única variable en esta ecuación: x 3 x 4 (18 x) = 5 3 x x = 5 11 x = x = 77 x = 7 Ahora que conocemos el valor de una variable, podemos utilizar este valor para encontrar el valor de la otra variable. Para esto, sustituimos en el despeje que hicimos al principio: y = 18 x = 18 (7) = = 4 Entonces, la solución de este S.E.L. es: x = 7, y = 4. /7

3 Ahora vamos a comprobar que la solución que encontramos es correcta: x + y = 18 (7) + 4 = 18 3 x 4 y = 5 3 (7) 4 (4) = 5 Una vez que hayamos encontrado el valor de una de las variables, también podemos encontrar el valor de la otra variable sustituyendo en cualquiera de las ecuaciones que forman en S.E.L. Esto se justifica porque la solución debe satisfacer a cada una de las ecuaciones que forman el S.E.L. 3 x + y = 7 x + 3 y = 8 Ejemplo 3 Podemos ver que ninguno de los coeficientes de las variables es igual a 1. Esto nos indica que debemos despejar alguna variable y tendremos que trabajar necesariamente con fracciones. Elegimos despejar x de la segunda ecuación: x + 3 y = 8 x = 8 3 y x = 8 3 y = 8 3 y = 4 3 y Ahora debemos sustituir este despeje en la primera ecuación: 3 x + y = 7 ( y ) + y = 7 Ahora podemos resolver la ecuación y tratar de encontrar el valor de y: 1 9 y + y = y + 4 y = y = = 5 y 5 = 5 y 5 () 5 = y = y 3/7

4 Ahora que conocemos el valor de y, podemos sustituir este valor en cualquiera de las dos ecuaciones y encontrar el valor de x: Y la solución del S.E.L. es: x = 1, y =. 3 x + y = 7 3 x + () = 7 3 x + 4 = 7 3 x = 7 4 = 3 x = 1 Ahora verificamos que la solución sea correcta: 3 x + y = 7 3 (1) + () = 7 x + 3 y = 8 (1) + 3 () = 8 Como viste en el ejemplo anterior, algunas veces, cuando usemos este método, necesariamente tendremos que trabajar con fracciones. Otras veces, podremos simplificar el trabajo cuando tengamos una ecuación con una variable despejada. Ejemplo 4 x + y = 8 y = x 1 Como en la segunda ecuación la variable y ya está despejada, vamos a sustituirla de inmediato en la primera ecuación: x + y = 8 x + ( x 1) = 8 3 x 1 = 8 3 x = 9 x = 3 Ahora, a partir del valor de x, podemos encontrar el valor de y utilizando el despeje: y = x 1 = (3) 1 = 6 1 y = 5 Entonces, la solución del S.E.L. es: x = 3, y = 5. Ahora comprobamos que la solución esté correcta: x + y = = 8 y = x 1 5 = (3) 1 4/7

5 En algunos casos aplicados, una ecuación tendrá despejada una variable, sugiriendo el empleo de este método para resolver el S.E.L. Alberto es años mayor que Blanca. Si sus edades suman 3 años, qué edad tiene cada uno? Ejemplo 5 Primero tenemos que convenir en los símbolos que denotarán las edades de cada uno. Por comodidad, podemos elegir como A la edad que tiene Alberto y B la edad que tiene Blanca. Ahora vamos a traducir a una ecuación la primera información que se nos da: «Alberto es años mayor que Blanca.» Si Blanca tiene, por ejemplo, 5 años, entonces, Alberto tendrá 5 + = 7 años. Es decir, para encontrar la edad de Alberto, sumamos dos a la edad de Blanca. La ecuación que modela esa restricción impuesta en el problema es: A = B + Ahora vamos con la segunda restricción: «Sus edades suman 3 años...» Esta restricción es muy sencilla de traducir: dado que A representa la edad de Alberto y B representa la edad de Blanca, la suma: A + B debe ser igual a 3: A + B = 3 Ahora tenemos dos ecuaciones con dos incógnitas, con la primera ecuación ya despejada. Así que sustituimos esta primera ecuación en la segunda y resolvemos: Hasta aquí sabemos que Blanca tiene 15 años. A + B = 3 (B + ) + B = 3 B + = 3 B = 30 B = 15 Entonces, como Alberto tiene años más, debe tener 17. Y se cumple que la suma de sus edades es 3 años: = 3. Observa cómo cuando resolvimos el S.E.L. podemos fácilmente traducir la penúltima ecuación ( B = 30) como: «Pensé un número, lo multipliqué por y obtuve 30. Qué número pensé?» Obviamente, pensó el 15. La ecuación anterior ( B + = 3) se traduce así: «Cuando al número B le sumo obtengo 3. Cuánto vale el número B?», pues vale 3 = 30. Es una buena idea traducir a palabras cada ecuación que sepas cómo traducir. Eso te ayudará a entenderlas mejor cada vez. 5/7

