Presentar el informe en formato IEEE para su fácil apreciación y para el cumplimiento de las normas y estándares internacionales.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Presentar el informe en formato IEEE para su fácil apreciación y para el cumplimiento de las normas y estándares internacionales."

Transcripción

1 1 EVALUACIÓN FINAL- PERIODO Procesamiento Analógico De Señales Integrantes: Elkin David Aguilar. nikinn@hotmail.com Cod: Grupo: _57 Universidad Abierta Y A distancia UNAD Resumen Se realiza un análisis que describe paso a paso los interrogantes planteados en los momentos 1, 2, 3,4 del curso Procesamiento Analógico de Señales. Como por ejemplo: las características resultantes de cada señal del sistema, las diferentes señales tales como la señal de entrada no amplificada, la señal amplificada al igual que la salida del filtro pasa banda, el diagrama de bode de bode etc, para representar gráficamente las señales utilizaremos la herramienta Matlab. Abstract An analysis that describes step by step the questions raised at times 1, 2, 3, 4 of the course Analog Signal Processing is performed. Such as: the resulting characteristics of each signal system, different signals such as the input signal unamplified, as amplified output signal bandpass filter, the Bode Bode etc, to plot the signals use the Matlab tool. Palabras Claves frecuencia angular, detector, serie de Fouler, muestreo, ruido, Bobe, transformada de Fouler, filtro, amplificador, frecuencia, preamplificador, acondicionador de la señal, detector, medidor, señal del acelerómetro, vibración, Potencia, señal transitoria, absisas. I. INTRODUCION A lo largo del curso de procesamiento y análisis de señales hemos venido estudiando y determinando los parámetros de las señales analógicas. Estas se representan mediante ondas y su frecuencia o intensidad dependen directamente de los datos que representa. El principal problema que se tiene con este tipo de señales, es el ruido que hace que la señal se altere o hasta se transforme. Dentro del trabajo se realiza un análisis del desarrollo y simulación de señales en donde se grafican con ayuda de herramientas y programas computacionales, observando sus diferentes formas a lo largo de un proceso de amplificación, detección y filtrado. I. OBJETIVOS Realizar los cálculos y las simulaciones de las señales tratadas en las fases anteriores. Sustentar el desarrollo de teórico y práctico de las temáticas tratadas en el curso. Presentar el informe en formato IEEE para su fácil apreciación y para el cumplimiento de las normas y estándares internacionales. II. DESCRIPCIÓN DE LA PROBLEMÁTICA De acuerdo a Saavedra 1 la medición y análisis de vibraciones es utilizado, en conjunto con otras técnicas, en todo tipo de industrias como técnica de diagnóstico de fallas y evaluación de la integridad de máquinas y estructuras. En el caso de los equipos rotatorios (motores) la ventaja que presenta el análisis vibratorio respecto a otras técnicas como tintas penetrantes, radiografía, ultrasonido, etc., es que la evaluación se realiza con la máquina funcionando, evitando con ello la pérdida de producción que genera una detención. Un instrumento de medida de la vibración está compuesto por las siguientes etapas: Fig. 1 - Etapas de un sistema de análisis de vibraciones. El objetivo del análisis de vibraciones es poder extraer el máximo de información relevante que ella posee. Para esto existen diferentes técnicas de análisis tanto en el dominio tiempo como en el dominio frecuencia, las cuales tienen sus propias ventajas para algunas aplicaciones en particular. Por otra parte uno de los problemas más serios en las máquinas y estructuras es el riesgo de una falla catastrófica debido a la generación de grietas en ellas. A pesar de que las máquinas y estructuras son cuidadosamente diseñadas y minuciosamente inspeccionadas, tanto antes de su puesta en servicio como periódicamente durante su vida operativa, hay antecedentes en la literatura del colapso de plantas debido a ejes y estructuras agrietadas. La Figura 2 muestra una viga simplemente apoyada, la cual tiene una grieta transversal de profundidad de un 40% del ancho 1 La medición y análisis de las vibraciones como técnica de inspección de equipos y componentes, aplicaciones, normativas y certificación. Saavedra

2 2 de ella. La figura 3 muestra el comportamiento vibratorio de esta viga agrietada cuando se le aplica una fuerza transversal senoidal f(t) con frecuencia f = 83 (Hz), y amplitud 10 Newtons. como una ligera atenuación o perdida de potencia, mientras que la gráfica del anexo 2 sufre una desviación cuando esta llega al cero tratando de recuperarse, pero después volviendo a continuar su viaje hacia el límite negativo. Cree usted que la señal a(t) representa fielmente la respuesta mecánica de una barra al someterla a una vibración senoidal externa? Explique. R/ la señal si representa la respuesta mecánica de una barra ya que la gráfica es una función senoidal periódica Fig. 2 - Viga agrietada sometida a un esfuerzo transversal El preamplificador tiene una ganancia de 10000, además, se puede decir que una expresión matemática que aproxima el comportamiento de la aceleración de la barra es: a(t) = cos(166πt) sin(249πt) sin(8300πt) + v(t) Donde v(t) se considera ruido de la medida. El acondicionador de señal permite eliminar el ruido. Considere también que el detector es un filtro pasa banda cuyo comportamiento esta expresado por la siguiente ecuación diferencial: y"(t) y (t) y(t) = x (t) Donde y(t) es la salida del filtro y x(t) es la señal de entrada. III. RESUMEN DE ACTIVIDADES Cuáles considera que son las unidades de medida de los ejes horizontal y vertical de a(t)? R/ las unidades de medida son en el eje vertical la velocidad y en el eje horizontal el tiempo Cuál estrategia debiese usar el grupo para solucionar el problema planteado? Explique R/ que todos realicemos los aportes necesarios, para poder realizar un buen debate donde salga el mejor resultado escogido por todos. Considera pertinente el problema planteado a su desarrollo como profesional de la ingeniería electrónica o de telecomunicaciones? Explique R/ lo considero realmente pertinente ya que de la identificación de las señales es de gran importancia, porque de ahí es que empezamos a conocer los problemas y las posibles soluciones de máquinas y herramientas y materiales. Analizar las señales y sistemas involucrados en el problema, el análisis está orientado por los siguientes interrogantes: Figura 1. Etapas de un sistema de análisis de vibraciones Señal a(t) forma analítica Señal a(t) forma analítica (t)? PROCESAMIENTO ANALOGICO DE SEÑALES Señal a(t): Al graficar los datos de a(t) que encuentra en el ANEXO 2, se encuentra una tendencia similar a la figura 3 de esta guía? Hay diferencias? Explique. R/ las gráficas son parecidas en la tipo de onda que refleja (senoidal), pero difiere una de la otra. La de la gráfica 3 cuando llega a su límite positivo, sufre Son periódicas: R/la señal a (t) reflejada en la gráfica 1 es periódica, ya que completa un patrón dentro de un marco medible que se repite con el pasar del tiempo. Son de Energía: Las señales periódicas, que existen para todos los valores de

