ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR"

Transcripción

1 FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ELECTRÓNICA Y TELECOMUNICACIONES ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR Solución analítica de ED de orden superior con fenómeno resonante. Adrian Montoya Lince (Docente) David Hincapie Garcia (Auxiliar Docente) Alejandro Arias Rodriguez (Monitor)

2 ENUNCIADOS EJERCICIO Dada la ecuación diferencial de orden superior (D 3 + 4D 2 + 6D + 4)y(x) = e x sin x. Encuentre un Conjunto Fundamental de Soluciones de la ED. 2. Encuentre la solución particular usando el método de operador inverso. 3. Grafique la solución tomando C = C 2 = C 3 =. EJERCICIO 2 Dada la ecuación diferencial de orden superior (D 3 + 4D)y(x) = sin 2x + x. Encuentre un Conjunto Fundamental de Soluciones de la ED. 2. Encuentre la solución particular a la ecuación diferencial. 3. Grafique la solución tomando C = C 2 = C 3 =. EJERCICIO 3 El sistema mostrado en la figura corresponde a un sistema masa resorte sin amortiguamiento, al resorte se le conecta una masa m = 8 Kg de modo que sufre una deformación δ 0 = cm respecto a su posición inicial. El medio en el que está el resorte tiene un coeficiente de rozamiento B = 4 Ns/m. El resorte sufre un alargamiento y 0 = 0 cm a partir del punto de equilibrio antes de ser liberado. Encuentre:. La constante de rigidez del resorte. 2. La posición del sistema sino tiene exitaciones externas. 3. La posición del sistema si sufre una exitación de la forma f(t) = 5 N. Grafique la posición y el plano de fase del sistema.

3 Figure : DCL para sistema masa-resorte sin amortiguamiento 4. La posición del sistema si sufre una exitación de la forma f(t) = 256 sin 4t. Suponga que el sistema está en un medio donde B = 0 y que es liberado desde el punto de equilibrio. Grafique la posición del sistema. Qué puede concluir? EJERCICIOS PROPUESTOS EJERCICIO Dada la ecuación diferencial de orden superior (D 2 + 2D + )y(x) = e x sec 2 (x). Encuentre un Conjunto Fundamental de Soluciones de la ED. 2. Encuentre la solución particular usando el método de variación de parámetros. 3. Grafique la solución que pasa por los puntos y(0) = y y (0) = 0. EJERCICIO 2 Dada la ecuación diferencial de orden superior y 8y + 6y = xe 4x + e 5x cos x. Encuentre un Conjunto Fundamental de Soluciones de la ED. 2. Implemente dos métodos de solución para la solución particular. 3. Encuentre una solución tal que y(0) = y y (0) = 0. Grafique.

4 SOLUCIÓN EJERCICIO El polinomio característico asociado a la ED Homogenea viene dado por: λ 3 + 4λ 2 + 6λ + 4 = 0 que tiene por raíces λ = 2 y λ 2,3 = ± j, entonces CF S = {e 2x, e x cos x, e x sin x}. La solución particular por el método de Operador Inverso se obtiene así: y ss = D 3 + 4D 2 + 6D + 4 e x sin x Aplicando la propiedad L [eax n(d) f(x)] = e ax L n(d+a) [f(x)] se tiene y ss = e x sin x D 3 + D 2 + D + Dado que L n ( ) = 0 entonces: y ss = xe x 2D 2 D 2 = La solución viene dada por: sin x = xe x 4 D 2 = (D + ) sin x = xe x (cos x + sin x) 4 Solución particular {}}{ y(x) = C e 2x + C 2 e x cos x + C 3 e x sin x xe x (cos x + sin x) }{{} 4 Solución a la ED Homogenea

5 Figure 2: Solución a la ED. (D 3 + 4D 2 + 6D + 4)y(x) = e x sin x. Código Matlab: syms x; Y=exp(-2*x)+exp(-x)*(cos(x)+sin(x))-x*exp(-x)*(cos(x)+sin(x))/4; set(ezplot(y,[-,4]), Color, r ); Código en Python import numpy as np import pylab (En archivos.py esta es la librería, online sería import matplotlib.pyplot as plt;%matplotlib inline) x=np.linspace(-,4,500) y=np.exp(-2*x)+np.exp(-x)*(np.cos(x)+np.sin(x))-x*np.exp(- x)*(np.cos(x)+np.sin(x))/4 pylab.plot(x,y) pylab.show() EJERCICIO 2 El polinomio característico asociado a la ED Homogenea viene dado por: λ 3 +4λ = 0 que tiene por raíces λ = 0 λ 2,3 = ±j2, entonces el CF S = {, sin 2x, cos 2x}. La solución particular se halla por el principio de superposición, se usaran el método de Variación de Parámetros y el método de Operador Inverso. Entonces:

6 Para sec 2x Variación de Parametros. sin 2x cos 2x 0 2 cos 2x 2 sin 2x 0 4 sin 2x 4 cos 2x µ µ 2 µ 3 0 = 0 x Donde W (x) = 8 Las soluciónes al sistema anterior vienen dadas por: µ = 4 x µ = 8 x2 µ 2 = 4 x sin 2x µ 2 = (2x cos 2x sin 2x) 6 µ 3 = 4 x cos 2x µ 2 = (2x sin 2x + cos 2x) 6 y ss = y µ + y 2 µ 2 + y 3 µ 3 = 6 [2x2 ] Para sin 2x Operador Inverso. y ss2 = D(D 2 + 4) D 2 = 4 sin 2x Dado que L n ( 4) = 0 entonces: y ss2 = x 4 D cos2x = x sin 2x 8 La solución viene dada por: y(x) = C + C 2 sin 2x + C 3 cos 2x + }{{} Solución a la ED Homogenea Solución particular {}}{ 6 [2x2 2x sin 2x]