6 La familia Álvarez viaja de Acaxochitlan hacia Bacaxochitlan a una velocidad de 91 km/hr. La familia Blanco viaja de Bacaxochitlan hacia Acaxochitlan a una velocidad constante de 65 km/hr. Si ambos inician su viaje exactamente a la misma hora, cuántas horas tardarán en encontrarse si la distancia entre ambas poblaciones es de 455 kilómetros y utilizan la misma ruta para viajar? Ejemplo 6 Para resolver este problema suponemos que las dos familias utilizan la misma ruta para ir de una población a la otra. Como ambos inician el recorrido al mismo tiempo, ambos han utilizado la misma cantidad de tiempo para la hora en que se encuentran. Si denotamos como A al tiempo que lleva de recorrido la familia Álvarez, y B la cantidad de tiempo que ha recorrido la familia Blanco, tenemos que: A = B La familia Álvarez viaja a una velocidad constante de 91 km/hr. Esto significa que en A horas ha recorrido: (91 A) kilómetros. Por su parte la familia B viaja a 65 km/hr. Por lo que ha recorrido (65 B) kilómetros en B horas. Cuando ellos se encuentren en el camino, la suma de las distancias que han recorrido será igual a la distancia entre Acaxochitlan y Bacaxohitlan. Pero ya sabíamos que A = B, por lo que: Esto es, horas con 55 minutos. 91 A + 65 B = A + 65 A = A + 65 B = A = 455 A = = 35 1 = = Vamos a verificar el resultado, para esto utilizamos la siguiente ecuación: 91 ( ) ( ) = 455 = = /7

7 Albert Einstein Créditos Todo debe hacerse tan simple como sea posible, pero no más. Este material se extrajo del libro Matemáticas I escrito por Efraín Soto Apolinar. La idea es compartir estos trucos para que más gente se enamore de las matemáticas, de ser posible, mucho más que el autor. Autor: Efraín Soto Apolinar. Edición: Efraín Soto Apolinar. Composición tipográfica: Efraín Soto Apolinar. Diseño de figuras: Efraín Soto Apolinar. Productor general: Efraín Soto Apolinar. Año de edición: 010 Año de publicación: Pendiente. Última revisión: de agosto de 010. Derechos de autor: Todos los derechos reservados a favor de Efraín Soto Apolinar. México Espero que estos trucos se distribuyan entre profesores de matemáticas de todos los niveles y sean divulgados entre otros profesores y sus alumnos. Este material es de distribución gratuita. Profesor, agradezco sus comentarios y sugerencias a la cuenta de correo electrónico: efrain@aprendematematicas.org.mx 7/7

S.E.L.: 3 ecuaciones con 3 incógnitas

S.E.L.: 3 ecuaciones con 3 incógnitas 1 S.E.L.: 3 ecuaciones con 3 incógnitas Ahora vamos a generalizar el procedimiento que hemos utilizado para resolver sistemas de una ecuación con una incógnita y de 2 ecuaciones con dos incógnitas. Para

Más detalles

Interpretación gráfica

Interpretación gráfica Interpretación gráfica En la introducción de la sección Sistemas de Ecuaciones Lineales se presentó la interpretación gráfica (o geométrica) de la solución de un S.E.L.. Este tema está relacionado con

Más detalles

Reglas del producto y del cociente

Reglas del producto y del cociente Reglas del producto y del cociente Al igual que la regla de la potencia, ya calculamos las fórmulas para calcular la derivada de un producto de dos funciones en la página?? y del cociente de dos funciones

Más detalles

Ecuación general de la circunferencia

Ecuación general de la circunferencia Ecuación general de la circunferencia Hasta aquí hemos calculado la ecuación de la circunferencia dejándola como la suma de binomios al cuadrado igualada a una constante positiva. Ahora vamos a ir un paso

Más detalles

Resolución de Ecuaciones de Segundo Grado

Resolución de Ecuaciones de Segundo Grado Resolución de Ecuaciones de Segundo Grado Ecuación de Segundo Grado Es una ecuación que se puede escribir de la forma: a x 2 + b x + c = 0 () donde a, b, c R, y a = 0. A la ecuación de segundo grado también

Más detalles

Denominadores con factores lineales

Denominadores con factores lineales Denominadores con factores lineales uando al sumar dos fracciones algebraica obtenemos una nueva fracción con denominador que se puede factorizar hasta tener factores lineales, significa que los denominadores

Más detalles

Técnicas de integración. Cambio de variable

Técnicas de integración. Cambio de variable Técnicas de integración En matemáticas, cada tipo de problema sugiere un tipo de solución. Para calcular la derivada de una función, en general, el problema es muy sencillo, pues solamente se requiere

Más detalles

Integración de funciones trigonométricas

Integración de funciones trigonométricas Integración de funciones trigonométricas Ya vimos las reglas para calcular integrales de funciones trigonométricas. Ahora vamos a considerar productos de funciones trigonométricas y potencias. Para este