3 3 t, tienen energía infinita, pero en muchos casos tienen una Potencia promedio finita, lo que las convierte en Señales de Potencia. Décimos que una señal es de Potencia si es periódica de periodo T. Por el contrario, una señal será de energía si se extingue.. Son pares, Impares: Esta función es impar ya que satisface la relación: Para todo x en el dominio de f. Desde un punto de vista geométrico, una función impar posee una simetría rotacional con respecto al origen de coordenadas, lo que quiere decir que su gráfica no se altera luego de una rotación de 180 grados alrededor del origen. Ejemplos de funciones impares son x, x3, seno(x), sinh(x), y la erf (x). Son señales comúnmente usadas: Son las señales comunes, ya que se presentan en cualquier situación, bien sea una fuerza aplicada, un voltaje ingresado, o bien también puede ser un ruido o una perturbación Son continuas o discretas: La señal es continua ya que es dependiente de valores continuos de la variable independiente t señal continua en el tiempo. Son señales comúnmente usadas: Son las señales más comúnmente usadas en aparatos de medida asociados al estudio de la medicina, la química, la física entre otras. (t)? Señal f (t): Son periódicas: R/ la señal f (t) es periódica, ya que completa un patrón dentro de un marco medible que se repite con el pasar del tiempo y es más homogéneo que la gráfica anterior Son de Energía: Las señales periódicas, que existen para todos los valores de t, tienen energía infinita, pero en muchos casos tienen una Potencia promedio finita, lo que las convierte en Señales de Potencia. Decimos que una señal es de Potencia si es periódica de periodo T. Por el contrario, una señal será de energía si se extingue. Son pares, Impares: Esta función es impar ya que satisface la relación: Para todo x en el dominio de f. Desde un punto de vista geométrico, una función impar posee una simetría rotacional con respecto al origen de coordenadas, lo que quiere decir que su gráfica no se altera luego de una rotación de 180 grados alrededor del origen. Ejemplos de funciones impares son x, x3, seno(x), sinh(x), y la erf (x). Son continuas o discretas: La señal es continua ya que es dependiente de valores continuos de la variable independiente t señal continua en el tiempo. Son de Energía: Las señales periódicas, que existen para todos los valores de t, tienen energía infinita, pero en muchos casos tienen una Potencia promedio finita, lo que las convierte en Señales de potencia. Decimos que una señal es de Potencia si es periódica de periodo T. Por el contrario, una señal será de energía si se extingue. Son pares, Impares: Esta función es impar ya que satisface la relación: Para todo x en el dominio de f. Desde un punto de vista geométrico, una función impar posee una simetría rotacional con respecto al origen de coordenadas, lo que quiere decir que su gráfica no se altera luego de una rotación de 180 grados alrededor del origen. Ejemplos de funciones impares son x, x3, seno(x), sinh(x), y la erf (x). Son continuas o discretas:

4 4 analizar cuál será su respuesta a salida: a 3(t) = 5 cos(166πt) sin(249πt) sin(8300πt) A cada término se le encuentra la respuesta en estado permanente. Para cada uno: x1(t)=5 Cos(166πt) x2(t)= 2. 5 Sin(249πt) - Análisis para obtener la respuesta al impulso del detector: En primer lugar se debe partir de la ecuación diferencial que representa el comportamiento del detector: x3(t)= 0. 5 Sin(8300πt) y"(t) y (t) y(t) = 70000x (t) x(t) Se realiza la transformada de Fourier para hallar la función de transferencia del detector: Y(w)((jw) 2 + jw ) = X(w)(jw ) Y(w) X(w) = (jw ) ((jw) 2 + jw ) = H(w) H(w) = (jw ) ((jw) 2 + jw ) Ahora debemos definir la señal de entrada al detector para Ahora de cada término tomamos la frecuencia para analizar la respuesta que tendrá el detector: De: x 1 (t)=5 Cos(166πt) ω=166π

5 5 Con lo que se obtiene: H 1 (w) = H 1 (w) = j70000(166π) ((jw) 2 + jw ) j70000(166π) (( 1)(166π) 2 + j(166π) ) H 3 (w) = j H 3 (w) = , θ = 9, 62 Ahora con los valores obtenidos se saca la suma: H 1 (w) + H 2 (w) + H 3 (w) = i H 1 (w) = j ,63 ( ,81) + j , ) H(w) = 1. 19, θ = 12, 4, RESPUESTA CON LA TRANSFORMADA DE LAPLACE ANALISIS H 1 (w) = j ,63 ( ,19 + j ,11) H 1 (w) = j H 1 (w) = , θ = 25, 62 De: x 2(t)= 2. 5 Cos(249πt) ω=249π Con lo que se obtiene: H 2 (w) = j70000(249π) (( 1)(249π) 2 + j(249π) ) H 2 (w) j , = (( ,34) + j , ) H 2 (w) = j ,95 ( j ,67) H 2 (w) = j H 2 (w) = , θ = De: x 3(t)= 0. 5 Cos(8300πt) ω=8300π Con lo que se obtiene: H 3 (w) j70000(8300π) = (( 1)(8300π) 2 + j(8300π) ) - En primer lugar se reemplazan los números por letras para simplificar las operaciones: y"(t) + a y (t) + b y(t) = c x (t) + d x(t) Donde, a = b = c = d = Si aplicamos Laplace podríamos obtener la función de transferencia del detector: s 2 Y(s) + a s Y(s) + b Y(s) = c s X(s) + d X(s) Ahora factorizamos: Y(s)(s 2 + a s + b) = X(s)(c s + d) Ahora despejamos Y(s)/X(s) que es el equivalente a la función de transferencia: Y(s) X(s) = (c s + d) (s 2 + a s + b) Si devolvemos los valores de las letras: Y(s) X(s) = ( s ) (s s ) Finalmente tenemos la función de transferencia del detector: Y(s) X(s) = (s ) (s s ) H 3 (w) j ,73 = ( j ) Espectro de las señales Para esto se usó el simulador Simulink de MATLAB. H 3 (w) = j ( j ) Espectro de f (t)

6 6 F (t)=10sin (166πt) NOTA: Esta es una señal que solo aparece en el inicio; cuando (t = 0), luego va a desaparecer, fijémonos cuando se calculó la ecuación y (t), esta señal depende del tiempo y cae cuando (t 0). La única señal de salida que nos interesa es la de estado permanente y es la que se representará a continuación. Espectro de la señal de salida en estado permanente y ep. y ep (t) = 379, Sin(166πt + 25,65 0 ) 213, Cos(249πt + 35,2 0 ) 519, Sin(8300πt + 9,26 0 ) Espectro de a (t) a(t) = cos(166πt) sin(249πt) sin(8300πt) + v(t) En estado permanente, la de mayor amplitud, es la que pasa por el filtro detector. Se demostró con el diagrama de bode (filtro). Serie de Fourier señal a (t) a(t) = 0,0005 cos(166πt) + 0,00025 sin(249πt) + 0,00005 sin(8300πt) + v(t) a(t) = a 0 + [a k Cos(2πkf 0 t) + b k Sin(2πkf 0 t)] k=1 Para hallar los coeficientes de la serie se usará las siguientes fórmulas: Espectro de y (t) y(t) = ( 20 7 e 26000t cos(166πt) + 2,5 sin(249πt) + 0,5 sin(8300πt) 7 e 40000t ) ( ) 70000x El resultado obtenido fue: Potencia promedio Potencia promedio Y (t) P = 1 T t 0 x(t) 2 dt ó P = t f x(t) 2 dt 0 La señal de salida es la salida en estado permanente: y ep3 (t) = 519, Sin(8300πt + 9,26 0 ) Reemplazando en la fórmula

