Matemáticas. Grado 11º. Unidad 1. Secciones cónicas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matemáticas. Grado 11º. Unidad 1. Secciones cónicas"

Transcripción

1 1 Franklin Eduardo Pérez Quintero Matemáticas Grado 11º Unidad 1 Secciones cónicas 1

2 Franklin Eduardo Pérez Quintero LOGRO: Identificar las diferentes secciones cónicas con sus principales características y reconociendo la forma de graficarlas. INDICADORES DE LOGRO: Determina la gráfica y ecuación de una circunferencia dada según su radio y centro. Reconoce las diferencias sustanciales entre la circunferencia, la elipse y la parábola. Reconoce y halla las partes de la elipse partiendo de la ecuación. Identifica la gráfica, el vértice, abertura y los interceptos con los ejes coordenados. Resuelve problemas relacionados con las secciones cónicas.

3 3 Franklin Eduardo Pérez Quintero SECCIONES CÓNICAS RESEÑA HISTÓRICA El matemático griego Menecmo (vivió sobre 350 a.c.) descubrió estas curvas y fue el matemático griego Apolonio (6-190 a. C.) De Perga (antigua ciudad del Asia Menor) el primero en estudiar detalladamente las curvas cónicas y encontrar la propiedad plana que las definía. Apolonio descubrió que las cónicas se podían clasificar en tres tipos a los que dio el nombre de: elipses, hipérbolas y parábolas. Las elipses son las curvas que se obtiene cortando una superficie cónica con un plano que no es paralelo a ninguna de sus generatrices. Las hipérbolas son las curvas que se obtiene al cortar una superficie cónica con un plano que es paralelo a dos de sus generatrices (Base y arista). Las parábolas son las curvas que se obtienen al cortar una superficie cónica con un plano paralelo a una sola generatriz (Arista). 3

4 4 Franklin Eduardo Pérez Quintero Apolonio demostró que las curvas cónicas tienen muchas propiedades interesantes. Algunas de esas propiedades son las que se utilizan actualmente para definirlas. Quizás las propiedades más interesantes y útiles que descubrió Apolonio de las cónicas son las llamadas propiedades de reflexión. Si se construyen espejos con la forma de una curva cónica que gira alrededor de su eje, se obtienen los llamados espejos elípticos, parabólicos o hiperbólicos, según la curva que gira. Apolonio demostró que si se coloca una fuente de luz en el foco de un espejo elíptico, entonces la luz reflejada en el espejo se concentra en el otro foco. Si se recibe luz de una fuente lejana con un espejo parabólico de manera que los rayos incidentes son paralelos al eje del espejo, entonces la luz reflejada por el espejo se concentra en el foco En la actualidad esta propiedad se utiliza para los radares, las antenas de televisión y espejos solares. La propiedad análoga, que nos dice que un rayo que parte del foco se refleja paralelamente al eje sirve para que los faros de los automóviles concentren el haz en la dirección de la carretera o para estufas. En el caso de los espejos hiperbólicos, la luz proveniente de uno de los focos se refleja como si viniera del otro foco, esta propiedad se utiliza en los grandes estadios para conseguir una superficie mayor iluminada. En el siglo XVI el filósofo y matemático René Descartes desarrolló un método para relacionar las curvas con ecuaciones. Este método es la llamada Geometría Analítica. En la Geometría Analítica las curvas cónicas se pueden representar por ecuaciones de segundo grado en las variables x e y. El resultado más sorprendente de la Geometría Analítica es que todas las ecuaciones de segundo grado en dos variables representan secciones cónicas se lo debemos a Jan de Witt Sin lugar a dudas las cónicas son las curvas más importantes que la geometría ofrece a la física. Por ejemplo, las propiedades de reflexión son de gran utilidad en la óptica. Pero sin duda lo que las hace más importantes en la física es el hecho de que las órbitas de los planetas 4

5 5 Franklin Eduardo Pérez Quintero alrededor del sol sean elipses y que, más aún, la trayectoria de cualquier cuerpo sometido a una fuerza gravitatoria es una curva cónica. Aprendamos algo nuevo Una sección cónica (o cónica) es una curva de intersección de un plano con un cono recto circular de dos hojas; tenemos cuatro tipos de curvas: CIRCUNFERENCIA, ELIPSE, HIPÉRBOLA Y PARÁBOLA. Ahora bien, pero qué es una cónica, es el conjunto de puntos P del plano tales que la distancia no dirigida de P a un punto fijo está en razón constante a la distancia no dirigida de P a una recta fija que no contiene al punto fijo. Esta razón constante en la definición anterior se llama excentricidad. Las cónicas tienen innumerables aplicaciones en las ciencias y en la tecnología; de allí la gran importancia que tiene conocerlas y resolver problemas donde se apliquen cada una de ellas. 5

6 6 Franklin Eduardo Pérez Quintero CIRCUNFERENCIA Es el lugar geométrico de los puntos P(x, y) del plano que (equidistan) de un punto C(h, k) llamado Centro. R = radio C(h,k) = Centro P(x,y) = Punto Cualquiera de Circunferencia. Vamos a obtener la ECUACIÓN CANÓNICA de circunferencia. Por definición de Distancia entre dos puntos, se tiene: R = d(c, P) Esto es: d(c,p) = ( k x h) ( y ) R = ( x h) ( y k ) R ( ( x h) ( y k ) ) R = (x-h) + (y-k) Ecuación canónica de Circunferencia de centro C(h, k) y radio R. Ejemplos: 6

7 7 Franklin Eduardo Pérez Quintero (x 1) + (y + 3) = 16; es la Ecuación de una Circunferencia de centro C(1,-3) y radio R = 4 x + (y 4) = 7 es la Ecuación de una circunferencia de centro C(0, 4) y Radio R = 7. Si el centro de la circunferencia es C(0,0) y radio R = 5; la Ecuación es: x + y = 5 ECUACIÓN GENERAL DE LA CIRCUNFERENCIA Al desarrollar la Ecuación Canónica (x-h) + (y-k) = R resulta: (x-h) + (y-k) = R x - hx + h + y ky + k = R x + y - hx ky + h + k = R Ahora tenemos: Ax + By + Cx + Dy + E = 0 Donde A = B y no aparece producto de la variable x e y. Ejemplo: Una circunferencia tiene centro C(-3, 4) y pasa por el punto P(1, -). Determinar su Ecuación General. Solución: Para llegar a la ecuación general partimos de la ecuación canónica: 7