Más detalles

Diferenciabilidad en un intervalo

Diferenciabilidad en un intervalo Diferenciabilidad en un intervalo Ahora que conocemos cómo calcular la derivada de una función en un punto conviene hacer la pregunta más general: «Cómo podemos saber si una derivada se puede derivar en

Más detalles

Ecuaciones exponenciales y logaritmicas

Ecuaciones exponenciales y logaritmicas Ecuaciones exponenciales y logaritmicas Cuando hacemos preguntas relacionadas a funciones exponenciales o logaritmicas generalmente obtendremos una ecuación logarimica o exponencial. Elevé el número 3

Más detalles

Forma pendiente-ordenada al origen

Forma pendiente-ordenada al origen Forma pendiente-ordenada al origen Si una recta corta el eje de las ordenadas (eje y) en el punto B(0, b), entonces decimos que la ordenada al origen de la recta es b. Conociendo este punto es muy sencillo

Más detalles

Teoremas de los límites

Teoremas de los límites Teoremas de los límites Empezamos esta sección dando la definición de límite. Límite Sea y = f (x una función. Si podemos formar la sucesión x 1, x 2,, x n de valores de la variable x tales que cada uno

Más detalles

Método de Igualación

Método de Igualación Método de Igualación Ya vimos que la solución del S.E.L. debe ser tal que cuando sustituyamos los valores de las variables en cada ecuación obtengamos una igualdad verdadera. Entonces, el valor de x que

Más detalles

Ecuación ordinaria de la hipérbola

Ecuación ordinaria de la hipérbola Ecuación ordinaria de la hipérbola Empezamos estudiando la ecuación de la hipérbola con centro en el origen, que es la ecuación que se deduce anteriormente. Ahora vamos a utilizarla para calcular ecuaciones

Más detalles

Distancia entre un punto y una recta

Distancia entre un punto y una recta Distancia entre un punto una recta Frecuentemente en geometría nos encontramos con el problema de calcular la distancia desde un punto a una recta. Distancia de un punto a una recta La fórmula para calcular

Más detalles

Derivadas de orden superior

Derivadas de orden superior Derivadas de orden superior Ya habrás observado que al derivar una función obtenemos otra nueva función. Por ejemplo, la derivada de la función y = x 2 es y = 2 x. Observa que y es otra función, generalmente

Más detalles

Profr. Efraín Soto Apolinar. Variación inversa. entonces,

Profr. Efraín Soto Apolinar. Variación inversa. entonces, Variación inversa La función racional más sencilla es: Esta función en palabras nos dice que cuando x crece el valor de y decrece en la misma proporción. Por ejemplo, si el valor de x crece al doble, el

Más detalles

Profr. Efraín Soto Apolinar. Forma normal

Profr. Efraín Soto Apolinar. Forma normal Forma normal Todavía nos falta una última forma de la ecuación de la recta que nos ayudará a estudiar el último tema de esta unidad. Ecuación de la recta en su forma normal La ecuación de la recta en su

Más detalles

Funciones crecientes y decrecientes

Funciones crecientes y decrecientes Funciones crecientes y decrecientes Ahora estudiaremos el comportamiento de la función a partir de la derivada. Hasta ahora hemos calculado máximos y mínimos de funciones. También sabemos que cuando f

Más detalles

Ecuaciones ordinarias de la parábola

Ecuaciones ordinarias de la parábola Ecuaciones ordinarias de la parábola En la sección anterior dedujimos la ecuación de la parábola en su forma ordinaria. Ahora vamos a utilizar la ecuación. Empezaremos estudiando las parábolas con vértice

Más detalles

Solución de un sistema de desigualdades

Solución de un sistema de desigualdades Solución de un sistema de desigualdades En la sección anterior tuvimos oportunidad de resolver desigualdades de dos variables. En el último ejemplo vimos nuestro primer sistema de desigualdades, que aunque

Más detalles

Constante de integración

Constante de integración Constante de integración Cuando impongamos una condición que deba satisfacer la antiderivada de la función dada, por ejemplo, que pase por un punto dado, tendremos la posibilidad de reducir toda una familia

Más detalles

Parábolas con vértice fuera del origen

Parábolas con vértice fuera del origen Parábolas con vértice fuera del origen En este apartado vamos a etender lo que estudiamos en la sección anterior. Ahora vamos a considerar parábolas con vértices fuera del origen. En estos casos, tendremos

Más detalles

La derivada como razón de cambio instantánea

La derivada como razón de cambio instantánea La derivada como razón de cambio instantánea Observa que la razón de cambio instantánea es un límite: y(t + t) y(t) lim lim t 0 t t 0 t Cuando calculamos la razón de cambio promedio, geométricamente estamos

Más detalles

Ángulos formados por dos rectas paralelas y una secante

Ángulos formados por dos rectas paralelas y una secante Ángulos formados por dos rectas paralelas y una secante Cuando dos rectas paralelas son cortadas por una tercer recta que no es paralela a ellas, se forman varios ángulos de interés. La secante a una curva