7 Figure 3: Solución a la ED. (D 3 + 4D)y(x) = sin 2x + x. Código Matlab: syms x; Y=+sin(2*x)+cos(2*x)+(2*xˆ 2--2*x*sin(2*x))/6; set(ezplot(y,[-,4]), Color, b ); Código en Python import numpy as np import pylab (En archivos.py esta es la librería, online sería import matplotlib.pyplot as plt;%matplotlib inline) x=np.linspace(-,4,500) y=+np.sin(2*x)+np.cos(2*x)+(2*xˆ 2--2*x*np.sin(2*x))/6 pylab.plot(x,y) pylab.show() EJERCICIO 3. Al conectar la masa m al resorte, este se alarga una distancia δ 0, la fuerza recuperadora que experimenta el resorte es F = W = Kδ 0 de donde: K = mg δ 0 = = 28[Nm ]

8 La ecuación de movimiento que rige el sistema se encuentra aplicando la segunda ley de Newton. B F = mÿ = Ky Bẏ + F (t) ÿ + mẏ + K m y = F (t) m La ecuación (D D+6)x(t) = F (t) tiene por polinomio característico λ λ+6 = 0 y por raíces λ,2 = 0.25±j4, de donde el CFS={e 0.25t cos 4t, e 0.25t sin 4t} 2. Cuando f(t)=0, la solución particular es 0 y la solución geneal viene dada por: y(t) = C e t 4 cos 4t + C2 e t 4 sin 4t Al evaluar las condiciones iniciales y(0) = 0. y (0) = 0 se llega a que y(t) = t t 0 e 4 cos 4t + 60 e 4 sin 4t (a) Posición (b) Plano de Fase Figure 4: Respusta del sistema cuando no está bajo exitaciones. Código Matlab: syms t Y=exp(-t/4)*cos(4*t)/0+exp(-t/4)*sin(4*t)/60; set(ezplot(y,[0,8]), Color, k ); %% Posición figure; set(ezplot(y,diff(y)), Color, k ); %% Plano de Fase 3. Cuando f(t)=5n, la solución particular viene dada por y ss = 8D 2 + 4D = 5 D=0 28

9 La solución general viene dada por: y(t) = C e t 4 cos 4t + C2 e t 4 sin 4t Al evaluar las condiciones iniciales y(0) = 0. y (0) = 0 se llega a que y(t) = 39 t 39 t e 4 cos 4t e 4 sin 4t + 28 (a) Posición (b) Plano de Fase Figure 5: Respuesta del sistema ante una exitación f(t) = 5N. Código Matlab: syms t; Y=39*exp(-t/4)*cos(4*t)/640+39*exp(-t/4)*sin(4*t)/0240+5/28; set(ezplot(y,[0,8]), Color, k ); %% Posición figure; set(ezplot(y,diff(y)), Color, k ); %% Plano de Fase 4. Cuando f(t) = 256 sin 4t N, la ecuación viene dada por: 8ÿ + 28y = 256 sin 4t El CF S = {cos 4t, sin 4t}. la solución particular viene dada por y ss = 256 8D sin 4t = cos 4t = 0 D 2 = y ss = 256t sin 4t = 6t 6D sin 4tdt = 4t cos 4t

10 La solución general viene dada por: y(t) = C cos 4t + C 2 sin 4t 4t cos 4t Al evaluar condiciones iniciales y(0) = 0 y (0) = 0 se llega a: y(t) = sin 4t 4t cos 4t Figure 6: Fenómeno de resonancia pura. Código Matlab: syms t Y=sin(4*t)-4*t*cos(4*t); set(ezplot(y,[0,8]), Color, k );

ECUACIONES DIFERENCIALES DE PRIMER ORDEN

ECUACIONES DIFERENCIALES DE PRIMER ORDEN FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ELECTRÓNICA Y TELECOMUNICACIONES ECUACIONES DIFERENCIALES DE PRIMER ORDEN Taller preparativo para el quiz sobre las ecuaciones diferenciales de primer

Más detalles

Ecuaciones lineales de segundo orden

Ecuaciones lineales de segundo orden Ecuaciones lineales de segundo orden Considere la ecuación lineal general de segundo orden A( xy ) + Bxy ( ) + Cxy ( ) = Fx ( ) donde las funciones coeficientes A, B, C y abierto I. F son continuas en

Más detalles

Lista de ejercicios # 4

Lista de ejercicios # 4 UNIVERSIDAD DE COSTA RICA MA-5 FACULTAD DE CIENCIAS Ecuaciones Diferenciales para Ingeniería ESCUELA DE MATEMÁTICA Primer Ciclo del 5 Lista de ejercicios # 4 Sistemas de ecuaciones diferenciales. EPII-II-

Más detalles

APLICACIÓN DE LAS ECUACIONES DIFERENCIALES DE PRIMER ORDEN EN PROBLEMAS FÍSICOS

APLICACIÓN DE LAS ECUACIONES DIFERENCIALES DE PRIMER ORDEN EN PROBLEMAS FÍSICOS FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ELECTRÓNICA Y TELECOMUNICACIONES APLICACIÓN DE LAS ECUACIONES DIFERENCIALES DE PRIMER ORDEN EN PROLEMAS FÍSICOS Taller preparativo para el parcial sobre

Más detalles

(a) [0,7 puntos] Encuentre los valores de las constantes A y B, y del punto x 2 (0, 1) de modo que la fórmula de cuadratura:

(a) [0,7 puntos] Encuentre los valores de las constantes A y B, y del punto x 2 (0, 1) de modo que la fórmula de cuadratura: UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERÍA. INSTITUTO DE CIENCIAS BÁSICAS. Cálculo Numérico, Control 3. Semestre Otoño 7 Problema ( puntos) (a) [,7 puntos] Encuentre los valores de las constantes

Más detalles

Material suplementario en modelado de sistemas mecánicos. R. Alzate. Control de Sistemas Eléctricos

Material suplementario en modelado de sistemas mecánicos. R. Alzate. Control de Sistemas Eléctricos Material suplementario en modelado de sistemas mecánicos R. Alzate Control de Sistemas Eléctricos - 27126 Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones Universidad Industrial de

Más detalles

ECUACIONES DIFERENCIALES LINEALES DE SEGUNDO ORDEN

ECUACIONES DIFERENCIALES LINEALES DE SEGUNDO ORDEN ECUACIONES DIFERENCIALES LINEALES DE SEGUNDO ORDEN Movimiento Libre No Amortiguado Una de las aplicaciones de las ecuaciones diferenciales de segundo orden es la resolución de problemas de movimiento armónico

Más detalles

Transformada de Laplace: Aplicación a vibraciones mecánicas

Transformada de Laplace: Aplicación a vibraciones mecánicas Transformada de Laplace: Aplicación a vibraciones mecánicas Santiago Gómez Jorge Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina thegrimreaper7@gmail.com

Más detalles

FÍSICA II VIBRACIONES MECÁNICAS UNIVERSIDAD POLITÉCNICA DE MADRID ETSI MINAS DEPARTAMENTO DE FÍSICA APLICADA A LOS RECURSOS NATURALES

FÍSICA II VIBRACIONES MECÁNICAS UNIVERSIDAD POLITÉCNICA DE MADRID ETSI MINAS DEPARTAMENTO DE FÍSICA APLICADA A LOS RECURSOS NATURALES 1 FÍSICA II VIBRACIONES MECÁNICAS UNIVERSIDAD POLITÉCNICA DE MADRID ETSI MINAS DEPARTAMENTO DE FÍSICA APLICADA A LOS RECURSOS NATURALES T1 Vibraciones mecánicas 2 ÍNDICE» 1.1. Ecuaciones del movimiento

Más detalles

Lista sobre Solución por Series.

Lista sobre Solución por Series. UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS MA-1005 Ecuaciones Diferenciales para Ingenieía ESCUELA DE MATEMÁTICA Segundo Ciclo del 2015 Lista sobre Solución por Series. Solución de ecuaciones diferenciales

Más detalles

1. Coeficientes Indeterminados

1. Coeficientes Indeterminados MA2601 - Ecuaciones Diferenciales Ordinarias. Semestre 2009-03 Profesor: Julio López. Auxiliar: Sebastián Reyes Riffo. Clase auxiliar 07-08 11-14/enero/2010 1. Coeficientes Indeterminados Sirve para encontrar

Más detalles

Nombre.: Carné.: Correo Electrónico.:

Nombre.: Carné.: Correo Electrónico.: UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA DEPARTAMENTO DE MATEMATICA MATEMATICA INTERMEDIA 3 N TERCER EXAMEN PARCIAL Nombre.: Carné.: Correo Electrónico.: Tema 1.: Un cuerpo de masa

Más detalles

Pauta Prueba Solemne 2. y(x) = C 1 x 2 2C 2 x 2. Notemos que el determinante del Wronskiano de u y v esta dado por.

Pauta Prueba Solemne 2. y(x) = C 1 x 2 2C 2 x 2. Notemos que el determinante del Wronskiano de u y v esta dado por. Pauta Prueba Solemne 1. Determine si las siguientes afirmaciones son verdaderas o falsas. Justifique su respuesta. a) (0.5pt) Suponga que las funciones u(x) = x y v(x) = x son soluciones de una ecuación

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4.5 Obtención de una ecuación diferencial asta ahora el problema tratado ha sido: Obtener la solución general de una ED lineal homogénea con coeficientes

Más detalles

Aplicaciones de ED de segundo orden

Aplicaciones de ED de segundo orden CAPÍTULO Aplicaciones de ED de segundo orden..3 Vibraciones forzadas Los sistemas estudiados hasta ahora exhiben una dinámica que depende de ciertas constantes intrínsecas al sistema, es decir, las únicas

Más detalles

No usar por academias

No usar por academias ECUACIONES DIFERENCIALES I Grupo D 1 de septiembre de 003 Apellidos: Nombre: D.N.I.: Firma: 1. Considérese la ecuación y = 1 + y x. i) Hallar su solución general. ii) Dibujar aproximadamente sus curvas

Más detalles

ECUACIONES DIFERENCIALES DE PRIMER ORDEN

ECUACIONES DIFERENCIALES DE PRIMER ORDEN FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ELECTRÓNICA Y TELECOMUNICACIONES ECUACIONES DIFERENCIALES DE PRIMER ORDEN Solución Taller preparativo para el parcial 1 Ecuaciones diferenciales de primer

Más detalles

2xy 3x 2 y 2 y(0) = 1

2xy 3x 2 y 2 y(0) = 1 ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA DEPARTAMENTO DE MATEMÁTICA APLICADA II Ingeniería Técnica Industrial. Especialidad en Mecánica Soluciones al Primer Parcial de Ampliación de Matemáticas. Curso

Más detalles

UNIVERSIDAD DE VALPARAISO INGENIERIA CIVIL OCEANICA. Ecuaciones Diferenciales Ecuaciones Lineales de orden superior Segundo Semestre 2008