8 8 Franklin Eduardo Pérez Quintero R = (x-h) + (y-k) Observamos si tenemos el centro, en este caso C(-3, 4) pero el radio no está dado. Cómo encontrarlo? Es sencillo, ya que nos dan un punto P(1, -) por donde pasa las circunferencia; y sabemos que R = d(c, P). Entonces, por definición de distancia, tenemos: R = d(c, P) R 1 ( 3) 4 R 4 6 R R 5 Luego, sustituyendo tenemos: (x-h) + (y-k) = R (x+3) + (y-4) 5 Desarrollando la Ecuación canónica. La ecuación general queda: x + y + 6x 8y 7 = 0 Su representación gráfica es: 8

9 9 Franklin Eduardo Pérez Quintero TRABAJEMOS EN NUESTRO APRENDIZAJE ACTIVIDAD: Resolver 1.- Determinar la ecuación general de la circunferencia de centro C 1, 3 y Radio R = 3..- Determinar la Ecuación General de la Circunferencia si los extremos del diámetro son A(-, 4) y B(0, -8). 3.- Determinar la Ecuación de la Circunferencia de centro C(-1,4) y es tangente al eje de las abscisas. 9

10 10 Franklin Eduardo Pérez Quintero ELIPSE Aprendamos algo nuevo Es el lugar Geométrico de los puntos P(x, y) del plano, cuya suma de distancias a dos puntos F 1 y F (focos) es constante. (Ver grafica) d(p,f 1 ) + d(p,f ) = d(a 1, A ) Donde: C(h, k) es el centro. A 1, A, B 1, B Son los Vértices F 1, F Focos. A A 1 = a Eje Mayor. F F 1 = Eje Focal B B 1 = Eje Menor. 10

11 11 Franklin Eduardo Pérez Quintero ECUACIÓN CANÓNICA DE LA ELIPSE A partir de la definición se obtienen dos ecuaciones llamadas canónicas. Estas son: CASO I: Cuando el eje focal está paralelo al eje de las abscisas (x, x 1 ). x h a y k b 1 CASO II: Cuando el eje focal está paralelo al eje de las coordenadas (y, y 1 ). x h b y k a 1 Observación: El centro es C(h, k) a y b están relacionadas con el eje mayor y menor respectivamente por lo tanto para identificar los dos casos, solo tienes que ver con quien está el mayor denominador (con la variable x o con la variable y) Ejemplo: x 3 y 1 La Ecuación 1 Corresponde a una elipse de centro C(3, ) y el eje mayor paralelo a las abscisas. ECUACIÓN GENERAL DE LA ELIPSE Viene dada por Ax + By + Cx + Dy + E = 0 donde A B pero de igual signo. Ejemplo: x + 3y - 6x + 1y + -1 = 0 11

12 1 Franklin Eduardo Pérez Quintero Excentricidad: es la relación entre C y a esto es e C a Coordenadas de los vértices y focos: es importante conocer estos puntos de la elipse; pero es báñate sencillo determinar sus coordenadas, tomando en cuenta que siempre se puede llegar a partir del centro de la elipse. CASO I: A 1 (h+a, k) ; A (h-a, k) F 1 (h+c, k) ; F (h-c, k) B 1 (h, k+b) ; B (h, k-b) CASO II: A 1 (h, k+a) ; A (h, k-a) F 1 (h, k+c) ; F (h, k-c) B 1 (h+b, k) ; B (h+b, k Dónde C(h, k) a distancia del centro hasta A 1 y A, b distancia del centro hasta B 1, B c distancia del centro hasta F 1, F. 1

13 13 Franklin Eduardo Pérez Quintero TRABAJEMOS EN NUESTRO APRENDIZAJE ACTIVIDAD: Resuelve los siguientes ejercicios Dibujar la elipse (x /64) + (y /16) = 1 Halle la ecuación de la elipse que tiene su centro en (0, 0) y cuyos focos son los puntos F (3, 0) y F (-3, 0), además el intercepto de la gráfica con el eje x es el punto (5, 0). Trazar la elipse cuya ecuación viene dada por: 5x + 4y = 100 Aprendamos algo nuevo PARÁBOLA Es el lugar geométrico de los puntos P(x, y) y del plano que equidistan (están a la misma distancia) de un punto fijo llamado foco y una recta fija llamada Directriz. Veamos la gráfica para identificar los elementos en sistemas de coordenadas cartesianas. 13

14 14 Franklin Eduardo Pérez Quintero Por Definición d(p, F) = d(p, M) F = Foco E = Eje V = Vértice I = Pto. De Intersección. Eje Directriz. d(f, V) = d(v, I) = p parámetro ESTUDIAREMOS CUATRO CASOS DE LA ECUACIÓN CANÓNICA DE LA PARÁBOLA CASO 1 CASO Cuando la parábola abre hacia arriba, cuya ecuación canónica es: (x h) = 4p(y k) Donde C(h, k) es el centro de p el parámetro. Cuando la Parábola abre hacia abajo, cuya ecuación canónica es: (x h) = - 4p(y k) Donde C(h, k) es el centro de p el parámetro. ELEMENTOS: ELEMENTOS: 14

15 15 Franklin Eduardo Pérez Quintero V(h, k) F(h, k+p) I(h, k-p) Eje: x = h Directriz: y = k - p V(h, k) F(h, k - p) I(h, k + p) Eje: x = h Directriz: y = k p EJEMPLO: (x ) = 8(y 3). EJEMPLO: (x 3) = - 8(y 1). Ecuación de Parábola de vértice V(, 3) Ecuación de Parábola de vértice V(3, 1) 4p = 8 p = parámetro. -4p = -4 p = 1 parámetro. Foco: Foco: F(h, k +p) = F(, 3+) = (, 5) I(h, k p) = I(, 3-) = (, 1) F(h, k +p) = F(3, 1-1) = (3, 0) I(h, k p) = I(3, 1+1) = (3, ) Eje x = h entonces x = Eje x = h entonces x = 3 Directriz y = k p entonces y = 3 = 1 Veamos su Grafica. Directriz y = x + p entonces y = = Veamos su Grafica 15