Más detalles

Centro fuera del origen

Centro fuera del origen Centro fuera del origen Ya conoces la ecuación de la circunferencia que tiene su centro en el origen. Si trasladamos el centro de la circunferencia h unidades a la derecha k unidades hacia arriba, obtenemos

Más detalles

La derivada. Razón de cambio promedio e instantánea

La derivada. Razón de cambio promedio e instantánea La derivada En esta sección empezamos con el estudio del concepto más importante de este curso. La derivada, la cual vamos a definir más adelante, es una herramienta poderosísima que ayuda a ingenieros,

Más detalles

Profr. Efraín Soto Apolinar. Lugares geométricos

Profr. Efraín Soto Apolinar. Lugares geométricos Lugares geométricos En esta sección estudiaremos el concepto de lugar geométrico, concepto clave para el desarrollo del estudio de los conceptos de este semestre. Lugar geométrico El conjunto de todos

Más detalles

La diferencial como aproximación al incremento

La diferencial como aproximación al incremento La diferencial como aproximación al incremento Ahora vamos a utilizar la diferencial para hacer aproximaciones. Esta aproximación está basada en la interpretación geométrica que acabamos de dar de la diferencial.

Más detalles

Series y sucesión lineal

Series y sucesión lineal Series y sucesión lineal En la naturaleza muchas veces aparecen las sucesiones de números. Por ejemplo, cuando el hombre tuvo la necesidad de contar, tuvo que inventar un conjunto de números que le sirviera

Más detalles

Profr. Efraín Soto Apolinar. Suma de ángulos

Profr. Efraín Soto Apolinar. Suma de ángulos Suma de ángulos En esta sección vamos a demostrar algunos teoremas que nos ayudarán a resolver problemas más adelante. La suma de los ángulos internos de un polígono de n lados es igual a 180 (n 2). Teorema

Más detalles

1 Razones y proporciones

1 Razones y proporciones 1 Razones y proporciones Es muy importante que el estudiante comprenda por qué deben realizarse de esa manera los procedimientos. Por ejemplo, frecuentemente se explica la regla de tres cuando estudiamos

Más detalles

Definición y Clasificación de Polígonos. Definición

Definición y Clasificación de Polígonos. Definición Definición y Clasificación de Polígonos Además del triángulo hay una gran cantidad de otras figuras geométricas delimitadas por segmentos de recta que son importantes en geometría. Definición Polígono

Más detalles

Integral indefinida de funciones algebraicas

Integral indefinida de funciones algebraicas Integral indefinida de funciones algebraicas En esta sección vamos a empezar a practicar el cálculo de integrales indefinidas de funciones. ( 1) d Ejemplo 1 Empezamos aplicando la regla (i) para separar

Más detalles

Profr. Efraín Soto Apolinar. Método de despeje

Profr. Efraín Soto Apolinar. Método de despeje Método de despeje Cuando tenemos una ecuación cuadrática incompleta es muy buena idea hacer un despeje para resolverla. Este método es el más sencillo para este tipo de ecuaciones. Resuelve la siguiente

Más detalles

Profr. Efraín Soto Apolinar. Forma general

Profr. Efraín Soto Apolinar. Forma general Forma general La forma general de la ecuación de la recta es la que considera todos los casos de las rectas: horizontales, verticales e inclinadas. En otros casos no siempre es posible escribir la ecuación

Más detalles

Operaciones con polinomios

Operaciones con polinomios 1 Operaciones básicas Operaciones con polinomios Cuando realizamos la suma de dos o más polinomios sumamos términos semejantes con términos semejantes. El estudiante al escuchar esto puede causarle confusión

Más detalles

Máximos y mínimos usando la segunda derivada

Máximos y mínimos usando la segunda derivada Máimos mínimos usando la segunda derivada Ahora que sabemos que la segunda derivada nos da información acerca de la primera derivada, vamos a utilizarla para calcular los máimos mínimos de funciones. Ya

Más detalles

Conversión de la forma general a la forma ordinaria

Conversión de la forma general a la forma ordinaria Conversión de la forma general a la forma ordinaria Ahora que ya conocemos las formas ordinaria y general de la ecuación de la circunferencia y que ya hemos hecho conversiones de la forma ordinaria a la

Más detalles

Profr. Efraín Soto Apolinar. Productos notables

Profr. Efraín Soto Apolinar. Productos notables Productos notables Cuando realizamos operaciones entre polinomios con el fin de resolver problemas, es muy frecuente encontrar algunas operaciones que por su naturaleza, aparecen en muchos fenómenos. Debido

Más detalles

Método de fórmula general

Método de fórmula general Método de fórmula general Ahora vamos a utilizar el método infalible. La siguiente fórmula, que llamaremos «fórmula general» nos ayudará a resolver cualquier ecuación cuadrática. Fórmula General La fórmula