UNIVERSIDAD DE VALPARAISO INGENIERIA CIVIL OCEANICA. Ecuaciones Diferenciales Ecuaciones Lineales de orden superior Segundo Semestre 2008 UNIVERSIDAD DE VALPARAISO INGENIERIA CIVIL OCEANICA Ecuaciones Diferenciales Ecuaciones Lineales de orden superior Segundo Semestre 2008 VIVIANA BARILE M 1. Decida si las funciones respectivas son linealmente

Más detalles

Amortiguado. March 23, 2017

Amortiguado. March 23, 2017 Amortiguado March 23, 2017 In [1]: import numpy as np import matplotlib.pyplot as plt %matplotlib inline In [2]: # constantes generales g= 9.81 # [m/s^2] 0.1 Péndulo ideal A efectos de presentar código

Más detalles

SOLO PARA INFORMACION

SOLO PARA INFORMACION Facultad de Ingeniería Eléctrica y Electrónica Ciclo 008-B ÍNDICE GENERAL INTRODUCION... 1. OBJETIVOS...3. EXPERIMENTO...3.1 MODELO FISICO... 3 3. DISEÑO...5 4. EQUIPOS Y MATERIALES:...6 5. VARIABLES INDEPENDIENTES...6

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Ecuaciones de 2do Orden) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Otoño 2011, Resumen clases Julio López EDO 1/20 Operadores

Más detalles

Lista de ejercicios # 2. Uso de series de potencias y de Frobenius

Lista de ejercicios # 2. Uso de series de potencias y de Frobenius UNIVERSIDAD DE COSTA RICA FCULTAD DE CIENCIAS MA-15 Ecuaciones Diferenciales ESCUELA DE MATEMÁTICA I Ciclo del 217 Lista de ejercicios # 2 Uso de series de potencias y de Frobenius Uso de series alrededor

Más detalles

Ejemplos de los capítulos V, VI, y VII

Ejemplos de los capítulos V, VI, y VII . Derive las ecuaciones de movimiento del sistema de tres grados de libertad mostrado a continuación por medio de: a) La Segunda Ley de Newton. b) Las ecuaciones de Lagrange. Suposiciones: El sistema es

Más detalles

Complementos de Análisis. Año 2016

Complementos de Análisis. Año 2016 Complementos de Análisis. Año 2016 Práctica 8. Ecuaciones diferenciales ordinarias. 1 Modelando con ecuaciones diferenciales Modelar con ecuaciones diferenciales las siguientes situaciones. Intentar resolver

Más detalles

Ayudantía 2 Física General III (FIS130) Movimiento Armónico Amortiguado y Forzado Ayudante: Nicolás Corte Díaz

Ayudantía 2 Física General III (FIS130) Movimiento Armónico Amortiguado y Forzado Ayudante: Nicolás Corte Díaz Pregunta 1 Ayudantía 2 Física General III (FIS130) Movimiento Armónico Amortiguado y Forzado Ayudante: Nicolás Corte Díaz El oscilador amortiguado masa-resorte de la figura tiene masa m = 10[Kg] y K =

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior Práctica 2 Ecuaciones diferenciales de orden superior 2.1. Introducción Una ED de orden n es una ecuación de la forma o escrito en forma normal g(x, y, y,...,y (n) ) = 0 (2.1) y (n) = f(x, y, y,...,y (n

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

FISICA ONDULATORIA DPTO. DE FISICA -UNS GUÍA 1

FISICA ONDULATORIA DPTO. DE FISICA -UNS GUÍA 1 Prof: Sergio Vera Sistemas con un grado de libertad (SDOF) 1. Una masa de 0,453 kg unida a un resorte liviano introduce un alargamiento de 7,87 mm. Determine la frecuencia natural del sistema. Graficar

Más detalles

4.3 Problemas de aplicación 349

4.3 Problemas de aplicación 349 4. Problemas de aplicación 49 4. Problemas de aplicación Ejemplo 4.. Circuito Eléctrico. En la figura 4.., se muestra un circuito Eléctrico de mallas en el cual se manejan corrientes, una en cada malla.

Más detalles

Prácticas de Métodos Numéricos Prof. Tomás Martín

Prácticas de Métodos Numéricos Prof. Tomás Martín %%Control 1. Lecciones A-B Tomás Martín Hernández Iniciada: 16 de febrero de 2009 10:49 Preguntas: 5 Prácticas de Métodos Numéricos Prof. Tomás Martín 1. (Puntos: 0,5) Importante: El separador decimal

Más detalles

Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. e x + C 2

Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. e x + C 2 - Comprobar que la función y = C senx + C 2 x es solución de la ecuación diferencial ( - x cotgx) d2 y dx 2 - x dy dx + y = 0 2- a) Comprobar que la función y = 2x + C e x es solución de la ecuación diferencial

Más detalles

218 Ecuaciones diferenciales. ) r 2 D 4: 9. y.4/ C y 000 3y 00 5y 0 2y D y.4/ 16y D y.4/ C 2y 00 C y D y.7/ 2y.5/ C y.3/ D 0.

218 Ecuaciones diferenciales. ) r 2 D 4: 9. y.4/ C y 000 3y 00 5y 0 2y D y.4/ 16y D y.4/ C 2y 00 C y D y.7/ 2y.5/ C y.3/ D 0. 218 Ecuaciones diferenciales Ejemplo 4.4.18 Resolver la ecuación diferencial y.7/ C 8y.5/ C 16y.3/ D 0. Proponiendo como solución y D e rx, se obtiene la ecuación característica r 7 C 8r 5 C 16r 3 D 0;

Más detalles

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz ECUACIÓN DE OSCILACIONES Tomado del texto de Ecuaciones Diferenciales de los Profesores Norman Mercado Luis Ignacio Ordoñéz Muchos de los sistemas de ingeniería están regidos por una ecuación diferencial

Más detalles

ECUACIONES DIFERENCIALES LINEALES DE ORDEN n Solución General, Particular y aproximaciones.