16 16 Franklin Eduardo Pérez Quintero CASO 3 CASO 4 Cuando la parábola abre hacia la derecha, cuya ecuación canónica es: (y k) = 4p(x h) Donde C(h, k) es el centro de p el parámetro. Cuando la parábola abre hacia la izquierda, cuya ecuación canónica es: (y k) = - 4p(x h) Donde C(h, k) es el centro de p el parámetro. ELEMENTOS: V(h, k) F(h+p, k) I(h-p, k) Eje: y = k Directriz: x = h - p ELEMENTOS: V(h, k) F(h-p, k) I(h+p, k) Eje: y = k Directriz: x = h + p EJEMPLO: (y 4) = 1(x 1). EJEMPLO: (y 3) = -8x Ecuación de Parábola de vértice Ecuación de Parábola de vértice 16

17 17 Franklin Eduardo Pérez Quintero V(1, 4) V(0, 3) 4p = 1 p = 3 parámetro. -4p = -8 p = parámetro. Foco: Foco: F(h+p, k) = F(1+3, 4) = (4, 4) I(h - p, k) = I(1-3, 4) = (-, 1) F(h-p, k) = F(0-, 4) = (-, 3) I(h+ p, k) = I(0+, 3) = (, 3) Eje y = 4 Directriz x = 1 3 entonces x = 3 = - Veamos su Grafica. Eje y = 3 Directriz x = 0 + entonces x = Veamos su Grafica. ECUACIÓN GENERAL DE LA PARÁBOLA Al desarrollar las ecuaciones canónicas, cualquiera que sea el caso llegamos a una ecuación de la forma: 17

18 18 Franklin Eduardo Pérez Quintero a) Ax +Cx +Dy + E = 0 o b) Ay +Cx +Dy + E=0 TRABAJEMOS EN NUESTRO APRENDIZAJE ACTIVIDAD: Resuelve los siguientes puntos Escribe las ecuaciones de las parábolas que tienen los elementos que se señalan: i) directriz x = -3 y foco F(3,0) ii) foco F(,0) y vértice V(0,0) iii) directriz y = 4 y vértice V(0,0) Dada la parábola y x, halla el vértice, el foco y la directriz. Representa las parábolas: i) ii) x y 1 x ii) y 3 6 y 6x iv) y x

19 19 Franklin Eduardo Pérez Quintero Recolectemos lo aprendido Calcular la distancia entre los centros de la circunferencia de ecuación: (x + 1) + (y + 3) = 5 y (x + 3) + (y - ) = 16 Determinar la Intersección entre la recta de ecuación x y = 1 y la circunferencia de ecuación x + y - x 4y 1 = 0. Determinar la ecuación de la circunferencia con centro en el punto P(1,6) y tangente a la recta de la ecuación x y 1 = 0 Determine el centro, los vértices, los focos y dibujar la elipse que tiene por ecuación: 4x + y 16x + y + 13 = 0 Halla la ecuación reducida de la elipse sabiendo que tiene: i) Por focos F(,0); F (-,0) y suma de distancias 5. ii) Por focos F(0,); F (0,-) y suma de distancias 5. Halla la ecuación de la elipse conociendo: A(10,0); A (-10,0) y la excentricidad es e = 0,. 19

20 0 Franklin Eduardo Pérez Quintero Halla la ecuación de la elipse conociendo: i) C(0,0); F(0,); a = 4. ii) C(-3,0); F(-3,-); a = 4. Halla los valores a, b, c y e sabiendo que la ecuación es: i) x y 9 ii) 16x 9y 144 Entre qué valores máximo y mínimo puede estar comprendida la excentricidad de la elipse? Cuál es la excentricidad de la circunferencia? Halla la ecuación de la elipse de eje mayor 16 y excentricidad ¼. Halla las coordenadas del vértice y del foco, así como las ecuaciones de la directriz y del eje de la parábola y x. Calcula el radio vector del punto de la parábola abscisa es -4. x 4y, cuya Halla la intersección de la recta x y 7 0 con la parábola x y 4y 4. Halla la ecuación del lugar geométrico de los puntos del plano que equidistan del eje de abscisas y del punto (,). Halla los puntos de la parábola x y 5y 6 que equidistan de los puntos (-3,-) y (7,4). Halla la longitud de la cuerda común de la circunferencia x y 13 y la parábola y 3x 3. Halla la ecuación de la parábola que tiene por foco el punto F(0,) y por directriz la recta y x 0

MATEMÁTICAS UNIDAD 4 GRADO 10º. Cónicas y repaso de funciones

MATEMÁTICAS UNIDAD 4 GRADO 10º. Cónicas y repaso de funciones 1 Franklin Eduardo Pérez Quintero MATEMÁTICAS UNIDAD 4 GRADO 10º Cónicas y repaso de funciones 1 Franklin Eduardo Pérez Quintero LOGRO: Reconoce la formación y características básicas de las secciones

Más detalles

Bloque 2. Geometría. 4. Iniciación a las Cónicas

Bloque 2. Geometría. 4. Iniciación a las Cónicas Bloque 2. Geometría 4. Iniciación a las Cónicas 1. La circunferencia Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. Elevando al cuadrado

Más detalles

7. Cónicas. Propiedades métricas y ópticas

7. Cónicas. Propiedades métricas y ópticas Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 49 7. Cónicas. Propiedades métricas y ópticas Cónicas Círcunferencias, elipses, parábolas, e hipérbolas son llamadas secciones cónicas

Más detalles

La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz.