Más detalles

Ecuaciones de la tangente y la normal

Ecuaciones de la tangente y la normal Ecuaciones de la tangente la normal Ahora que sabemos cómo calcular la pendiente de una recta tangente a una curva dada su ecuación, independientemente de que ésta sea una función o no lo sea, podemos

Más detalles

Int. indefinida de funciones exponenciales

Int. indefinida de funciones exponenciales Int. indefinida de funciones exponenciales Ahora vamos a calcular integrales indefinidas de funciones exponenciales de la forma: y = e v y y = a v Para este fin, vamos a estar utilizando las reglas de

Más detalles

Interpretación geométrica de la derivada

Interpretación geométrica de la derivada Interpretación geométrica de la derivada Ya estudiamos una interpretación geométrica de la razón de cambio instantánea. Ahora vamos a profundizar un poco más en este concepto recordando que la derivada

Más detalles

Profr. Efraín Soto Apolinar. Función logarítmica

Profr. Efraín Soto Apolinar. Función logarítmica Función logarítmica Ya hemos definido la función eponencial. Supongamos que sabemos que =, deseamos conocer qué valor debe tener para que la igualdad sea verdadera. En otras palabras, deseamos conocer

Más detalles

Circunferencia que pasa por tres puntos

Circunferencia que pasa por tres puntos Circunferencia que pasa por tres puntos En la sección Ecuaciones de las rectas notables del triángulo calculamos el punto donde se intersectan las tres mediatrices de los lados de un triángulo. Este punto,

Más detalles

1 Ecuaciones y propiedades de la recta

1 Ecuaciones y propiedades de la recta Ecuaciones propiedades de la recta Ecuaciones propiedades de la recta En esta sección estudiaremos la caracterización de la recta desde el punto de vista algebraico. A partir del concepto de pendiente

Más detalles

Problemas geométricos y algebraicos. Reglas de los exponentes

Problemas geométricos y algebraicos. Reglas de los exponentes Problemas geométricos y algebraicos Aquí empezamos a estudiar los conceptos que más vamos a utilizar en los cursos de matemáticas. Los temas de esta unidad son los conceptos de álgebra que no debes olvidar.

Más detalles

Coordenadas de un punto

Coordenadas de un punto Coordenadas de un punto En esta sección iniciamos con las definiciones de algunos conceptos básicos sobre los cuales descansan todos los demás conceptos que utilizaremos a lo largo del curso. Ejes Coordenados

Más detalles

Desigualdades con una incógnita

Desigualdades con una incógnita Desigualdades con una incógnita Nosotros utilizaremos las propiedades de las desigualdades para epresarlas de la manera más simple posible. Resuelve la desigualdad: 5 1 > 24 Ejemplo 1 Empezamos sumando

Más detalles

Triangulación de polígonos. Perímetros y áreas

Triangulación de polígonos. Perímetros y áreas Triangulación de polígonos Para calcular el área de un polígono de n lados nos apoyaremos en la fórmula para calcular el área de un triángulo. Empezamos dibujando n diagonales que partan de un mismo vértice:

Más detalles

Límites de funciones

Límites de funciones Límites de funciones Gracias a las propiedades de los límites podemos resolver problemas de una manera más sencilla. Límites de funciones polinomiales y racionales 2 + 2 2 4 Ejemplo Sin el apoyo de las

Más detalles

Profr. Efraín Soto Apolinar. La función racional

Profr. Efraín Soto Apolinar. La función racional La función racional Ahora estudiaremos una extensión de las funciones polinomiales. Las funciones racionales se definen a partir de las funciones polinomiales. Esta generalización es semejante a la que

Más detalles

Aplicaciones en ciencias naturales, económico-administrativas y sociales

Aplicaciones en ciencias naturales, económico-administrativas y sociales Aplicaciones en ciencias naturales, económico-administrativas y sociales Ya hemos resuelto algunos problemas aplicados a las ciencias naturales, así que aquí nos enfocaremos más a problemas de economía,

Más detalles

Funciones especiales

Funciones especiales Funciones especiales En esta sección estudiaremos algunas funciones que son muy importantes en el estudio del análisis matemático. Empezamos con algunos casos particulares de las funciones polinomiales.

Más detalles

Congruencia de triángulos

Congruencia de triángulos Congruencia de triángulos Como habrás observado, la idea de que dos segmentos o dos ángulos tienen la misma medida sirve mucho para demostrar teoremas en geometría. Igualmente, cuando dos triángulos tienen

Más detalles

Profr. Efraín Soto Apolinar. Rectas. Podemos determinar de una manera única a una recta de varias formas:

Profr. Efraín Soto Apolinar. Rectas. Podemos determinar de una manera única a una recta de varias formas: Rectas Podemos determinar de una manera única a una recta de varias formas: a partir de su ecuación, a partir de dos de sus puntos a partir del ángulo que forma con uno de los ejes su distancia al origen,

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Sistemas de ecuaciones Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces,