7 7 t P = , Sin(8300πt + 9,26 0 ) 2 0 P = 2, Sin(2, , 4t) + 0, 135t + 823, dt Potencia promedio f (t). La señal f (t) es: f(t) = 10Sin(166πt) Reemplazando en la fórmula f(t) = 10Sin(166πt) 12, 5Sin(332πt) P = 4150 π Con ayuda del software MATLAB podemos hallar el diagrama de bode de la función de transferencia del detector: El filtro de Butterworth es uno de los filtros electrónicos más básicos, diseñado para producir la respuesta más plana que sea posible hasta la frecuencia de corte. En otras palabras, la salida se mantiene constante casi hasta la frecuencia de corte, luego disminuye a razón de 20n db por década (ó ~6n db por octava), donde n es el número de polos del filtro. - Señal entrante Al analizar el diagrama de bode encontramos que la señal con una frecuencia de 0 radianes por segundo cuenta con una magnitud negativa de -62 dbs manteniéndose estable durante la primera década y 3 partes de la segunda década, luego a los 100 radianes por segundo la señal tiene una ganancia o amplificación de 18 dbs constantes cada década hasta la frecuencia de radianes x segundo y después empieza a ser atenuada a la misma razón de cambio de década. En cuanto a la fase se puede evidenciar que la señal de salida es una señal sinusoidal que arranca desde 0 a una frecuencia de 0 radianes y va aumentado con la frecuencia hasta llegar al pico máximo a los 90 grados y después se atenúa hasta llegar a cero y de ahí hasta 90 grados. La grafica de la función de transferencia - Señal amplificada (*10.000) - Señal de entrada (SIMULINK).

8 8 Grafico de a(t) usando el software Matlab teniendo en cuenta los datos suministrados en la guia de actividdes de tiempo y magnitud: Grafico de la señal a(t) sin ruido usando software Matlab Figura 1 Señal No Amplificada Señal a(t) luego del preamplificador (ganancia 10000) - Señal amplificada * (SIMULINK). Figura 2 Señal amplificada Señal a(t) luego del preamplificador (ganancia 10000) Cuando a(t)3 = x(t) salida del acondicionador Señal de entrada (arriba) señal realimentada (abajo) (SIMULINK). Grafica 3 Ahora procederemos a analizar y graficar cuando a(t) es la señal del Anexo 2 (datos exactos). Entrada color azul y salida color rojo de la señal

9 9 Al graficar el comportamiento de la señal al pasar por el filtro observamos que atenua la señal mas lenta pero sin eliminar mucho el ruido. Grafica 4 Diagram de bode de la señal Resultados simulink Grafica 5 Diagrama de scope Grafica 6 Salida de la señal Implementación en simulink Entrada de la señal analisis = xlsread('datos.xlsx','hoja1') tiempo=xlsread('datos.xlsx','hoja1','a2:a 201'); magnitud=xlsread('datos.xlsx','hoja1','b2 :b201'); xlabel('tiempo') ylabel('magnitud') plot(tiempo,magnitud) grid on Gráfica completa simulink Ahora realizaremos el comportamiento del filtro pasabanda en Simulink mostraremos el proceso de como se realiso la simulacion y el resultado. procedimos a ingresar la ecuacion de transferencia del filtro Código de la simulación del la señal clear all close all

10 10 clc datos=xlsread('datos.xlsx'); t=datos(:,1); x=datos(:,2); plot(t,x); %circuito preamplificador atenuacion de 1/10000 k=x*10000; xa=k; plot(t,xa); xdata.time=t; xdata.signals.values=xa; sim('simulinkmomento5') plot(y.time,y.signals.values),'r';'linewidth';3; hold on plot(t,xa); %filtro pasabajas, Wc=20pi s=tf('s'); filtro=(70000*s )/(s^ *s ) xlabel('tiempo') ylabel('magnitud') bode(filtro),grid on; analisis = xlsread('datos.xlsx','hoja1') tiempo=xlsread('datos.xlsx','hoja1','a2:a201'); magnitud=xlsread('datos.xlsx','hoja1','b2:b201'); xlabel('tiempo') ylabel('magnitud') plot(tiempo,magnitud) grid on se efectuaron las respectivas comparaciones entre los resultados, comprobando que hay un pequeño margen de error. Se determinó mediante graficas las salidas de las señales ; original, amplificada, detectada y filtrada Se usó una de las herramientas más importante en el análisis y procesamiento de señales como el caso de MATLAB que nos permite conocer las variaciones de una señal basado en su modelo matemático, por complejas que parezcan las señales, estas se pueden reducir a modelos matemáticos para su mayor comprensión y manipulación. Se evidenciaron las diferencias y las respuestas de la señal después de ser, amplificada, detectada y filtrada Se evidencio de acuerdo a la gráfica la función del filtro, de solo dejar pasar las frecuencias más bajas y filtra las más altas. V. REFERENCIAS BIBLIOGRÁFICAS [1] Saavedra (2001) La medición y análisis de las vibraciones como técnica de inspección de equipos y componentes, aplicaciones, normativas y certificación. [2] Vargas V., M. (2014). Tutorial de Análisis y Control de Sistemas Usando MATLAB. Recuperado el 23 de Octubre de 2014, de 53/mi_blog/r/Matlab_Tutorial_Control.pdf IV. CONCLUSIONES En el desarrollo del presente proyecto, se logro apreciar y constatar los resultados obtenidos durante las fases anteriores, para que posteriormente sean analizadas y comparadas con el grupo colaborativo. Gracias a la ayuda del simulador MATLAB, se logro realizar las respectivas comparaciones de las señales del sistema, efectuando pruebas a la entrada, el amplificador y la salida. Es de resaltar la importancia del programa SIMULINK; ya que producto de estas simulaciones,

transmisión de señales

transmisión de señales Introducción al análisis y transmisión de señales La transmisión de información La información se puede transmitir por medio físico al variar alguna de sus propiedad, como el voltaje o la corriente. Este

Más detalles

Parámetros de Sistemas de Comunicaciones Banda Base

Parámetros de Sistemas de Comunicaciones Banda Base Parámetros de Sistemas de Comunicaciones Banda Base Objetivo El alumno identificará los principales parámetros empleados para evaluar el desempeño de un sistema de comunicaciones banda base. Estos parámetros

Más detalles

Muestreo y Procesamiento Digital

Muestreo y Procesamiento Digital Muestreo y Procesamiento Digital Práctico 5 Muestreo de señales de tiempo continuo Cada ejercicio comienza con un símbolo el cual indica su dificultad de acuerdo a la siguiente escala: básico, medio, avanzado,

Más detalles

EE DSP3. Ejemplo visual de una señal electrica:

EE DSP3. Ejemplo visual de una señal electrica: EE1130-08-DSP3 En la clase anterior vimos que de un circuito eléctrico podemos sacar la Ecuación Diferencial que gobierna ese circuito. Se puede implementar con diagramas de bloque y la respuesta es la

Más detalles

Tema: Uso del analizador espectral.

Tema: Uso del analizador espectral. Sistemas de Comunicación I. Guía 1 1 I Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación Tema: Uso del analizador espectral. Objetivos Conocer el funcionamiento de un Analizador

Más detalles

2.3 Filtros. 2 Electrónica Analógica TEMA II. Electrónica Analógica. Transformada de Laplace. Transformada de Laplace. Transformada inversa

2.3 Filtros. 2 Electrónica Analógica TEMA II. Electrónica Analógica. Transformada de Laplace. Transformada de Laplace. Transformada inversa TEMA II Electrónica Analógica 2.3 Filtros -Transformada de Laplace. -Teoremas valor inicial y valor final. -Resistencia, condensador, inductor. -Función de transferencia -Diagramas de Bode -Filtros pasivos.