La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz. La Parábola La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz. Características geométricas. a) Vértice. Es el

Más detalles

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica I Contenido 1 Introducción 2 La Circunferencia 3 Parábola 4 Elipse 5 Hiperbola Objetivos Se persigue que el estudiante:

Más detalles

Lugar Geométrico. Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz

Lugar Geométrico. Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz 1 Lugar Geométrico Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz Mediatriz de un segmento es el lugar geométrico de los puntos del plano que equidistan

Más detalles

LA PARÁBOLA ECUACIÓN CANÓNICA DE LA PARÁBOLA DEFINICIÓN ELEMENTOS DE LA PARÁBOLA. x 2px p y x 2px p. Geometría Analítica

LA PARÁBOLA ECUACIÓN CANÓNICA DE LA PARÁBOLA DEFINICIÓN ELEMENTOS DE LA PARÁBOLA. x 2px p y x 2px p. Geometría Analítica ECUACIÓN CANÓNICA DE LA PARÁBOLA DEFINICIÓN LA PARÁBOLA Parábola es el lugar geométrico de todos los puntos P del plano que equidistan de una recta fija llamada directriz (L) y de un punto fijo exterior

Más detalles

1 + r, y = y 1 + ry Si P es el punto medio del segmento P 1 P 2, entonces x = x 1 + x 2 2

1 + r, y = y 1 + ry Si P es el punto medio del segmento P 1 P 2, entonces x = x 1 + x 2 2 CAPÍTULO 5 Geometría analítica En el tema de Geometría Analítica se asume cierta familiaridad con el plano cartesiano. Se entregan básicamente los conceptos más básicos y los principales resultados (fórmulas)

Más detalles

SECCIONES CÓNICAS (1)Determinar y graficar el lugar geométrico de los puntos que equidistan de F(0, 2) y de la recta

SECCIONES CÓNICAS (1)Determinar y graficar el lugar geométrico de los puntos que equidistan de F(0, 2) y de la recta LOS EJERCICIOS DEBEN RESOLVERSE TAMBIÉN USANDO SOFTWARE MATEMÁTICO. LAS ECUACIONES PEDIDAS SON, EN TODOS LOS CASOS, LAS CANÓNICAS Y LAS PARAMÉTRICAS. I) GEOMETRÍA ANALÍTICA EN EL PLANO 1. Determinar y

Más detalles

Cónicas. Marcos Marvá Departamento de Física y Matemáticas, Universidad de Alcalá. November 27,

Cónicas. Marcos Marvá Departamento de Física y Matemáticas, Universidad de Alcalá. November 27, Cónicas Marcos Marvá Departamento de Física y Matemáticas, Universidad de Alcalá November 27, 2013 marcos.marva@uah.es Cómo definir una cónica Como intersección de un plano y un cono recto de doble hoja

Más detalles

GUÍA DE EJERCICIOS GEOMETRÍA ANALÍTICA (CURVAS CÓNICAS)

GUÍA DE EJERCICIOS GEOMETRÍA ANALÍTICA (CURVAS CÓNICAS) U N E X P O INTRODUCCIÓN: UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ DEPARTAMENTO DE ESTUDIOS GENERALES SECCIÓN DE MATEMÁTICA GUÍA DE EJERCICIOS GEOMETRÍA

Más detalles

TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios:

TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios: TEMA 7: CÓNICAS CIRCUNFERENCIA Se define la circunferencia como el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. A dicha distancia se le llama radio de la circunferencia.

Más detalles

Cónicas y cuádricas. Circunferencia Elipse Parábola Hipérbola

Cónicas y cuádricas. Circunferencia Elipse Parábola Hipérbola Grado en Óptica y Optometría Curso 2009-2010 Cónicas y cuádricas. Curvas cónicas Entre las curvas, quizás más importante y con más renombre, figuran las conocidas como curvas cónicas, cuyo nombre proviene

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0

1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0 Universidad Técnica Federico Santa María Departamento de Matemática Campus Santiago Geometría Analítica 1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a

Más detalles

PARABOLA Y ELIPSE. 1. La ecuación general una parábola es: x y 40 = 0. Poner la ecuación en la forma: (x h) 2 = 4p (y k).

PARABOLA Y ELIPSE. 1. La ecuación general una parábola es: x y 40 = 0. Poner la ecuación en la forma: (x h) 2 = 4p (y k). PARABOLA Y ELIPSE 1. La ecuación general una parábola es: x + 0y 40 = 0. Poner la ecuación en la forma: (x h) = 4p (y k). x = 0 (y ) (x ) = 0y x = 0 (y ) x = 0 (y + ) (x 40) = 0y. Hallar la ecuación de

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición La parábola es el lugar geométrico de todos los puntos del plano que equidistan de un punto y una recta dada. Más claramente: Dados (elementos bases de la parábola) Una recta L, llamada directriz

Más detalles

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje. LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de

Más detalles

COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS

COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS LUGARES GEOMÉTRICOS Y CÓNICAS 01. Halla la ecuación de la circunferencia de centro ( 5, 12) y radio 13. Comprueba que pasa por el punto (0, 0). 02. Halla las ecuaciones de los siguientes lugares geométricos:

Más detalles

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3 Definición LA CIRCUNFERENCIA Se llama circunferencia a la sección cónica generada al cortar un cono recto con un plano perpendicular al eje del cono. La circunferencia es el lugar geométrico de todos los

Más detalles

SECCIONES CÓNICAS. 1. Investiga: porqué el nombre de cónicas para las curvas que vamos a estudiar?

SECCIONES CÓNICAS. 1. Investiga: porqué el nombre de cónicas para las curvas que vamos a estudiar? SECCIONES CÓNICAS 1. Investiga: porqué el nombre de cónicas para las curvas que vamos a estudiar? 2. ECUACIÓN GENERAL DE SEGUNDO GRADO: es una ecuación de la siguiente forma Ax 2 + Bxy + Cy 2 + Dx + Ey

Más detalles

Guía de estudio Nº 3: Ejercicios propuestos sobre Lugares geométricos. Secciones cónicas

Guía de estudio Nº 3: Ejercicios propuestos sobre Lugares geométricos. Secciones cónicas U.C.V. Facultad de Ingeniería CÁLCULO I (5) Guía de estudio Nº : Ejercicios propuestos sobre Lugares geométricos. Secciones cónicas.- Determine la ecuación del lugar geométrico de los puntos (, ) del plano

Más detalles

Academia de Matemáticas T.M Geometría Analítica Página 1

Academia de Matemáticas T.M Geometría Analítica Página 1 INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos

Más detalles

Lugares geométricos y cónicas

Lugares geométricos y cónicas Lugares geométricos y cónicas E S Q U E M A D E L A U N I D A D. Lugar geométrico página 6.. Definición página 6. Circunferencia página 6.. Ecuación página 6.. Casos particulares página 67. Elipse página

Más detalles

Geometría Analítica Agosto 2016

Geometría Analítica Agosto 2016 Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman

Más detalles

Se llama Circunferencia al lugar geométrico de los puntos del plano equidistantes de un punto fijo llamado centro.