Más detalles

Profr. Efraín Soto Apolinar. Polígonos

Profr. Efraín Soto Apolinar. Polígonos Polígonos En esta sección vamos a utlizar las fórmulas que a conocemos para calcular perímetros áreas de polígonos. Para esto es una buena idea recordar las fórmulas de áreas de los polígonos. alcula el

Más detalles

TEMA 5 ANEXO II SISTEMAS DE ECUACIONES LINEALES

TEMA 5 ANEXO II SISTEMAS DE ECUACIONES LINEALES TEMA 5 ANEXO II SISTEMAS DE ECUACIONES LINEALES A) INTRODUCCIÓN Una ecuación puede tener dos incógnitas. Después de simplificar nos queda una ecuación del tipo ax + by = c, donde x e y son las incógnitas,

Más detalles

Clasificación y transformación de funciones

Clasificación y transformación de funciones Clasificación transformación de funciones En esta sección vamos a conocer la forma en como se han clasificado las funciones para su estudio. También vamos a conocer ciertas funciones que «hacen la transformación

Más detalles

La función cuadrática

La función cuadrática La función cuadrática En primer semestre estudiamos las ecuaciones cuadráticas. También resolvimos estas ecuaciones por el método gráfico. Para esto, tuvimos que convertir la ecuación en una función igualándola

Más detalles

Desigualdades de dos variables

Desigualdades de dos variables Desigualdades de dos variables Ahora vamos a estudiar un caso más general. Cuando graficamos la ecuación: obtenemos una recta en al plano. + = 0 Cada punto que está sobre la recta satisface la ecuación.

Más detalles

Triángulos. Definición y clasificación

Triángulos. Definición y clasificación Profr. Efraín Soto polinar. Triángulos En esta sección empezamos el estudio de las figuras geométricas planas creadas de segmentos de rectas. uando la figura está formada por tres segmentos de recta y

Más detalles

Tema 4: Sistemas de ecuaciones e inecuaciones

Tema 4: Sistemas de ecuaciones e inecuaciones Tema 4: Sistemas de ecuaciones e inecuaciones Sistemas Lineales pueden ser de No lineales Gráficamente Ecuaciones se clasifican se resuelven Algebraicamente Compatible determinado Compatible indeterminado

Más detalles

ECUACIONES SIMULTÁNEAS

ECUACIONES SIMULTÁNEAS UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 201 Lic. Manuel

Más detalles

TEMA 4: SISTEMAS DE ECUACIONES LINEALES SISTEMA DE ECUACIONES LINEALES

TEMA 4: SISTEMAS DE ECUACIONES LINEALES SISTEMA DE ECUACIONES LINEALES SISTEMA DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Luis compró 5 cuadernos y 4 plumones y gastó en total $ 84.00. Si la diferencia en el costo del cuaderno y del plumón es de $ 6.00. Cuánto

Más detalles

Sistemas de Ecuaciones Lineales. Método de Reducción.

Sistemas de Ecuaciones Lineales. Método de Reducción. Sistemas de Ecuaciones Lineales. Método de Reducción. 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Introducción a los Sistemas de Ecuaciones Lineales... 4 1.1 Tipos de sistemas

Más detalles

Tema 3: Ecuaciones. 1.- Ecuaciones de primer y segundo grado. 2.- Ecuaciones del tipo.

Tema 3: Ecuaciones. 1.- Ecuaciones de primer y segundo grado. 2.- Ecuaciones del tipo. Tema 3: Ecuaciones. En este tema, estudiaremos las denominadas ecuaciones, que no son más que igualdades entre expresiones algebraicas, junto con una incógnita que debemos encontrar. Empezaremos dando

Más detalles

IDENTIFICAR SISTEMAS DE ECUACIONES Y SUS ELEMENTOS

IDENTIFICAR SISTEMAS DE ECUACIONES Y SUS ELEMENTOS REPASO Y APOYO OBJETIVO 1 IDENTIFICAR SISTEMAS DE ECUACIONES Y SUS ELEMENTOS Un sistema de dos ecuaciones lineales con dos incógnitas está formado por dos ecuaciones de las que se busca una solución común.

Más detalles

TEMA 6. Sistemas de dos Ecuaciones de Primer grado con dos Incógnitas

TEMA 6. Sistemas de dos Ecuaciones de Primer grado con dos Incógnitas TEMA 6 Sistemas de dos Ecuaciones de Primer grado con dos Incógnitas 1. Ecuación de Primer grado con dos incógnitas Vamos a intentar resolver el siguiente problema: En una bolsa hay bolas azules y rojas,

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones Sistemas de ecuaciones Dos ecuaciones con dos incógnitas forman un sistema, cuando lo que queremos en ellas es encontrar su solución común. a 1 x + b 1 y = c 1 a x + b y = c La solución de un sistema es

Más detalles

" Cumple la ecuación.