Más detalles

Respuesta en frecuencia. Elizabeth Villota

Respuesta en frecuencia. Elizabeth Villota Elizabeth Villota 1 Desempeño en el dominio de la frecuencia SLIT 2do orden (masa-resorte-amortiguador) Forma espacio de estados Forma función de transferencia respuesta a un escalón diagramas de Bode

Más detalles

Pontificia Universidad Católica Argentina

Pontificia Universidad Católica Argentina CARRERA: Ingeniería Electrónica Pontificia Universidad Católica Argentina PROGRAMA DE SEÑALES Y SISTEMAS 330 PLAN DE ESTUDIOS 2006 - AÑO 2010 UBICACIÓN EN EL PLAN DE ESTUDIOS: 3 Año 1 Cuatrimestre CARGA

Más detalles

UNIDAD 1: SEÑALES Y SISTEMAS CONTINUOS - TEORÍA

UNIDAD 1: SEÑALES Y SISTEMAS CONTINUOS - TEORÍA CURSO: SEÑALES Y SISTEMAS UNIDAD 1: SEÑALES Y SISTEMAS CONTINUOS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA P. 1. DEFINICIONES SEÑAL: Matemáticamente es una variable que contiene información y representa

Más detalles

III. Vibración con excitación armónica

III. Vibración con excitación armónica Objetivos: 1. Definir que es vibración con excitación.. Analizar la respuesta de un sistema no amortiguado con excitación. 3. Analizar la respuesta de un sistema amortiguado con excitación. 4. Analizar

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos EL42A - Circuitos Electrónicos Clase No. 20: Respuesta en Frecuencia de Circuitos Amplificadores (1) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 20 de

Más detalles

Guia de Problemas N o 2. Filtros Analógicos

Guia de Problemas N o 2. Filtros Analógicos SAPS: Sistemas de Adquisición y Procesamiento de Señales Departamento Académico de Electrónica Carrera: Bioingeniería 2 do Cuatrimestre 2014 Guia de Problemas N o 2 Filtros Analógicos Tipos de problemas:

Más detalles

CIRCUITOS II. Presentación del Curso

CIRCUITOS II. Presentación del Curso CIRCUITOS II Presentación del Curso Introducción Repaso de semestres anteriores: Fuentes que varían con el tiempo V(t) Fuente senoidal Circuitos con interruptores El curso es base para asignaturas en las

Más detalles

-CEEIBS Clase 3 Principios básicos de electrónica

-CEEIBS Clase 3 Principios básicos de electrónica Curso de Electricidad, Electrónica e Instrumentación Biomédica con Seguridad -CEEIBS- 2017 Clase 3 Principios básicos de electrónica Franco Simini, Martını Arregui, Nicolás Alfaro. Núcleo de ingenierıaı

Más detalles

CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR

CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR SEMANA 10 CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR TRANSFORMADA DE LA PLACE I. OBJETIVO Solucionar ecuaciones diferenciales mediante la transformada de la place. III. BIBLIOGRAFIA W.

Más detalles

TECNICAS DE DISEÑO Y COMPENSACION

TECNICAS DE DISEÑO Y COMPENSACION TECNICAS DE DISEÑO Y COMPENSACION Técnicas para sistemas SISO invariantes en el tiempo Basadas en el lugar de las raices y respuesta en frecuencia Especificaciones de funcionamiento Exactitud o precisión

Más detalles

REPRESENTACION DE SEÑALES Y SISTEMAS

REPRESENTACION DE SEÑALES Y SISTEMAS REPRESENTACION DE SEÑALES Y SISTEMAS TRANSFORMADA DE FOURIER La serie de Fourier nos permite obtener una representación en el dominio de la frecuencia de funciones periódicas f(t). La transformada de Fourier

Más detalles

INFORMÁTICA MATLAB GUÍA 5 Simulink

INFORMÁTICA MATLAB GUÍA 5 Simulink 1. INTRODUCCIÓN Es un entorno de diagramas de bloques orientados a la simulación y generación de código en varios campos de la ciencia. Se pueden simular sistemas de tipo mecánico, eléctrico, electrónico

Más detalles

TEMA 2: MODULACIONES LINEALES

TEMA 2: MODULACIONES LINEALES TEMA 2: MODULACIONES LINEALES PROBLEMA 1 La señal x(, cuyo espectro se muestra en la figura 2.1(a), se pasa a través del sistema de la figura 2.1(b) compuesto por dos moduladores y dos filtros paso alto.

Más detalles

TEMA 1. Principios de Teoría de la Señal

TEMA 1. Principios de Teoría de la Señal Tecnología de Comunicaciones Inalámbrica (TCI) 2012-2013 TEMA 1. Principios de Teoría de la Señal Juan Carlos Crespo crespozj@dtf.fi.upm.es 1 INTRODUCCIÓN En este capítulo estudiaremos la naturaleza de

Más detalles

01/07/2009. Ecuaciones dinámicas del motor. Fig. 1 circuito equivalente del motor de CD con excitación independiente.

01/07/2009. Ecuaciones dinámicas del motor. Fig. 1 circuito equivalente del motor de CD con excitación independiente. Control de Máquinas Eléctricas Primavera 2009 1. Análisis vectorial de sistema trifásicos 1. Campo magnético 2. Devanado trifásico 3. Vector espacial de un sistema de corrientes 4. Representación gráfica

Más detalles

Analista de Vibraciones Categoría 2 Monitoreo de Estado y Diagnóstico de Equipos

Analista de Vibraciones Categoría 2 Monitoreo de Estado y Diagnóstico de Equipos Analista de Vibraciones Categoría 2 Monitoreo de Estado y Diagnóstico de Equipos 5º Edición Analista de Vibraciones Categoría 2 Monitoreo de Estado y Diagnóstico de Equipos Por Centro de Capacitación e

Más detalles

EJERCICIOS ANALITICOS. a a f ( ) R τ de x ( t ) y x ( t ) mostrados en la Figura. Figura 2. Densidad Espectral de Energía de g(t) - ( t)

EJERCICIOS ANALITICOS. a a f ( ) R τ de x ( t ) y x ( t ) mostrados en la Figura. Figura 2. Densidad Espectral de Energía de g(t) - ( t) PONTIFICIA UNIVERSIDAD JAVERIANA- FACULTAD DE INGENIERÍA. DEPARTAMENTO DE ELECTRÓNICA. - SECCIÓN DE COMUNICACIONES. FUNDAMENTOS DE COMUNICACIONES. TALLER NO. 1 TRANSFORMADA DE FOURIER APLICADA A TELE COMUNICACIONES

Más detalles

El sistema a identificar es el conjunto motor eléctrico-freno siguiente:

El sistema a identificar es el conjunto motor eléctrico-freno siguiente: Sistema a identificar El sistema a identificar es el conjunto motor eléctrico-freno siguiente: Relación entrada-salida Las variables de entrada-salida a considerar para la identificación del sistema es

Más detalles

MIGUEL ANGEL MENDOZA MENDOZA LINEAS DE TRANSMISIÓN

MIGUEL ANGEL MENDOZA MENDOZA LINEAS DE TRANSMISIÓN MIGUEL ANGEL MENDOZA MENDOZA LINEAS DE TRANSMISIÓN PARTE I ANÁLISIS DE LINEAS DE TRANSMISIÓN. ANÁLISIS DE LINEAS DE TRANSMISIÓN. A altas frecuencias, la longitud de onda es mucho más pequeña que el tamaño

Más detalles

PRACTICA 2 VIBRACIONES FORZADAS. 1. Familiarizar al estudiante con los equipos y formas de medición de vibraciones utilizando acelerómetros.