ECUACIONES DIFERENCIALES LINEALES DE ORDEN n Solución General, Particular y aproximaciones. ECUACIONES DIFERENCIALES LINEALES DE ORDEN n Solución General, Particular y aproximaciones. En cada caso obtenga la solución general de la ecuación diferencial dada, y luego la solución particular dada

Más detalles

Lección 1.- Ecuaciones Diferenciales de Primer Orden

Lección 1.- Ecuaciones Diferenciales de Primer Orden Métodos Matemáticos de la Ingeniería Química. 009 0. Lección.- Ecuaciones Diferenciales de Primer Orden - Sección.: al. - Sección.: c, a, 3, 5, 7, 9,, 4 y. - Sección.3: y 3. - Sección.4:, 3, 5 y 5. - Sección.5:,

Más detalles

Algunos ejercicios de Ampliación de Cálculo

Algunos ejercicios de Ampliación de Cálculo Algunos ejercicios de Ampliación de Cálculo Pedro Fortuny Ayuso septiembre-diciembre 2012 fortunypedro@uniovi.es 26 de noviembre de 2015 BY: CC Copyright c 2011 2015 Pedro Fortuny Ayuso This work is licensed

Más detalles

II. Vibración libre de un sistema de un grado de libertad

II. Vibración libre de un sistema de un grado de libertad Objetivos: 1. Definir que es vibración libre. 2. Recordar el método de diagrama de cuerpo libre para deducir las ecuaciones de movimiento. 3. Introducir el método de conservación de energía para deducir

Más detalles

Relación de ejercicios 5

Relación de ejercicios 5 Relación de ejercicios 5 Ecuaciones Diferenciales y Cálculo Numérico Grado en Ingeniería de Tecnologías de Telecomunicación Mayo de 2017 Ejercicio 51 Halla un intervalo, para el cero más próximo al origen,

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA A SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA A SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS ÍSICAS II TÉRMINO 2010-2011 PRIMERA EALUACIÓN DE ÍSICA A SOLUCIÓN Pregunta 1 (12 puntos) La trayectoria de un móvil viene descrita por las

Más detalles

Laboratorio Nº 5 Método de coeficientes indeterminados. Métodos de variación de parámetros. Ecuación diferencial de Euler.

Laboratorio Nº 5 Método de coeficientes indeterminados. Métodos de variación de parámetros. Ecuación diferencial de Euler. Universidad Diego Portales Segundo Semestre 007 Facultad de Ingeniería Instituto de Ciencias Básicas Asignatura: Ecuaciones Diferenciales Laboratorio Nº 5 Método de coeficientes indeterminados Métodos

Más detalles

5 Estabilidad de soluciones de equilibrio

5 Estabilidad de soluciones de equilibrio Prácticas de Ecuaciones Diferenciales G. Aguilar, N. Boal, C. Clavero, F. Gaspar Estabilidad de soluciones de equilibrio Objetivos: Clasificar y analizar los puntos de equilibrio que aparecen en los sistemas

Más detalles

TEMA: MOVIMIENTO ARMÓNICO SIMPLE

TEMA: MOVIMIENTO ARMÓNICO SIMPLE TEMA: MOVIMIENTO ARMÓNICO SIMPLE C-J-04 a) Al colgar una masa en el extremo de un muelle en posición vertical, éste se desplaza 5 cm; de qué magnitudes del sistema depende la relación entre dicho desplazamiento

Más detalles

Ecuaciones Diferenciales y Métodos Numéricos

Ecuaciones Diferenciales y Métodos Numéricos NOMBRE...Número... Ecuaciones Diferenciales y Métodos Numéricos 3 er Curso I. Caminos. Ecuaciones en Derivadas Parciales Examen Parcial: 7-XII-2006 Observaciones: Escribir exactamente la solución donde

Más detalles

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV 8.4. CRITERIO DE ESTAB.: METODO DE LIAPUNOV 309 8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV Consideremos el sistema autónomo dx = F (x, y) dt (8.32) dt = G(x, y), y supongamos que tiene

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10 PROBLEMAS M.A.S. 1) Una partícula animada de M.A.S. inicia el movimiento en el extremo positivo de su trayectoria, y tarda 0,25 s en llegar al centro de la misma. La distancia entre ambas posiciones es

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior OBJETIVOS PARTICULARES Describir los conceptos de combinación lineal, dependencia e independencia lineal, conjunto fundamental de soluciones y solución

Más detalles

MATEMÁTICAS II. Práctica 3: Ecuaciones diferenciales de orden superior

MATEMÁTICAS II. Práctica 3: Ecuaciones diferenciales de orden superior MATEMÁTICAS II Práctica 3: Ecuaciones diferenciales de orden superior DEPARTAMENTO DE MATEMÁTICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEL DISEÑO UNIVERSIDAD POLITÉCNICA DE VALENCIA 1 En esta

Más detalles

Tema 6: Ecuaciones diferenciales lineales.