Se llama Circunferencia al lugar geométrico de los puntos del plano equidistantes de un punto fijo llamado centro. Cónicas 1.- Circunferencia Definición 1 (Definición geométrica) Se llama Circunferencia al lugar geométrico de los puntos del plano equidistantes de un punto fijo llamado centro. Analíticamente la circunferencia

Más detalles

UNPSJB - Facultad Ciencias Naturales - Asignatura: Matemática 1 Ciclo Lectivo: 2014 CONICAS

UNPSJB - Facultad Ciencias Naturales - Asignatura: Matemática 1 Ciclo Lectivo: 2014 CONICAS Asignatura: Matemática 1 Ciclo Lectivo: 014 CONICAS La superficie que se muestra en la figura se llama doble cono circular recto, o simplemente cono. Es la superficie tridimensional generada por una recta

Más detalles

Respuestas ejercicios edición 2007 Sección 3.3: Transformación de coordenadas Ejercicio 3-1

Respuestas ejercicios edición 2007 Sección 3.3: Transformación de coordenadas Ejercicio 3-1 Editorial Mc Graw Hill. Edición 007 Respuestas ejercicios edición 007 Sección 3.3: Transformación de coordenadas Ejercicio 3-1 a) Simetría respecto de ambos ejes y respecto del origen. b) Simetría respecto

Más detalles

UNI DAD 4 ESPACIO BIDIMENSIONAL: CÓNICAS

UNI DAD 4 ESPACIO BIDIMENSIONAL: CÓNICAS UNI DAD 4 ESPACIO BIDIMENSIONAL: CÓNICAS Objetivos Geometría analítica Introducción L cónica sección cónica Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0 A B C D E F 4.1. Circunferencia Circunferencia es el conjunto

Más detalles

Parábola e Hipérbola

Parábola e Hipérbola Geometría Analítica Tema 6 sesión 3: Parábola e Hipérbola Isidro Huesca Zavaleta 17/07/2015 1 Contenido Definición de parábola. Los elementos de la parábola. Ecuación y propiedades de la parábola. Construyendo

Más detalles

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS LA PARABOLA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS LA PARABOLA FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO 1º TALLER Nº 6 SEMESTRE II LA PARABOLA RESEÑA HISTÓRICA Historia de las Cónicas: El estudio de las cónicas tiene su origen en el

Más detalles

LUGARES GEOMÉTRICOS: ELIPSE, HIPÉRBOLA, PARÁBOLA Y CIRCUNFERENCIA. APLICACIONES Y DIDÁCTICA.

LUGARES GEOMÉTRICOS: ELIPSE, HIPÉRBOLA, PARÁBOLA Y CIRCUNFERENCIA. APLICACIONES Y DIDÁCTICA. LUGARES GEOMÉTRICOS: ELIPSE, HIPÉRBOLA, PARÁBOLA Y CIRCUNFERENCIA. APLICACIONES Y DIDÁCTICA. AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO Y BACHILLERATO Resumen EN ÉSTE

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias

Más detalles

INTRO. ESTUDIO DE LAS CÓNICAS

INTRO. ESTUDIO DE LAS CÓNICAS INTRO. ESTUDIO DE LAS CÓNICAS Una vez que se han estudiado los sistemas de coordenadas y las ecuaciones de las figuras geométricas más elementales, las rectas, se pasará a hacer un estudio de algunas líneas

Más detalles

1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a)

1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) Ejercicios de cónicas 1º bachillerato C 1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) b) c) d) e) f) g) h) i) Soluciones: a) Circunferencia de centro ( y radio 3. Excentricidad

Más detalles

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos

Más detalles

Es la elipse el conjunto de puntos fijos cuya suma de distancias a dos puntos fijos llamados focos es constante.

Es la elipse el conjunto de puntos fijos cuya suma de distancias a dos puntos fijos llamados focos es constante. ESQUEMA LAS CÓNICAS LA PARÁBOLA ECUACIONES DE LA PARÁBOLA ECUACIÓN DE LA TANGENTE A UNA PARÁBOLA ELIPSE ECUACIONES DE LA ELIPSE PROPIEDADES DE LA ELIPSE LA HIPÉRBOLA ECUACIONES DE LA HIPÉRBOLA 10 ASÍNTOTAS

Más detalles

2. Distancia entre dos puntos. Punto medio de un segmento

2. Distancia entre dos puntos. Punto medio de un segmento Geometría 1 Geometría anaĺıtica Una ecuación de primer grado con dos incógnitas x e y tiene infinitas soluciones Por ejemplo x + y = 3 tiene como soluciones (0, 3), (1, ), ( 1, 4), etc Hasta ahora se han

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

Para ver una explicación detallada de cada gráfica, haga Click sobre el nombre.

Para ver una explicación detallada de cada gráfica, haga Click sobre el nombre. Para ver una explicación detallada de cada gráfica, haga Click sobre el nombre. La Parábola La Circunferencia La Elipse La Hipérbola La Parábola La parábola se define como: el lugar geométrico de los puntos

Más detalles

UNIDAD 3: GEOMETRÍA ANALÍTICA Nociones preliminares, línea recta, estudio de las cónicas

UNIDAD 3: GEOMETRÍA ANALÍTICA Nociones preliminares, línea recta, estudio de las cónicas 009 UNIDAD 3: GEOMETRÍA ANALÍTICA Nociones preliminares, línea recta, estudio de las cónicas Se hace referencia a las definiciones, fórmulas y algunos ejemplos sobre los temas indicados Iván Moyota Ch.