PRACTICA 2 VIBRACIONES FORZADAS. 1. Familiarizar al estudiante con los equipos y formas de medición de vibraciones utilizando acelerómetros. Labor ator io Dinámica de Máquinas UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DINÁMICA DE MÁQUINAS 2.1. Objetivos PRACTICA 2 VIBRACIONES FORZADAS 1. Familiarizar al estudiante

Más detalles

FILTROS ACTIVOS FILTROS ACTIVOS

FILTROS ACTIVOS FILTROS ACTIVOS Basados en AO. FILTROS ACTIVOS VENTAJAS: La señal de entrada no se ve atenuada => ganancia. Flexibilidad en el ajuste de ganancia y frecuencia. Habilidad de multiplicar funciones de transferencia en cascada

Más detalles

Introducción a la Física Experimental. Experimento guiado. Abril M. López Quelle

Introducción a la Física Experimental. Experimento guiado. Abril M. López Quelle Introducción a la Física Experimental. Experimento guiado. Abril 2009. M. López Quelle Circuito RC en corriente alterna. Comportamiento de un filtro RC. 1.- Breve introducción teóricateoría previa Utilizamos

Más detalles

Seminario de Procesamiento Digital de Señales

Seminario de Procesamiento Digital de Señales Seminario de Procesamiento Digital de Señales Unidad 5: Diseño de Filtros Digitales - Parte I Marcelo A. Pérez Departamento Electrónica Universidad Técnica Federico Santa María Contenidos 1 Conceptos Básicos

Más detalles

Ondas. Vasili Kandinsky: Puntos, oleo, 110 x 91,8 cm, 1920

Ondas. Vasili Kandinsky: Puntos, oleo, 110 x 91,8 cm, 1920 Ondas Vasili Kandinsky: Puntos, oleo, 110 x 91,8 cm, 1920 Este documento contiene material multimedia. Requiere Adobe Reader 7.1 o superior para poder ejecutarlo. Las animaciones fueron realizadas por

Más detalles

ANALISIS DE SISTEMAS DINÁMICOS

ANALISIS DE SISTEMAS DINÁMICOS UACM SAN LORENZO TEZONCO 2014 ANALISIS DE SISTEMAS DINÁMICOS JOSE ALFREDO MARTINEZ PEREZ ANALISIS DE UN SISTEMA DINAMICO DE TERCER ORDEN 17-12-2014 ANALISIS DE UN SISTEMA DINAMICO DE TERCER ORDEN Introducción

Más detalles

Contenido. Circuitos Eléctricos - Dorf. Alfaomega

Contenido. Circuitos Eléctricos - Dorf. Alfaomega CAPÍTULO 1 Variables de circuitos eléctricos... 1 1.1 Introducción... 1 1.2 Circuitos eléctricos y corriente... 1 1.3 Sistemas de unidades... 5 1.4 Voltaje... 7 1.5 Potencia y energía... 7 1.6 Análisis

Más detalles

3. ANÁLISIS DE SEÑALES

3. ANÁLISIS DE SEÑALES 3. ANÁLISIS DE SEÑALES 3.1 REGISTRO Y TRATAMIENTO DE SEÑALES Una señal se define como la historia de los valores de aceleración que mide un acelerómetro en determinado tiempo para un punto específico.

Más detalles

Prefacio. 1 Sistemas de control

Prefacio. 1 Sistemas de control INGENIERIA DE CONTROL por BOLTON Editorial Marcombo Prefacio 1 Sistemas de control Sistemas Modelos Sistemas en lazo abierto y cerrado Elementos básicos de un sistema en lazo abierto Elementos básicos

Más detalles

Preguntas IE TEC. Total de Puntos: 80 Puntos obtenidos: Porcentaje: Nota:

Preguntas IE TEC. Total de Puntos: 80 Puntos obtenidos: Porcentaje: Nota: IE TEC Nombre: Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL-470 Modelos de Sistemas Profesor: Dr. Pablo Alvarado Moya II Semestre, 005 Examen Final Total de Puntos: 80 Puntos

Más detalles

Señales y Sistemas. Conceptos Introductorios Fundamentales. Profesora: Olga González

Señales y Sistemas. Conceptos Introductorios Fundamentales. Profesora: Olga González Señales y Sistemas Conceptos Introductorios Fundamentales Profesora: Olga González Señal Las señales son magnitudes físicas o variables detectables mediante las que se pueden transmitir mensajes o información.

Más detalles

2º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS

2º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS PRÁCTICA 7 SISTEMAS. UTILIDADES MATLAB. TRANSFORMADAS Y ANTITRANSFORMADAS Matlab permite obtener transformadas y antitransformadas de Fourier, Laplace

Más detalles

INDICE Capitulo 1. Variables y Leyes de Circuitos 1.1. Corriente, Voltaje y Potencia 1.2. Fuentes y Cargas (1.1) 1.3. Ley de Ohm y Resistores (1.

INDICE Capitulo 1. Variables y Leyes de Circuitos 1.1. Corriente, Voltaje y Potencia 1.2. Fuentes y Cargas (1.1) 1.3. Ley de Ohm y Resistores (1. INDICE Capitulo 1. Variables y Leyes de Circuitos 1 1.1. Corriente, Voltaje y Potencia 3 Carga y corriente * Energía y voltaje * Potencia eléctrica * Prefijos de magnitud 1.2. Fuentes y Cargas (1.1) 11

Más detalles

Retardo de transporte

Retardo de transporte Retardo de transporte Escalón Escalón con retardo de transporte T Retardo de Transporte. Ejemplo de un Tiristor Tiempo Muerto Ángulo de Disparo (desde controlador) Pulso de disparo Nuevo Pulso de disparo

Más detalles

Matemática Computacional

Matemática Computacional Matemática Computacional Filtrado en el dominio de la Frecuencia MATEMÁTICA COMPUTACIONAL - MA475 1 Logro El alumno, al término de la sesión, será capaz de entender el filtrado en el dominio de la frecuencia

Más detalles

Transformada de Laplace: Aplicación a vibraciones mecánicas

Transformada de Laplace: Aplicación a vibraciones mecánicas Transformada de Laplace: Aplicación a vibraciones mecánicas Santiago Gómez Jorge Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina thegrimreaper7@gmail.com

Más detalles

Fecha de Elaboración Fecha de Revisión. Circuitos III HTD HTC HTA Asignatura. Básica de Ingeniería

Fecha de Elaboración Fecha de Revisión. Circuitos III HTD HTC HTA Asignatura. Básica de Ingeniería UNIVERSIDAD DISTRITAL Francisco José de Caldas Facultad de Ingeniería Ingeniería Eléctrica Elaboró Revisó Diana S. García M. con el Material de la Coordinación [Escriba aquí el nombre] Fecha de Elaboración

Más detalles

PROBLEMAS TEMA 2 TEORÍA DE LA APROXIMACIÓN

PROBLEMAS TEMA 2 TEORÍA DE LA APROXIMACIÓN PROBLEMAS TEMA TEORÍA DE LA APROXIMACIÓN PROBLEMA : Determinar la función de transferencia de un filtro paso bajo máximamente plano que cumplan las especificaciones de la figura: a) Determinar el orden

Más detalles

SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE

SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE INSTITUTO TECNOLÓGICO DE MATAMOROS SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE PROYECTO SEMESTRAL MATERIA HORARIO ASESOR EQUIPO 2 Análisis de vibraciones Lunes a Viernes, 17:00-18:00hrs.