Tema 6: Ecuaciones diferenciales lineales. Tema 6: Ecuaciones diferenciales lineales Una ecuación diferencial lineal de orden n es una ecuación que se puede escribir de la siguiente forma: a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x)

Más detalles

Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación. Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30

Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación. Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30 Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30 Ecuaciones Diferenciales y Dinámica definición de la RAE Modelo: (definición

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Coeficientes Indeterminados y Variación de Parámetros) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Otoño 2011, Resumen clases

Más detalles

7 Ecuación diferencial ordinaria de orden n con coecientes constantes

7 Ecuación diferencial ordinaria de orden n con coecientes constantes 7 Ecuación diferencial ordinaria de orden n con coecientes constantes La ecuación lineal homogénea de coecientes constantes de orden n es: donde a 1, a 2,..., a n son constantes. a n y (n) + a n 1 y n

Más detalles

Semana 07 EDO de 2do orden homogénea - Aplicaciones. Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería

Semana 07 EDO de 2do orden homogénea - Aplicaciones. Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Matemáticas Aplicadas MA101 Semana 07 EDO de 2do orden homogénea - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Aplicaciones Ecuaciones diferenciales

Más detalles

Semana 06 EDO de orden alto - Aplicaciones

Semana 06 EDO de orden alto - Aplicaciones Matemáticas Aplicadas MA101 Semana 06 EDO de orden alto - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Aplicaciones Ecuaciones diferenciales de orden

Más detalles

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR DE COEFICIENTES VARIABLES

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR DE COEFICIENTES VARIABLES ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR DE COEFICIENTES VARIABLES MÉTODO DE CAUCHY-EULER ING. JONATHAN ALEJANDRO CORTÉS MONTES DE OCA ESIME CULHUACAN En el tema anterior tocamos el caso de las ecuaciones

Más detalles

Ecuaciones lineales de orden superior

Ecuaciones lineales de orden superior ANEXO GUIA 5 Ecuaciones lineales de orden superior Las ideas presentadas para ecuaciones lineales de segundo orden se pueden generalizar a ecuaciones lineales de orden n d n x n + a n 1(t) dn 1 x n 1 +

Más detalles

III. Vibración con excitación armónica

III. Vibración con excitación armónica Objetivos: 1. Definir que es vibración con excitación.. Analizar la respuesta de un sistema no amortiguado con excitación. 3. Analizar la respuesta de un sistema amortiguado con excitación. 4. Analizar

Más detalles

Unidad 3 - Modos Normales de una barra y Análisis de Fourier Conceptos:

Unidad 3 - Modos Normales de una barra y Análisis de Fourier Conceptos: Unidad 3 - Modos Normales de una barra y Análisis de Fourier Conceptos: 1. Tensión y deformación 2. Movimiento ondulatorio simple 3. Ondas periódicas 4. Ondas estacionarias Tensión y deformación Objeto

Más detalles

CARRERA : Ing. MECÁNICA GUIA DE PROBLEMAS Nº12

CARRERA : Ing. MECÁNICA GUIA DE PROBLEMAS Nº12 ASIGNATURA : CARRERA : Ing. MECÁNICA GUIA DE PROBLEMAS Nº12 FACULTAD DE INGENIERÍA 2018 1 GUIAS DE PROBLEMAS Nº12 PROBLEMA Nº1 Un bloque de masa m está colocado en el punto medio de una viga de peso ligero

Más detalles

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) =

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) = Transformada de Laplace - Conceptos Básicos Definición: Sea f (t) una función de t definida para t > 0. La Transformada de Laplace de f(t) se define como: L { f (t) } = F(s) = 0 e -st f(t)dt Algunas Propiedades

Más detalles

( ) ( ) Si a = 1, Rang A = 2 Rang A = 3 sistema incompatible. Si a = 0, Rang A = Rang A = 2 sistema compatible indeterminado

( ) ( ) Si a = 1, Rang A = 2 Rang A = 3 sistema incompatible. Si a = 0, Rang A = Rang A = 2 sistema compatible indeterminado SISTEMAS DE ECUACIONES 1. Discutir y resolver el sistema según los valores del parámetro a: x + y + z 1 x + y + az a x + y + az a ; Si a 0 y a 1, Rang A Rang A sistema incompatible Si a, Rang A Rang A

Más detalles

Noviembre 2006, Versión 1.1. Ejercicio 1 Resuelve las siguientes ecuaciones diferenciales ordinarias. 1. 4y 00 + y 0 =0. 2. y 00 y 0 6y =0.

Noviembre 2006, Versión 1.1. Ejercicio 1 Resuelve las siguientes ecuaciones diferenciales ordinarias. 1. 4y 00 + y 0 =0. 2. y 00 y 0 6y =0. E.T.S. Minas: Métodos Matemáticos Ejercicios resueltos Tema 8 EDOs de orden superior Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 006/07

Más detalles

EXAMEN FINAL DE METODOS NUMERICOS (MB536) t y(t) L bt

EXAMEN FINAL DE METODOS NUMERICOS (MB536) t y(t) L bt Universidad Nacional de Ingeniería P.A. 5- Facultad de Ingeniería Mecánica //5 EXAMEN FINAL DE METODOS NUMERICOS (MB5) SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO Y CALCULADORA ESCRIBA CLARAMENTE

Más detalles

5.- ECUACIONES DIFERENCIALES LINEALES DE ORDEN SUPERIOR

5.- ECUACIONES DIFERENCIALES LINEALES DE ORDEN SUPERIOR 5.- ECUACIONES DIFERENCIALES LINEALES DE ORDEN SUPERIOR Una ecuación diferencial lineal de orden n es de la forma: a n (x)y (n) + a n (x)y (n ) + + a 2 (x)y + a (x)y + a 0 (x)y = b(x) Pero solamente abordaremos

Más detalles

Ecuaciones lineales de orden n con coecientes constantes

Ecuaciones lineales de orden n con coecientes constantes Ecuaciones lineales de orden n con coecientes constantes Una ecuación lineal de orden n con coecientes constantes es una ecuación de la forma: a n d n y(t) dt n + a n 1 d n 1 y(t) dt n 1 +... + a 1 dy(t)

Más detalles

Euler. dy dt = y = f(t, y), Δy Δt dy. dt. y k+1 y k = f(t, y)δt. y k+1 y k + hf(t k,y k ) (1) Dada una ecuación diferencial ordinaria de la forma