 Cumple la ecuación. OBJETIVO 1 IDENTIFICAR SISTEMAS DE ECUACIONES Y SUS ELEMENTOS NOMBRE: CURSO: FECHA: SISTEMAS DE ECUACIONES Un sistema de dos ecuaciones lineales con dos incógnitas está formado por dos ecuaciones lineales

Más detalles

Ec. rectas notables en un triángulo

Ec. rectas notables en un triángulo Ec rectas notables en un triángulo omo recordarás del curso de geometría plana (segundo semestre), las rectas notables de un triángulo son: Medianas: Una mediana es la recta que pasa por el punto medio

Más detalles

5 Sistemas de ecuaciones

5 Sistemas de ecuaciones Sistemas de ecuaciones INTRODUCCIÓN La resolución de problemas es uno de los fundamentos de las Matemáticas. A la hora de resolver muchos problemas reales se hace patente la necesidad de los sistemas de

Más detalles

IDENTIFICAR SISTEMAS DE ECUACIONES Y SUS ELEMENTOS

IDENTIFICAR SISTEMAS DE ECUACIONES Y SUS ELEMENTOS 7 REPASO Y APOYO OBJETIVO 1 IDENTIFICAR SISTEMAS DE ECUACIONES Y SUS ELEMENTOS SISTEMAS DE ECUACIONES Un sistema de dos ecuaciones lineales con dos incógnitas está formado por dos ecuaciones lineales con

Más detalles

Dos ecuaciones forman un sistema cuando lo que pretendemos de ellas es encontrar su solución común.

Dos ecuaciones forman un sistema cuando lo que pretendemos de ellas es encontrar su solución común. TEMA 7. SISTEMA DE ECUACIONES 1. SISTEMAS DE ECUACIONES LINEALES Dos ecuaciones forman un sistema cuando lo que pretendemos de ellas es encontrar su solución común. Cuando dos ecuaciones forman un sistema

Más detalles

open green road Guía Matemática SISTEMAS DE ECUACIONES DE PRIMER GRADO profesor: Nicolás Melgarejo .cl

open green road Guía Matemática SISTEMAS DE ECUACIONES DE PRIMER GRADO profesor: Nicolás Melgarejo .cl Guía Matemática SISTEMAS DE ECUACIONES DE PRIMER GRADO profesor: Nicolás Melgarejo.cl 1. Sistema de ecuaciones Considera que tienes dos variables v y t que se relacionan de cierta manera particular mediante

Más detalles

Bloque 1. Aritmética y Álgebra

Bloque 1. Aritmética y Álgebra Bloque 1. Aritmética y Álgebra 12. Sistemas de ecuaciones 1. Sistemas de ecuaciones Un sistema de ecuaciones es un conjunto de dos o más ecuaciones con varias incógnitas que conforman un problema matemático

Más detalles

Breve historia de los sistemas de ecuaciones lineales.

Breve historia de los sistemas de ecuaciones lineales. Breve historia de los sistemas de ecuaciones lineales. Los sistemas de ecuaciones lineales fueron ya resueltos por los babilonios, los cuales llamaban a las incógnitas con palabras tales como longitud,

Más detalles

5 REPASO Y APOYO OBJETIVO 1

5 REPASO Y APOYO OBJETIVO 1 5 REPASO APOO OBJETIVO ESTUDIAR SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS Un sistema de dos ecuaciones con dos incógnitas es un conjunto de dos ecuaciones de la forma: Incógnitas: x, y Coeficientes

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES SISTEMAS DE ECUACIONES CONCEPTOS Un sistema de m ecuaciones con n incógnitas es un conjunto de m ecuaciones que se pueden escribir de la forma: f1( x1, x,..., xn) = 0 f( x1, x,..., xn) = 0... fm( x1, x,...,

Más detalles

IDENTIFICAR SISTEMAS DE ECUACIONES Y SUS ELEMENTOS

IDENTIFICAR SISTEMAS DE ECUACIONES Y SUS ELEMENTOS OBJETIVO 1 IDENTIFICAR SISTEMAS DE ECUACIONES Y SUS ELEMENTOS NOMBRE: CURSO: FECHA: Un sistema de dos ecuaciones lineales con dos incógnitas es un conjunto de dos ecuaciones de las que se busca una solución

Más detalles

Sistemas de ecuaciones Ecuaciones lineales con dos incógnitas

Sistemas de ecuaciones Ecuaciones lineales con dos incógnitas Sistemas de ecuaciones Ecuaciones lineales con dos incógnitas 1. Método de sustitución 1) a + b = 9 a b = 1 } Despejamos cualquiera de las incógnitas que tiene como coeficiente 1, ya que son el caso más

Más detalles

Sistema de ecuaciones

Sistema de ecuaciones Sistema de ecuaciones Escribimos en lenguaje simbólico el siguiente problema: Hallar dos números sabiendo que el duplo del primero menos el triplo del segundo es 10 y que la diferencia entre el primero

Más detalles

Se distinguen tres métodos algebraicos de resolución de sistemas:

Se distinguen tres métodos algebraicos de resolución de sistemas: MÉTODOS DE RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES Se distinguen tres métodos algebraicos de resolución de sistemas: Sustitución Igualación Reducción Notas: 1) Es importante insistir en que la solución

Más detalles

SISTEMA DE 2 ECUACIONES LINEALES CON 2 INCÓGNITAS

SISTEMA DE 2 ECUACIONES LINEALES CON 2 INCÓGNITAS SISTEMA DE ECUACIONES LINEALES CON INCÓGNITAS Debemos tener, al menos, tantas ecuaciones como incógnitas para poder hallar éstas. Cuando al resolver un problema nos encontramos con dos incógnitas relacionadas

Más detalles

NOMBRE ESTUDIANTE: Nº GRADO: 9ºA

NOMBRE ESTUDIANTE: Nº GRADO: 9ºA COLEGIO BETHLEMITAS PLAN DE REFUERZO PERIODO: II Fecha: Dia 12 Mes 06 Año 2015 META DE COMPRENSIÓN: La estudiante desarrolla comprensión acerca de las situaciones de variación, mediante la solución de

Más detalles

Ecuaciones, inecuaciones y sistemas

Ecuaciones, inecuaciones y sistemas 008 _ 00-0.qd 9/7/08 9:7 Página 0 Ecuaciones, inecuaciones y sistemas INTRODUCCIÓN Para resolver ecuaciones de primer grado aprendemos a transponer términos, resolviendo ecuaciones de primer grado con

Más detalles

Profr. Efraín Soto Apolinar. Método Gráfico

Profr. Efraín Soto Apolinar. Método Gráfico Método Gráfico El último método que estudiaremos es el más sencillo. Se trata de considerar a la ecuación como una máquina que transforma los números. Para eso, crearemos una función. Función (Definición

Más detalles

Lección 5: Ecuaciones con números naturales

Lección 5: Ecuaciones con números naturales GUÍA DE MATEMÁTICAS I Lección 5: Ecuaciones con números naturales Observe la siguiente tabla y diga cuáles son los números que faltan. 1 2 3 4 5 6 7 8 9 10 11 12 3 6 9 12 Es sencillo encontrar la regla

Más detalles

Tema 8: Aplicaciones de la derivada

Tema 8: Aplicaciones de la derivada Tema 8: Aplicaciones de la derivada 1. Introducción En la unidad anterior hemos establecido el concepto de derivada de una función en un punto de su dominio y la hemos interpretado geométricamente como

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES ECUACIONES LINEALES CON DOS INCÓGNITAS La ecuación ax + b c es una ecuación lineal con dos incógnitas. Las incógnitas son x e y, a y b son los coeficientes de las incógnitas

Más detalles

Este valor de y lo sustituimos en (2) para hallar el valor de x

Este valor de y lo sustituimos en (2) para hallar el valor de x RESOLUCIÓN DE PROBLEMAS MEDIENTE SISTEMAS DE ECUACIONES LINEALES. Una de las obras más antiguas de la Matemática que se conocen fue elaborada en Egipto, hace unos 3.600 años. Fue escrita en un papiro de

Más detalles

ECUACIONES Y SISTEMAS: TEORÍA, EJEMPLOS Y EJERCICIOS

ECUACIONES Y SISTEMAS: TEORÍA, EJEMPLOS Y EJERCICIOS ECUACIONES Y SISTEMAS: TEORÍA, EJEMPLOS Y EJERCICIOS Una ecuación es una igualdad que contiene números, letras y operaciones, las letras se llaman incógnitas y dicha igualdad es cierta solamente para algunos

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES SISTEMAS DE ECUACIONES Ecuación es una igualdad que contiene por lo menos una incógnita, que se representa por medio de una letra, cuyo valor se debe averiguar. Por ejemplo: 3x + 2 = 4 donde debemos calcular

Más detalles

Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez.

Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez. Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez. Comprobar que la familia de funciones del seno y la del coseno de la forma: Estando definidas entre 0 y L y donde son familias ortogonales por sí

Más detalles

ECUACIONES. SISTEMAS DE ECUACIONES. Matemáticas 3º eso

ECUACIONES. SISTEMAS DE ECUACIONES. Matemáticas 3º eso ECUACIONES. SISTEMAS DE ECUACIONES Matemáticas 3º eso Identidades y ecuaciones Una ecuación es una igualdad entre dos expresiones en la que aparecen números y letras llamadas incógnitas ligados por operaciones.

Más detalles

Sistemas de ecuaciones Ecuaciones lineales con dos incógnitas

Sistemas de ecuaciones Ecuaciones lineales con dos incógnitas Sistemas de ecuaciones Ecuaciones lineales con dos incógnitas 1. Método de reducción 1) a + b = 9 a b = 1 } Sumamos las dos ecuaciones y obtenemos: Regla del producto: dividimos entre 2 2a = 10 a = 5 Para

Más detalles