Más detalles

Prof. María L. Calvo Clase del 23 y 24 de abril de 2012

Prof. María L. Calvo Clase del 23 y 24 de abril de 2012 Teoría de la señal: Fundamentos de señales óptica Prof. María L. Calvo Clase del 23 y 24 de abril de 2012 Definición Qué entendemos por Tratamiento de señales? Operaciones lógicas: suma, resta, multiplicación,

Más detalles

II Unidad Diagramas en bloque de transmisores /receptores

II Unidad Diagramas en bloque de transmisores /receptores 1 Diagramas en bloque de transmisores /receptores 10-04-2015 2 Amplitud modulada AM Frecuencia modulada FM Diagramas en bloque de transmisores /receptores Amplitud modulada AM En la modulación de amplitud

Más detalles

Trabajo Práctico Nº 3. Filtrado Analógico

Trabajo Práctico Nº 3. Filtrado Analógico Trabajo Práctico Nº 3 Filtrado Analógico Objetivos: Mediante la realización de este trabajo práctico se pretende que el alumno logre: o Ejercitar los conceptos, métodos y estrategias relacionados a la

Más detalles

CORRIENTE ALTERNA CORRIENTE ALTERNA

CORRIENTE ALTERNA CORRIENTE ALTERNA CORRIENTE ALTERNA La corriente alterna es generada por un alternador, las fuerzas mecánicas hacen girar una rueda polar y se obtienen tensiones inducidas en los conductores fijos del estator que la envían

Más detalles

ONDAS. Modelo Pregunta 2B.- La función matemática que representa una onda transversal que avanza

ONDAS. Modelo Pregunta 2B.- La función matemática que representa una onda transversal que avanza ONDAS Junio 2013. Pregunta 1A.- Una onda transversal, que se propaga en el sentido positivo del eje X, tiene una velocidad de propagación de 600 m s 1 y una frecuencia de 500 Hz. a) La mínima separación

Más detalles

Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte

Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte christianq@uninorte.edu.co Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte Respuestaenfrecuencia: Hacereferenciaalarespuestadeunsistemaen estadoestacionario td t i a una entradasinusoidal.

Más detalles

Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control

Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control Elizabeth Villota Curso: Ingeniería de Control (MT221) Facultad de Ingeniería Mecánica UNI-FIM 1 Modelado Modelo: representación

Más detalles

3. Modelos, señales y sistemas. Panorama Obtención experimental de modelos Respuesta en frecuencia Diagramas de Bode

3. Modelos, señales y sistemas. Panorama Obtención experimental de modelos Respuesta en frecuencia Diagramas de Bode 3. Modelos, señales y sistemas Panorama Obtención experimental de modelos Respuesta en frecuencia Diagramas de Bode CAUT1 Clase 4 1 Obtención experimental de modelos Muchos sistemas en la práctica pueden

Más detalles

Trabajo opcional tema 4: modulación

Trabajo opcional tema 4: modulación Trabajo opcional tema 4: modulación Alberto Mateos Checa I. Telecomunicación 2 Trabajo opcional tema 4: modulación angular ÍNDICE DE CONTENIDOS: 1. Introducción.... 3 2. Diseño.... 3 2.1. Sistema completo....

Más detalles

INDICE Capítulo 1. Variables del Circuito Eléctrico Capítulo 2. Elementos de Circuitos Capítulo 3. Circuitos Resistivos

INDICE Capítulo 1. Variables del Circuito Eléctrico Capítulo 2. Elementos de Circuitos Capítulo 3. Circuitos Resistivos INDICE Capítulo 1. Variables del Circuito Eléctrico 1 Introducción 1 1.1. Reto de diseño: Controlador de una válvula para tobera 2 1.2. Albores de la ciencia eléctrica 2 1.3. Circuitos eléctricos y flujo

Más detalles

EJERCICIOS DE SELECTIVIDAD ONDAS

EJERCICIOS DE SELECTIVIDAD ONDAS EJERCICIOS DE SELECTIVIDAD ONDAS 1. La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (16 t - 10 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud,

Más detalles

F. de C. E. F. y N. de la U.N.C. Teoría de las Comunicaciones Departamento de Electrónica GUIA Nº 4

F. de C. E. F. y N. de la U.N.C. Teoría de las Comunicaciones Departamento de Electrónica GUIA Nº 4 4.1- Realice el desarrollo analítico de la modulación en frecuencia con f(t) periódica. 4.2- Explique el sentido el índice de modulación en frecuencia y su diferencia con la velocidad de modulación. 4.3-

Más detalles

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca.

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Página 1 de 7 TENSION ALTERNA En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Puede definirse un voltaje alterno como el que varía

Más detalles

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción Señales y Clasificación de Señales Señales Periódicas y No Periódicas 6

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción Señales y Clasificación de Señales Señales Periódicas y No Periódicas 6 CAPÍTULO UNO SEÑALES Y SISTEMAS 1.1 Introducción 1 1.2 Señales y Clasificación de Señales 2 1.3 Señales Periódicas y No Periódicas 6 1.4 Señales de Potencia y de Energía 8 1.5 Transformaciones de la Variable

Más detalles

de diseño CAPÍTULO 4. Métodos de análisis de los circuitos resistivos 4.1. Reto de diseño: Indicación del ángulo de un potenciómetro 4.2. Circuitos el

de diseño CAPÍTULO 4. Métodos de análisis de los circuitos resistivos 4.1. Reto de diseño: Indicación del ángulo de un potenciómetro 4.2. Circuitos el CAPÍTULO 1. VARIABLES DEL CIRCUITO ELÉCTRICO 1.1. Reto de diseño: Controlador de una válvula para tobera 1.2. Albores de la ciencia eléctrica 1.3. Circuitos eléctricos y flujo de corriente 1.4. Sistemas

Más detalles

DISEÑO E IMPLEMENTACION DE UN FILTRO PASA BANDA. Realizado por Luis Salcedo, Andrés Basto, Rubén martín, Andrés Urrea

DISEÑO E IMPLEMENTACION DE UN FILTRO PASA BANDA. Realizado por Luis Salcedo, Andrés Basto, Rubén martín, Andrés Urrea DISEÑO E IMPLEMENTACION DE UN FILTRO PASA BANDA Realizado por Luis Salcedo, Andrés Basto, Rubén martín, Andrés Urrea PLANTEAMIENTO DEL PROBLEMA Se nos pide modificar una señal de audio, la mejor manera

Más detalles

SYLLABUS EE-112 ANÁLISIS DE CIRCUITOS ELÉCTRICOS II

SYLLABUS EE-112 ANÁLISIS DE CIRCUITOS ELÉCTRICOS II UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA (Aprobado en Consejo de Facultad en Sesión Extraordinaria Nº 14-00 del 07/08/2001)

Más detalles

HORARIO DE CLASES SEGUNDO SEMESTRE

HORARIO DE CLASES SEGUNDO SEMESTRE HORARIO DE CLASES LUNES MIERCOLES 17 a 18:15 hs 17 a 18:15 hs Ln 14/08/17: CRONOGRAMA DE CLASES y PARCIALES CONTROL I -AÑO 2017- SEGUNDO SEMESTRE Introducción a los sistemas de Control. Definiciones de