Más detalles

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: GEOMETRÍA ANALITICA GUÍA DE ESTUDIO PARA LA ÚLTIMA OPORTUNIDAD DE ACREDITAR LA MATERÍA

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: GEOMETRÍA ANALITICA GUÍA DE ESTUDIO PARA LA ÚLTIMA OPORTUNIDAD DE ACREDITAR LA MATERÍA Geometría analítica 1.- Ecuación de la recta 2.- Cónicas 3.-Ecuación de la parábola UNIDAD II: CONICAS (CIRCUNFERENCIA Y PARABOLAS) Una superficie cónica de revolución está engendrada por la rotación de

Más detalles

UNIDAD 13 LA CIRCUNFERENCIA Y LA PARÁBOLA

UNIDAD 13 LA CIRCUNFERENCIA Y LA PARÁBOLA UNIDAD 13 LA CIRCUNFERENCIA Y LA PARÁBOLA Objetivo general. Al terminar esta Unidad aplicarás las definiciones y los elementos que caracterizan a la circunferencia y a la parábola en las soluciones de

Más detalles

GUIA DIDACTICA MATEMATICA 5to PARABOLA

GUIA DIDACTICA MATEMATICA 5to PARABOLA UNIDAD EDUCATIVA COLEGIO LOS PIRINEOS DON BOSCO INSCRITO EN EL M.P.P.L N S2991D2023 RIF: J-09009977-8 GUIA DIDACTICA MATEMATICA 5to PARABOLA Asignatura: Matemática Año Escolar: 2013-2014 Lapso: 2do Año:

Más detalles

UNIVERSIDAD CENTROAMERICANA JOSÉ SIMEÓN CAÑAS ALGEBRA VECTORIAL Y MATRICES GUIA DE TRABAJO Secciones Cónicas Ciclo 02 de 2012

UNIVERSIDAD CENTROAMERICANA JOSÉ SIMEÓN CAÑAS ALGEBRA VECTORIAL Y MATRICES GUIA DE TRABAJO Secciones Cónicas Ciclo 02 de 2012 UNIVERSIDAD CENTROAMERICANA JOSÉ SIMEÓN CAÑAS ALGEBRA VECTORIAL Y MATRICES GUIA DE TRABAJO Secciones Cónicas Ciclo 0 de 0 PARTE I: Ejercicios cortos de selección Múltiple. En cada uno de los siguientes

Más detalles

Cálculo 10. Semestre A Rectas y Cónicas

Cálculo 10. Semestre A Rectas y Cónicas Cálculo 10. Semestre A-017 Prof. José Prieto Correo: prieto@ula.ve. Rectas Cónicas Problema.1 Hallar las distancia entre los siguientes pares de puntos P Q, además encontrar el punto medio que los une:

Más detalles

Sesión No. 12 PARABOLA. Objetivo

Sesión No. 12 PARABOLA. Objetivo Sesión No. 12 PARABOLA Objetivo Identificar la ecuación de una parábola, con eje focal paralelo a los ejes coordenados, y reconocer sus características esenciales, en los casos de parábola con vértice

Más detalles

Club de Matemáticas CBTis 149. clubmate149.com

Club de Matemáticas CBTis 149. clubmate149.com PROGRAMA DE MATEMATICAS III (Geometría Analítica) Con este curso se inicia el estudio de la geometría analítica, rama de las Matemáticas cuyos inicios se remontan a la segunda mitad del siglo XVII con

Más detalles

Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura.

Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura. Universidad de Los Andes Facultad de Ciencias Forestales y Ambientales Escuela de ingeniería Forestal Departamento de Botánica y Ciencias Básicas Matemáticas I I 2014 Prof. K. Chang. Rectas y Cónicas Guía

Más detalles

TALLER DE CONICAS. Ejemplo 1: En las siguientes ecuaciones diga que posible curva es:

TALLER DE CONICAS. Ejemplo 1: En las siguientes ecuaciones diga que posible curva es: TALLER DE CONICAS Ejemplo 1: En las siguientes ecuaciones diga que posible curva es: 1. y -4x =4. x=y. x-y+6=0 4. 9x +4y -18x+16y-11=0 5. 9x -4y -18x-16y-4=0 6. 4x +y =4 7. 4x 9y =6 8. 4x+=0 9. 5y-=0 10.

Más detalles

TEMA 5. CURVAS CÓNICAS.

TEMA 5. CURVAS CÓNICAS. 5.1. GENERALIDADES. TEMA 5. CURVAS CÓNICAS. Se denominan secciones cónicas a aquellas superficies que son producidas por la intersección de un plano con una superficie cónica de revolución (una superficie

Más detalles

CÓNICAS. 1.- Hallar el centro, vértices, excentricidad y representación gráfica de las elipses:

CÓNICAS. 1.- Hallar el centro, vértices, excentricidad y representación gráfica de las elipses: CÓNICAS 1.- Hallar el centro, vértices, excentricidad y representación gráfica de las elipses: a) b) c) a) =(3,1), A(5,1), A (1,1), B(3,), B (3,0) e=0'866; b) =(-,1), A(-1,1), A (-3,1),B(-,4/3), B (-,/3),

Más detalles

PARÁBOLA IX.

PARÁBOLA IX. IX. PARÁBOLA Lugar geométrico de todos los puntos tales que la distancia de éstos a un punto fijo (foco) es siempre la misma a una recta fija (directriz). p = distancia del vértice al foco o del vértice

Más detalles

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO.

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. FACULTAD DE MATEMATICAS UNIVERSIDAD VERACRUZANA 2010 Xalapa, Ver. México 1 1. La distancia entre dos puntos en la recta real es 5. Si uno de los puntos

Más detalles

Introducción. Historia

Introducción. Historia Introducción Historia Las curvas cónicas, fueron estudiadas por matemáticos de la escuela Griega hace mucho tiempo. Se dice que Menaechmus fue el que descubrió las secciones cónicas y que fue el primero

Más detalles

GEOMETRÍA ANALÍTICA: CÓNICAS

GEOMETRÍA ANALÍTICA: CÓNICAS GEOMETRÍA ANALÍTICA: CÓNICAS 1.- GENERALIDADES Se define lugar geométrico como el conjunto de puntos que verifican una propiedad conocida. Las cónicas que estudiaremos a continuación se definen como lugares

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3 b) y 16 x Lugares geométricos y cónicas

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3 b) y 16 x Lugares geométricos y cónicas Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN 4 La ecuación del lugar geométrico de los puntos del plano que equidistan de la recta x y 4, y del punto P (, ) es: a) x y x y 68 0 b) 4x 9y

Más detalles

PARÁBOLA { } Según esta definición y haciendo referencia al gráfico, se tiene:

PARÁBOLA { } Según esta definición y haciendo referencia al gráfico, se tiene: PARÁBOLA Definición.- Una parábola es el conjunto de todos los puntos en el plano que equidista de una recta fija, llamada directriz, y un punto fijo, denominado foco, que no pertenece a la recta, es decir:

Más detalles

TEMA 9 LUGARES GEOMÉTRICOS. CÓNICAS 1. Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad.