Euler. dy dt = y = f(t, y), Δy Δt dy. dt. y k+1 y k = f(t, y)δt. y k+1 y k + hf(t k,y k ) (1) Dada una ecuación diferencial ordinaria de la forma Euler Dada una ecuación diferencial ordinaria de la forma dy dt = y = f(t, y), se hace la aproximación De donde se tiene que Δy Δt dy dt. y k+1 y k = f(t, y)δt. Tomando Δt = h se obtiene la regla recursiva

Más detalles

APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA INTEGRACIÓN NUMÉRICA. IEM APLICACIONES COMPUTACIONALES

APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA INTEGRACIÓN NUMÉRICA. IEM APLICACIONES COMPUTACIONALES APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA INTEGRACIÓN NUMÉRICA MOTIVACIÓN REPRESENTACIÓN GRÁFICA DE UNA DERIVADA Aproximación Definición MOTIVACIÓN REPRESENTACIÓN GRÁFICA DE UNA INTEGRAL

Más detalles

Pauta Examen Final - Ecuaciones Diferenciales

Pauta Examen Final - Ecuaciones Diferenciales UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERIA Y CIENCIAS INSTITUTO DE CIENCIAS BÁSICAS ECUACIONES DIFERENCIALES Pauta Examen Final - Ecuaciones Diferenciales P1.- Indicar el tipo de EDO de las siguientes

Más detalles

Examen de Física-1, 1 Ingeniería Química Primer parcial. Diciembre de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Primer parcial. Diciembre de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Primer parcial. Diciembre de 2012 Problemas (Dos puntos por problema). Problema 1: Un palo saltador de niño almacena energía en un resorte de constante k 2, 5 10

Más detalles

Problemario de la asignatura de Ecuaciones Diferenciales

Problemario de la asignatura de Ecuaciones Diferenciales Problemario de la asignatura de Ecuaciones Diferenciales Alejandro Hernández Madrigal Maxvell Jiménez Escamilla Academia de Matemáticas y Física Unidad Profesional Interdisciplinaria de Biotecnología,

Más detalles

Guía de Acústica n 1 Movimiento Armónico Simple Tecnología en Sonido

Guía de Acústica n 1 Movimiento Armónico Simple Tecnología en Sonido Universidad Pérez Rosales Departamento de Acústica Profesores: Jaime Undurraga, Rodrigo Olavarría, Andrés Barrera e-mail:jaime_undurraga@hotmail.com, principiamatematica@lycos.com Guía de Acústica n 1

Más detalles

Taller de Aplicaciones de las Ecuaciones Diferenciales de primer orden

Taller de Aplicaciones de las Ecuaciones Diferenciales de primer orden Taller de Aplicaciones de las Ecuaciones Diferenciales de primer orden Adrian Montoya Lince Gabriel Alejandro Ceron Viveros David Hincapie Garcia 27 Septiembre de 2015 EJERCICIO 1 El aire de un recinto

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS UNAH

UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS UNAH UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS UNAH FACULTAD DE CIENCIAS ESCUELA DE MATEMATICA GUÍA DE LABORATORIO DE MATLAB MM-411 Elaborado por: LIC. JOSÉ DAVID ZÚNIGA VARELA TEGUCIGALPA, MDC HONDURAS, C.A.

Más detalles

Solución por coeficientes indeterminados

Solución por coeficientes indeterminados 1.4.3. Ecuaciones no homogéneas En esta sección se parte de la una ecuación diferencial lineal no homogénea + ( 0 + ( = ( (1.342 donde ( 6= 0. Donde la solución general de la ec. (1.342 es la suma de la

Más detalles

Tema 7: Ecuaciones diferenciales. Conceptos fundamentales. Integración de algunas ecuaciones diferenciales. Aplicaciones.

Tema 7: Ecuaciones diferenciales. Conceptos fundamentales. Integración de algunas ecuaciones diferenciales. Aplicaciones. Tema 7: Ecuaciones diferenciales. Conceptos fundamentales. Integración de algunas ecuaciones diferenciales. Aplicaciones. 1. Introducción y ejemplos. Las ecuaciones diferenciales ordinarias, e. d. o.,

Más detalles

Fuerzas. Estática. Principios de Mecánica. Licenciatura de Física. Curso

Fuerzas. Estática. Principios de Mecánica. Licenciatura de Física. Curso Fuerzas. Estática. Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1 Índice. 1. Transformaciones de Galileo: Espacio y Tiempo en Mecánica Newtoniana 2. 2 a Ley de Newton. Concepto de masa

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN HORAS SEMANA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN HORAS SEMANA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN MATEMÁTICAS APLICADAS Y COMPUTACIÓN PROGRAMA DE ASIGNATURA SEMESTRE: 5 (QUINTO) Ecuaciones

Más detalles

A = [a 1 a 2 a 3. El sistema Ax = c tiene infinitas soluciones N. Existe un único vector x tal que T (x) = c X. T es suprayectiva

A = [a 1 a 2 a 3. El sistema Ax = c tiene infinitas soluciones N. Existe un único vector x tal que T (x) = c X. T es suprayectiva Asignatura: ÁLGEBRA LINEAL Fecha: 6 de Julio de Fecha publicación notas: 6 de Julio de Fecha revisión examen: de Julio de Duración del examen: horas y media APELLIDOS Y NOMBRE: DNI: Titulación:. ( punto:,

Más detalles

Discusión de sistemas

Discusión de sistemas Discusión de s 3x + y z = 1 1. Discutir según los valores del parámetro k el x y + z = 3 kx + 5y 4z = 1 x + my + z = m +. Discutir según los valores del parámetro m el x + y + mz = (m + 1) mx + y + z =

Más detalles

Sistemas de Ecuaciones Diferenciales Ordinarias.