Más detalles

INGENIERIA CIVIL MECÁNICA GUIA DE LABORATORIO ASIGNATURA TÓPICOS III SÓLIDOS - VIBRACIONES NIVEL 12 EXPERIENCIA C240

INGENIERIA CIVIL MECÁNICA GUIA DE LABORATORIO ASIGNATURA TÓPICOS III SÓLIDOS - VIBRACIONES NIVEL 12 EXPERIENCIA C240 UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica INGENIERIA CIVIL MECÁNICA GUIA DE LABORATORIO ASIGNATURA 15035-0 TÓPICOS III SÓLIDOS - VIBRACIONES NIVEL 12 EXPERIENCIA

Más detalles

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 3 EL OSCILOSCOPIO DIGITAL

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 3 EL OSCILOSCOPIO DIGITAL EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 3 EL OSCILOSCOPIO DIGITAL DIAGRAMA DE BLOQUES DE UN OSCILOSCOPIO ANALÓGICO PRESENTACIÓN DE LAS FIGURAS EN LA PANTALLA DE UN OSCILOSCOPIO ANALÓGICO

Más detalles

MEDICION DEL ESPECTRO DE UNA SEÑAL

MEDICION DEL ESPECTRO DE UNA SEÑAL FACULAD NACIONAL DE INGENIERIA INGENIERIA ELECRICA-ELECRONICA LABORAORIO DE ELECOMUNICACIONES MAERIA: ELECOMUNICACIONES I (EL 363) LABORAORIO 1 1. INRODUCCION MEDICION DEL ESPECRO DE UNA SEÑAL Una señal

Más detalles

Trabajo opcional tema 3: modulación lineal

Trabajo opcional tema 3: modulación lineal Trabajo opcional tema 3: modulación lineal Alberto Mateos Checa I. Telecomunicación 2 Trabajo opcional tema 3: modulación lineal ÍNDICE DE CONTENIDOS: 1. Introducción.... 3 2. Diseño.... 3 2.1. Sistema

Más detalles

EL4005 Principios de Comunicaciones Clase No.15: Ruido Blanco y Procesos Gaussianos

EL4005 Principios de Comunicaciones Clase No.15: Ruido Blanco y Procesos Gaussianos EL4005 Principios de Comunicaciones Clase No.15: Ruido Blanco y Procesos Gaussianos Patricio Parada Departamento de Ingeniería Eléctrica Universidad de Chile 6 de Octubre de 2010 1 of 21 Contenidos de

Más detalles

Marco Antonio Andrade Barrera 1 Diciembre de 2015

Marco Antonio Andrade Barrera 1 Diciembre de 2015 Diseño, simulación, construcción, medición y ajuste de un filtro pasa-bajas activo de segundo orden con coeficientes de Bessel, configuración Sallen-Key, ganancia unitaria y una frecuencia de corte f c

Más detalles

AUDIO DIGITAL. Diego Cabello Ferrer Dpto. Electrónica y Computación Universidad de Santiago de Compostela

AUDIO DIGITAL. Diego Cabello Ferrer Dpto. Electrónica y Computación Universidad de Santiago de Compostela AUDIO DIGITAL Diego Cabello Ferrer Dpto. Electrónica y Computación Universidad de Santiago de Compostela 1. Introducción Señal de audio: onda mecánica Transductor: señal eléctrica Las variables físicas

Más detalles

Victrola de La Transformada de Fourier

Victrola de La Transformada de Fourier Victrola de La Transformada de Fourier p. 1/2 Victrola de La Transformada de Fourier Introducción para Músicos Juan I Reyes juanig@maginvent.org artelab Laboratorios de Artes Electrónicas Victrola de La

Más detalles

Asignatura: Teoría de Circuitos

Asignatura: Teoría de Circuitos Asignatura: Teoría de Circuitos Titulación: Ingeniero Técnico Industrial Especialidad: Electrónica Industrial Profesor(es) responsable(s): María Josefa Martínez Lorente Curso:2º Departamento: Ingeniería

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA LABORATORIO DE INGENIERÍA DE CONTROL PRACTICA N 5 ANÁLISIS DE LA RESPUESTA TRANSITORIA DE SISTEMAS DE PRIMER ORDEN OBJETIVO

Más detalles

= = Amplificador inversor. Considere el amplificador operacional de la figura Obtengamos el voltaje de salida

= = Amplificador inversor. Considere el amplificador operacional de la figura Obtengamos el voltaje de salida Amplificadores operacionales. Los amplificadores operacionales, también conocidos como amp ops, se usan con frecuencia para amplificar las señales de los circuitos Los amp ops también se usan con frecuencia

Más detalles

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS EJERCICIOS ADICIONALES: ONDAS MECÁNICAS Primer Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Dr. Alejandro Gronoskis Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería

Más detalles

Problemas de diseño de filtros y sus soluciones

Problemas de diseño de filtros y sus soluciones Problemas de diseño de filtros y sus soluciones 1. Diseñe un filtro paso-bajo de Butterworth con una frecuencia de corte fc=10khz y una atenuación mínima de A t =36 db a f r =100Khz. a. Cuánto vale el

Más detalles

Unidad Il: Sistemas Lineales discretos y continuos (continuación)

Unidad Il: Sistemas Lineales discretos y continuos (continuación) Unidad Il: Sistemas Lineales discretos y continuos (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados

Más detalles

PLAN DE ESTUDIOS 2008-II SÍLABO

PLAN DE ESTUDIOS 2008-II SÍLABO UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA DEPARTAMENTO ACADÉMICO DE INGENIERÍA I. INFORMACIÓN GENERAL: PLAN DE ESTUDIOS 2008-II SÍLABO 1.1 Asignatura : PROCESAMIENTO DE SEÑALES 1.2. Ciclo : VII

Más detalles

La portadora se escoge de modo que esté dentro de la banda de frecuencias (el ancho de banda disponible por la red telefónica pública).

La portadora se escoge de modo que esté dentro de la banda de frecuencias (el ancho de banda disponible por la red telefónica pública). .. Modulación de cambio de amplitud. El principio de funcionamiento de ASK se muestra en la figura.0a, y en la figura.0b se presenta un conjunto de formas de onda. En esencia, la amplitud de un tono de

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE.

MOVIMIENTO ARMÓNICO SIMPLE. MOVIMIENTO ARMÓNICO SIMPLE. JUNIO 1997. 1.- Un cuerpo de masa m = 10 kg describe un movimiento armónico simple de amplitud A = 30 mm y con un periodo de T = 4 s. Calcula la energía cinética máxima de dicho

Más detalles

INDICE Capitulo 1. El concepto del circuito magnético Capitulo 2. Excitación de estructuras ferromagnéticas con corriente directa

INDICE Capitulo 1. El concepto del circuito magnético Capitulo 2. Excitación de estructuras ferromagnéticas con corriente directa INDICE Capitulo 1. El concepto del circuito magnético 1-1. introducción 1 1-2. algunas leyes básicas de electrostática 3 1-3. algunas leyes básicas de magnetostática 8 1-4. otras conclusiones útiles en

Más detalles

MÓDULO Nº9 AMPLIFICADORES OPERACIONALES. Explicar que es un amplificador operacional. Entender el funcionamiento de los circuitos básicos con OP AMP.