TEMA 9 LUGARES GEOMÉTRICOS. CÓNICAS 1. Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. TEMA 9 LUGARES GEOMÉTRICOS. CÓNICAS 1 TEMA 9 LUGARES GEOMÉTRICOS. CÓNICAS. 9.1 LUGARES GEOMÉTRICOS Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. Llamando X(x,) a las

Más detalles

ELIPSE. Muchos cometas tienen órbitas extremadamente excéntricas. Por ejemplo, el cometa Halley, tiene una excentricidad orbital de casi 0.97!

ELIPSE. Muchos cometas tienen órbitas extremadamente excéntricas. Por ejemplo, el cometa Halley, tiene una excentricidad orbital de casi 0.97! ELIPSE Las órbitas de los planetas son elípticas. La excentricidad de la órbita de la Tierra es muy pequeña (menor de 0.2), de manera que la órbita es casi circular. La órbita de Plutón es la más excéntrica

Más detalles

Planeación de vídeos-tutoriales: Cónicas

Planeación de vídeos-tutoriales: Cónicas Planeación de vídeos-tutoriales: Cónicas Adriana Serna García; Jonathan E. Martínez Medina; Luis Eduardo Gómez Ojeda adrianasgp7@hotmail.com; jonamartinez7@gmail.com; luisbajistagomez@gmail.com Licenciatura

Más detalles

CURVAS TÉCNICAS CURVAS CÓNICAS

CURVAS TÉCNICAS CURVAS CÓNICAS 2º BACH CURVAS TÉCNICAS CURVAS CÓNICAS ANA BALLESTER JIMÉNEZ CURVAS TÉCNICAS 1. ÓVALOS. El óvalo es una curva cerrada, plana y convexa formada generalmente por cuatro arcos de circunferencia iguales dos

Más detalles

ESTUDIO GRÁFICO DE LA ELIPSE.

ESTUDIO GRÁFICO DE LA ELIPSE. Curvas Cónicas para Dibujo y Matemáticas. Aplicación web Dibujo Técnico para ESO y Bachillerato Matemáticas para Bachillerato Educación Plástica y Visual Autor: José Antonio Cuadrado Vicente. ESTUDIO GRÁFICO

Más detalles

3. La circunferencia.

3. La circunferencia. UNIDAD 8: RESOLVAMOS CON GEOMETRÍA ANALITICA. 3. La circunferencia. Objetivos conceptuales. Definir el concepto de circunferencia. Objetivos procedimentales. Calular el radio, el centro, algunos puntos

Más detalles

Dibujo Técnico Curvas cónicas-parábola

Dibujo Técnico Curvas cónicas-parábola 22. CURVAS CÓNICAS-PARÁBOLAS 22.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar

Más detalles

Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad.

Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. LUGARES GEOMÉTRICOS. CÓNICAS. 9.1 LUGARES GEOMÉTRICOS Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. Llamando X(,) a las coordenadas del punto genérico aplicando analíticamente

Más detalles

ALGEBRA. Curso: 3 E.M. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Unidad de Aprendizaje: La Parábola

ALGEBRA. Curso: 3 E.M. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Unidad de Aprendizaje: La Parábola Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: La Parábola Capacidades/Destreza/Habilidad: Racionamiento Matemático/ Aplicación / Calcular, Resolver Valores/ Actitudes: Respeto,

Más detalles

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1 UCV FACULTAD DE INGENIERIA CALCULO I 16/04/010 Solución al primer eamen parcial 1. Encuentre el conjunto de todos los números reales que satisfacen el sistema de inecuaciones - 3 4 4 0 1 1 1 Solución:

Más detalles

1. Usando la definición, hallar la ecuación de la parábola que tiene su foco en F(2,0) y su dirección DD es la recta de ecuación x = -2.

1. Usando la definición, hallar la ecuación de la parábola que tiene su foco en F(2,0) y su dirección DD es la recta de ecuación x = -2. Ejercicios resueltos sobre parabolas: 1. Usando la definición, hallar la ecuación de la parábola que tiene su foco en F(2,0) y su dirección DD es la recta de ecuación x = -2. Trácese la gráfica con los

Más detalles

INSTITUTO UNIVERSITARIO DE CALDAS DOCENTE: ING. CRISTINA CANO. TEMA: LA PARABOLA. GRADO: FECHA: MARZO 7 DE 2016.

INSTITUTO UNIVERSITARIO DE CALDAS DOCENTE: ING. CRISTINA CANO. TEMA: LA PARABOLA. GRADO: FECHA: MARZO 7 DE 2016. Matemáticas III Unidad IV INSTITUTO UNIVERSITARIO DE CALDAS DOCENTE: ING. CRISTINA CANO. TEMA: LA PARABOLA. GRADO: 11-4. FECHA: MARZO 7 DE 2016. CARACTERIZACIÓN GEOMÉTRICA OBJETIVO Resolver problemas que

Más detalles

ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia.

ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia. ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de 2012. Circunferencia. Elementos de la circunferencia. El segmento de recta es una cuerda. El segmento de recta es una cuerda que pasa por el centro, por lo tanto

Más detalles

cónicas. 1. Introducción. 9/ Las cónicas.

cónicas. 1. Introducción. 9/ Las cónicas. 9 Las cónicas.. Introducción. Siguiendo la tradición clásica griega y como su nombre da a entender, las secciones cónicas resultan de seccionar una superficie cónica de revolución mediante un plano. Las

Más detalles

P(x,y) F Foco PF PA. e =

P(x,y) F Foco PF PA. e = MATEMÁTICAS BÁSICAS CÓNICAS DEFINICIÓN DE CÓNICA Dada una recta fija L un fijo F no contenido en esa recta, se llama cónica al lugar geométrico de un que se mueve en el plano, de tal manera que la razón

Más detalles

Dibujo Técnico Curvas cónicas

Dibujo Técnico Curvas cónicas 23. CURVAS CÓNICAS 23.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar alrededor

Más detalles

ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A

ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A CENTRO DE ESTUDIOS DE BACHILLERATO LIC. JESÚS REYES HEROLES ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE GEOMETRÍA G E O M É T R Í A GUÍA ANALÍTICA A N A L Í T I C A G U

Más detalles

GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA

GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA LA CIRCUNFERENCIA CONTENIDO. Ecuación común de la circunferencia Ejemplos. Ecuación general de la circunferencia. Análisis de la ecuación. Ejercicios Estudiaremos cuatro curvas que por su importancia aplicaciones

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS

Más detalles

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6. ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles

LUGARES GEOMÉTRICOS. CÓNICAS

LUGARES GEOMÉTRICOS. CÓNICAS 9 LUGARES GEOMÉTRICOS. CÓNICAS Página PARA EMPEZAR, RELEXIONA Y RESUELVE Cónicas abiertas: parábolas e hipérbolas Completa la siguiente tabla, en la que α es el ángulo que forman las generatrices con el

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.