Sistemas de Ecuaciones Diferenciales Ordinarias. E.E.I. CÁLCULO II Y ECUACIONES DIFERENCIALES Curso 2016-17 Lección 23 (Martes 25 abr 2017) Sistemas de Ecuaciones Diferenciales Ordinarias. 1. Observaciones generales sobre los sistemas de ecuaciones diferenciales

Más detalles

Elementos de Cálculo Numérico / Cálculo Numérico Segundo Cuatrimestre 2017

Elementos de Cálculo Numérico / Cálculo Numérico Segundo Cuatrimestre 2017 Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Elementos de Cálculo Numérico / Cálculo Numérico Segundo Cuatrimestre 2017 Práctica N 2: Ecuaciones Diferenciales:

Más detalles

EXAMEN PARCIAL DE FÍSICA 2 AA 234 (E, F y G)

EXAMEN PARCIAL DE FÍSICA 2 AA 234 (E, F y G) EXAMEN PARCIAL DE FÍSICA AA 34 (E, F y G) Profesores : Manuel Estrada, Sheila Malpartida y César Diez Fecha : 11 de mayo 017 Hora: 09:00 a 11:00 am Indicaciones : escoger 4 preguntas y resolverlas de forma

Más detalles

CAMPO DE DIRECCIONES. Objetivos

CAMPO DE DIRECCIONES. Objetivos CAMPO DE DIRECCIONES Objetivos 1. Explorar características de crecimiento y decrecimiento de las soluciones de las ecuaciones diferenciales haciendo uso de los campos de direcciones. 2. Analizar situaciones

Más detalles

CERTAMEN N o 1 MAT

CERTAMEN N o 1 MAT CERTAMEN N o 1 MAT-021 2011-1 P R E G U N T A S 1. Considere el siguiente razonamiento: Si estudio entonces apruebo los cursos. Además, si no termino mi carrera entonces no apruebo los cursos. A partir,

Más detalles

Examen de TEORIA DE MAQUINAS Junio 95 Nombre...

Examen de TEORIA DE MAQUINAS Junio 95 Nombre... Examen de TEORIA DE MAQUINAS Junio 95 Nombre... El sistema de la figura es un modelo simplificado de un vehículo y se encuentra sometido a la acción de la gravedad. Sus características son: masa m=10 Kg,

Más detalles

Movimiento armónico simple. Movimiento armónico simple Cuestiones

Movimiento armónico simple. Movimiento armónico simple Cuestiones Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

Cursada Segundo Cuatrimestre 2012 Guía de Trabajos Prácticos Nro. 5

Cursada Segundo Cuatrimestre 2012 Guía de Trabajos Prácticos Nro. 5 Temas: Interpolación polinomial simple. Interpolación de Lagrange. Polinomio interpolador de Newton. Interpolación polinomial segmentada (Spline). Ajuste de curvas. Regresión por mínimos cuadrados. 1.

Más detalles

Tema 1: Ecuaciones diferenciales ordinarias de primer orden

Tema 1: Ecuaciones diferenciales ordinarias de primer orden PROBLEMAS DE MATEMÁTICAS Parte III: Ecuaciones diferenciales Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Ecuaciones

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Certamen 1 Fis130 (PAUTA) Física General III (FIS130) Movimiento Oscilatorio, Ondas Mecánicas y Sonido

Certamen 1 Fis130 (PAUTA) Física General III (FIS130) Movimiento Oscilatorio, Ondas Mecánicas y Sonido UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA Certamen 1 Fis130 (PAUTA) Física General III (FIS130) Movimiento Oscilatorio, Ondas Mecánicas y Sonido Pregunta 1 Considere un péndulo formada por una masa de,

Más detalles

FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1

FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1 FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1 1. En un movimiento oscilatorio, Qué se entiende por periodo? Y por frecuencia? Qué relación existe entre ambas magnitudes? 2. Una partícula

Más detalles

Qué propiedades de la molécula se pueden

Qué propiedades de la molécula se pueden En qué condiciones se pueden analizar las oscilaciones de dos cuerpos como si fuera uno solo? Qué magnitudes describen las oscilaciones de una molécula diatómica? Cuál es la diferencia principal entre

Más detalles

Acústica y vibraciones mecánicas

Acústica y vibraciones mecánicas Sistemas de un grado de libertar libre Ecuación de movimiento de un sistema masa-resorte Considerando el sistema de la figura y por la aplicación dela segunda ley de Newton o principio de conservación

Más detalles

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 7 Ecuaciones diferenciales de primer orden

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 7 Ecuaciones diferenciales de primer orden E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 7 Ecuaciones diferenciales de primer orden Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO.

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO. MOVIMIENTO VIBRATORIO. Movimiento vibratorio armónico simple 1. Explica como varía la energía mecánica de un oscilador lineal si: a) Se duplica la amplitud. b) Se duplica la frecuencia. c) Se duplica la

Más detalles

Taller No. 11: Ecuaciones Lineales de Segundo Orden El Oscilador Masa-Resorte Forzado

Taller No. 11: Ecuaciones Lineales de Segundo Orden El Oscilador Masa-Resorte Forzado Taller No. 11: Ecuaciones Lineales de Segundo Orden El Oscilador Masa-Resorte Forzado Objetivo Reforzar los temas que fundamentan el conocimiento de las ecuaciones diferenciales de segundo orden en el

Más detalles

Fundamentos de Matemáticas

Fundamentos de Matemáticas Fundamentos de Matemáticas Ecuaciones diferenciales Solución: Tarea 4 (Total: 18 puntos) II.2. Ecuaciones diferenciales de primer orden La ecuación de Ricatti es una ecuación no-lineal = P (x) + Q(x)y

Más detalles