MÓDULO Nº9 AMPLIFICADORES OPERACIONALES. Explicar que es un amplificador operacional. Entender el funcionamiento de los circuitos básicos con OP AMP. MÓDULO Nº9 AMPLIFICADORES OPERACIONALES UNIDAD: CONVERTIDORES TEMAS: Introducción a los Amplificadores Operacionales. Definición, funcionamiento y simbología. Parámetros Principales. Circuitos Básicos.

Más detalles

Sistemas de primer orden

Sistemas de primer orden 5 Sistemas de primer orden En los capítulos anteriores se ha visto cómo obtener la función de transferencia para cualquier sistema lineal e invariante en el tiempo y cómo utilizar esa función de transferencia,

Más detalles

CASCADA DE FILTROS ACTIVOS TEMA 4

CASCADA DE FILTROS ACTIVOS TEMA 4 CASCADA DE FILTROS ACTIVOS TEMA 4 Una cascada de filtros activos tiene la siguiente forma: La ganancia de la cascada es: Si la ganancia está en db: 1 CASCADA DE FILTROS PASA BAJOS TEMA 4 Inversor No Inversor

Más detalles

INDICE 1 Introducción 2 Circuitos resistivos 3 Fuentes dependientes y amplificadores operacionales (OP AMPS) 4 Métodos de análisis

INDICE 1 Introducción 2 Circuitos resistivos 3 Fuentes dependientes y amplificadores operacionales (OP AMPS) 4 Métodos de análisis INDICE 1 Introducción 1 1.1. Definiciones y unidades 2 1.2. Carga y corriente 5 1.3. Voltaje, energía y potencia 9 1.4. Elementos activos y pasivos 12 1.5. Análisis de circuitos y diseño 15 16 Problemas

Más detalles

Tema 5. Análisis de la Respuesta Frecuencial de Sistemas LTI. Automática. 2º Curso del Grado en Ingeniería en Tecnología Industrial

Tema 5. Análisis de la Respuesta Frecuencial de Sistemas LTI. Automática. 2º Curso del Grado en Ingeniería en Tecnología Industrial Tema 5. Análisis de la Respuesta Frecuencial de Sistemas LTI Automática 2º Curso del Grado en Ingeniería en Tecnología Industrial Contenido TEMA 5.- Análisis de respuesta en frecuencia 5.1. Análisis de

Más detalles

ONDAS. Los fenómenos ondulatorios aparecen en todas las ramas de la Física.

ONDAS. Los fenómenos ondulatorios aparecen en todas las ramas de la Física. ONDAS Los fenómenos ondulatorios aparecen en todas las ramas de la Física. El movimiento ondulatorio se origina cuando una perturbación se propaga en el espacio. No hay transporte de materia pero si de

Más detalles

Practica No. 4 CONTOL DE POSICION - CONTROL DIGITAL

Practica No. 4 CONTOL DE POSICION - CONTROL DIGITAL Practica No. 4 CONTOL DE POSICION - CONTROL DIGITAL Pontificia Universidad Javeriana Facultad de Ingeniería Departamento de Electrónica Laboratorio de Control. Introducción En esta práctica se realiza

Más detalles

ACÚSTICA FÍSICA. Cont. U.D. 1. Transformada Rápida de Fourier

ACÚSTICA FÍSICA. Cont. U.D. 1. Transformada Rápida de Fourier Cont. U.D. 1 ACÚSTICA FÍSICA Transformada Rápida de Fourier A finales del siglo VXIII un matemático francés,jean Bautista Fourier, realizo una investigación sobre series trigonométricas infinitas. Dicha

Más detalles

CONTROL APLICADO MODELADO DE SISTEMAS DINÁMICOS

CONTROL APLICADO MODELADO DE SISTEMAS DINÁMICOS CONTROL APLICADO MODELADO DE SISTEMAS DINÁMICOS MODELO MATEMÁTICO SISTEMA SE NECESITA CONOCER MODELO MATEMÁTICO CARACTERÍSTICAS DINÁMICAS DEBE REPRESENTAR BIEN NO ES ÚNICO Tenga presente que un modelo

Más detalles

EJERCICIOS ONDAS PAU

EJERCICIOS ONDAS PAU EJERCICIOS ONDAS PAU 1 Una masa m oscila en el extremo de un resorte vertical con una frecuencia de 1 Hz y una amplitud de 5 cm. Cuando se añade otra masa, de 300 g, la frecuencia de oscilación es de 0,5

Más detalles

Capítulo 4: Ecuaciones dinámicas del conjunto motor-carga

Capítulo 4: Ecuaciones dinámicas del conjunto motor-carga Capítulo 4: Ecuaciones dinámicas del conjunto motor-carga Capítulo 4: Ecuaciones dinámicas del conjunto motor-carga 4.1. Introducción Los motores de corriente continua sin escobillas ( DC brushless motors

Más detalles

INDICE Prefacio 1. Introducción 2. Conceptos de circuitos 3. Leyes de los circuitos 4. Métodos de análisis

INDICE Prefacio 1. Introducción 2. Conceptos de circuitos 3. Leyes de los circuitos 4. Métodos de análisis INDICE Prefacio XIII 1. Introducción 1.1. magnitudes eléctricas y unidades del S.I. 1 1.2. fuerza, trabajo y potencia 2 1.3. carga y corriente eléctrica 3 1.4. potencial eléctrico 1.5. energía y potencia

Más detalles

Universidad Ricardo Palma

Universidad Ricardo Palma 1. DATOS ADMINISTRATIVOS Universidad Ricardo Palma FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA ELECTRONICA DEPARTAMENTO ACADÉMICO DE INGENIERÍA SÍLABO 1.1 Nombre del curso : CONTROL

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

6 Emisor Receptor AM. 6.1 Objetivo de la práctica. 6.2 Introducción teórica.

6 Emisor Receptor AM. 6.1 Objetivo de la práctica. 6.2 Introducción teórica. 6 Emisor Receptor AM 6.1 Objetivo de la práctica El objetivo de esta práctica es que el alumno utilice los dispositivos electrónicos estudiados a lo largo de la asignatura para la realización de circuitos

Más detalles

Integral de Fourier y espectros continuos

Integral de Fourier y espectros continuos 9 2 2 2 Esta expresión se denomina forma de Angulo fase (o forma armónica) de la serie de Fourier. Integral de Fourier y espectros continuos Las series de Fourier son una herramienta útil para representar

Más detalles

TOTAL DE HORAS: Semanas de clase: 6 Teóricas: 4 Prácticas: 2. SERIACIÓN OBLIGATORIA ANTECEDENTE: Ninguna SERIACIÓN OBLIGATORIA SUBSECUENTE: Ninguna

TOTAL DE HORAS: Semanas de clase: 6 Teóricas: 4 Prácticas: 2. SERIACIÓN OBLIGATORIA ANTECEDENTE: Ninguna SERIACIÓN OBLIGATORIA SUBSECUENTE: Ninguna UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Electrónica Analógica

Más detalles

Análisis de imágenes digitales

Análisis de imágenes digitales Análisis de imágenes digitales FILTRADO DE LA IMAGEN Filtros espaciales suavizantes INTRODUCCIÓN El uso de máscaras espaciales para el procesamiento de imágenes se denomina filtrado espacial y a las propias

Más detalles

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa?

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? Unidad II Ondas Unidad II - Ondas 2 Ondas Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? o Cómo es posible que nos comuniquemos por celular? o Cómo

Más detalles