Más detalles

LECCIÓN Nº 04 LA PARABOLA

LECCIÓN Nº 04 LA PARABOLA LECCIÓN Nº 04 LA PARABOLA Parábola El conjunto de puntos del plano tales que están a la misma distancia de una recta dada y de un punto dado F que no este sobre recibe el nombre de parábola. El punto F

Más detalles

Matemáticas IV. Ing. Domingo Ornelas Pérez

Matemáticas IV. Ing. Domingo Ornelas Pérez Matemáticas IV Ing. Domingo Ornelas Pérez COMPETENCIA DE LA ASIGNATURA Formula y resuelve problemas sobre áreas y perímetros de polígonos, rectas y secciones cónicas de su entorno, a través de métodos

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA 1) Sean las rectas EJERCICIOS DE GEOMETRÍA x 2y 6z 1 r : x y 0 x y 1 s: z 2 a a) Determinar la posición relativa de r y s según los valores de a. b) Calcular la distancia entre las rectas r y s cuando

Más detalles

Lugares geométricos. Cónicas

Lugares geométricos. Cónicas Lugares geométricos. Cónicas Lugares geométricos. Cónicas LITERATURA Y MATEMÁTICAS El rescoldo Después de Navidad [9], Jesús Vio tuvo una larga charla con [el profesor] Harold Lardy para orientar el trabajo

Más detalles

22 CURVAS CÓNICAS- HIPÉRBOLAS

22 CURVAS CÓNICAS- HIPÉRBOLAS 22 CURVAS CÓNICAS- HIPÉRBOLAS 22.1 Características generales. La hipérbola se obtiene al cortar la superficie cónica por un plano paralelo al eje que corta las dos hojas de la cónica. 22.2 Focos y directrices.

Más detalles

ECUACIÓN ORDINARIA DE LA ELIPSE CON CENTRO FUERA DEL ORIGEN

ECUACIÓN ORDINARIA DE LA ELIPSE CON CENTRO FUERA DEL ORIGEN ECUACIÓN ORDINARIA DE LA ELIPSE CON CENTRO FUERA DEL ORIGEN Sugerencias para quien imparte el curso Consideramos conveniente realizar todo el proceso de obtención de la ecuación ordinaria de la elipse

Más detalles

Geometría Analítica. Samuel Gitler. Departamento de Matemáticas CINVESTAV IPN México

Geometría Analítica. Samuel Gitler. Departamento de Matemáticas CINVESTAV IPN México Departamento de Matemáticas CINVESTAV IPN México 2010 Primeras Nociones de Tomemos dos rectas una paralela al borde superior de esta pantalla y otra paralela al borde lateral

Más detalles

Cónicas. Dibujo I, Geometría Tema 7 ETSIN. Copyright All rights reserved.

Cónicas. Dibujo I, Geometría Tema 7 ETSIN.  Copyright All rights reserved. Cónicas Dibujo I, Geometría Tema 7 ETSIN http://debin.etsin.upm.es/~geometria/ Copyright 2008. All rights reserved. Objetivos Con este objeto de aprendizaje conseguirás: Recordar las propiedades de estas

Más detalles

1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) y r = 5. Graficar. R: (x +8) 2 + (y 2) 2 = 25

1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) y r = 5. Graficar. R: (x +8) 2 + (y 2) 2 = 25 SECCIONES CONICAS CIRCUNFERENCIA 1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) r = 5. Graficar. R: ( +8) 2 + ( 2) 2 = 25 2- Dar la ecuación general de la circunferencia de centro

Más detalles

RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse)

RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse) RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse) 1. LUGARES GEOMÉTRICOS Definición: Se llama lugar geométrico a la figura que forman un conjunto de puntos que cumplen una determinada

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO. RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN

Más detalles

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 3 Geometría del plano y del espacio José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS EJERCICIOS PROPUESTOS ) Se dan los siguientes puntos por sus coordenadas: A(3, 0), B(, 0), C(0, ) y sea P un punto variable sobre el eje. i) Hallar la ecuación de la recta (AC) y de la recta (r) perpendicular

Más detalles

UNIDAD 4. ELIPSE, CIRCUNFERENCIA Y SU ECUACIONES CARTESIANAS.

UNIDAD 4. ELIPSE, CIRCUNFERENCIA Y SU ECUACIONES CARTESIANAS. UNIDAD 4: : EELLI IPSSEE CIRCUNFFEEREENCI IA Y SSUSS EECUACI IONEESS CARTEESSI IANASS UNIDAD 4. ELIPSE, CIRCUNFERENCIA Y SU ECUACIONES CARTESIANAS. PROPÓSITOS: Reafirmar el método analítico al obtener

Más detalles

, x es la variable independiente e y es la variable dependiente.

, x es la variable independiente e y es la variable dependiente. INSTITUCIÓN EDUCATIVA COLEGIO ARTÍSTICO RAFAEL CONTRERAS NAVARRO OCAÑA N.S. ASIGANTURA: MATEMÁTICAS OCTAVO GRADO DOCENTE: Esp. HENRY CARRASCAL C. III PERÍODO FUNCIÓN Y ECUACIÓN CUADRÁTICA 1. DEFINICIÓN

Más detalles

1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) y r = 5.Graficar.

1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) y r = 5.Graficar. SECCIONES CONICAS CIRCUNFERENCIA 1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) r = 5.Graficar. R: ( +8) 2 + ( 2) 2 = 25 2- Dar la ecuación general de la circunferencia de centro

Más detalles