Geometría de las cáscaras

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Geometría de las cáscaras"

Transcripción

1 Geometría de las cáscaras

2 Geometría de las cáscaras Las curvaturas correspondientes a los arcos diferenciales dsx y dsy : 1 2 cte cte x x r' y 1 r' K 2 K1 El factor K= K1.K2 es el denominado Indice de curvatura de Gauss. x P n1 r x t1 t2 dsx r y dsy Q S 1 R 1 + d 1 Este índice, que en general es una función de 1 y 2, determina las características geométricas de la superficie d 2

3 Geometría de las cáscaras a) Casos en que K=0 b) Casos en que K es distinto de cero. Lamina cilindrica Esfera Paraboloide hiperbólico

4 Geometría de las cáscaras El indice de Gauss clasifica las superficies de las láminas en tres clases: En 1) se agrupan las láminas esféricas, parabólicas y elípticas. En la 2) el paraboloide hiperbólico y el hiperboloide de revolución. En la 3) las láminas desarrollables, cilíndricas y cónicas. Hiperboloide de revolución

5 Geometría de las cáscaras La geometría de láminas de curvatura negativa hace que éstas estén sujetas a grandes desplazamientos, puesto que pequeñas deformac. en el plano medio puede dar lugar a grandes flechas transversales. K (-) Placa en ménsula (paraboloide hiperbólico) Deformaciones inextensibles K (+) Lámina con curvatura positiva No hay deformaciones inextensibles

6 Geometría de las cáscaras Consideraciones para el diseño: a) Curvatura b) Condiciones de contorno Lámina en paraboloide hiperbólico con vigas de borde rígidas. Lámina esférica con gran lucernario.

7 Geometría de las cáscaras Superficies de revolución Son engendradas por el giro o rotación de una curva plana alrededor de un eje. esta curva se llama meridiana y el plano que la contiene plano meridiano. r Una superficie de revolución tiene en Coordenadas cilíndricas la ecuación: r z = z (r) (depende solamente de r )

8 Geometría de las cáscaras Superficies de revolución Si cortamos un elemento de superficie entre dos meridianos adyascentes Y dos planos próximos paralelos, obtendremos el elemento de la figura: z n P r Q d r2 O3 O2 d O1 t2 t1 1 r1 En forma paramétrica: 2 S R x r = r ( 1, 2) x = r cos y = r sen z = z ( r ) y

9 Geometría de las cáscaras Superficies de revolución ds1 A 1 d 1 d S2 A 2 d 2 Siendo A1 y A2 parámetros. A1 es la long del arco del meridiano para dz = 1 A2 es la long.del arco del paralelo para d = 1

10 Geometría de las cáscaras Superficies de revolución Si de los extremos del paralelogramo curvilíneo PQRS,trazamos las direcciones normales desde cada punto de su contorno: Se puede demostrar que la superficie PQP Q es desarrollable (no plana) y a lo largo de un paralelo nos describe un tronco de cono.

11 Geometría de las cáscaras Superficies de traslación La curva C designada directriz se traslada paralelamente a su plano vertical, apoyándose al recorrer su trayectoria sobre la curva C designada generatriz, originando en su movimiento la su perficie de traslación indicada en la figura.

12 Geometría de las cáscaras Superficies regladas Paraboloide hiperbólico reglado

13 Geometría de las cáscaras Clasificación

14 PROPIAS Hiperbólicas

15 PROPIAS Hiperbólicas

16 Geometría de las cáscaras Superficies de traslación La expresión analítica de las superficies de traslación de planta rectangular, en coordenadas cartesianas,está dado por: Paraboloide hiperbólico

17 PROPIAS Elípticas

18 PROPIAS Elípticas

19 Geometría de las cáscaras Superficies de traslación Paraboloide elíptico

20 IMPROPIAS

21 IMPROPIAS

22 Geometría de las cáscaras Superficies de traslación Cilindro Parabólico

23 ESTRUCTURAS LAMINARES Estructuras portantes bidimensionales Superficie curva: Cáscara Superficie plana: Placa

24 Teoría de las Cáscaras Delgadas Hipotesis fundamentales: El material se supone continuo, isótropo y homogéneo. De comportamiento elástico y lineal. Las deformaciones elásticas son pequeñas en relación al espesor de la cáscara. La normal a la superficie media se mantiene tras la deformación. Se podrán despreciar las tensiones normales perpendiculares a la sup. media.

25 Teoría Membranal de las cáscaras de revolución Las cáscaras de revolución son la clase más importante de cáscaras para la construcción de cúpulas y depósitos. Además de esto, son más fácil de describir matemáticamente, y así, de analizarlas.

26 Teoría Membranal de las cáscaras de revolución La superficie media se genera por la rotación de una curva alrededor de un eje de la cáscara. Eje de la cáscara O1P : Radio de curvatura del meridiano O2P : Long normal de P hasta el eje paralelo Meridiano a P n t 1 O 2 O 1

27 Características de las cáscaras de revolución Fuerzas normales y fuerzas tangenciales repartidas Fuerzas de corte repartidas Momentos flectores y momentos torsores uniformemente repartidos

28 La teoría membranal solo es aplicable con condiciones de borde convenientes Dependencia del equilibrio de las fuerzas membranales con las condiciones de apoyo de una cáscara Equilibrio de las fuerzas membranales con cargas concentradas

29 Esfuerzos Normales N y Tangenciales T T Meridiano N T N

30 Esfuerzos Corte Q Q Meridiano Paralelo Q

31 Esfuerzos Momentos flectores M y torsores Mt Mt Meridiano M Paralelo M Mt

32 Esfuerzos Si cortamos un elemento de la cáscara podremos escribir las ecuaciones de equilibrio de fuerzas y las de momentos. Total de ecuaciones: 6 Total de incógnitas: 10

33 Hipótesis del estado de tensiones membranales Hay 10 incognitas (2 Torsores, 2 Flectores, 2 Tensiones Normales, 2 Tensiones Cortantes, 2 Tensiones Tangenciales) y solo 6 ecuaciones (3 sumatorias de fuerzas y 3 de momentos) El problema es indeterminado interiormente, por tanto, es necesario considerar las deformaciones para resolverlo. Es posible evitar el cálculo mediante una teoría aproximada, que en muchos casos, da resultados útiles, esta es la llamada Teoría Membranal

34 Teoría Membranal Suponiendo que una cáscara tiene el comportamiento de barras biarticuladas, pero en dos direcciones, podemos suponer: En el elemento solo aparecen fuerzas normales, y no momentos flectores ni fuerzas de corte.

35 Teoría Membranal Si calculamos la cáscara considerando los momentos flectores y fuerzas de corte, las tensiones generadas por éstas son pequeñas respecto a las tensiones generadas por las fuerzas normales Existe limitación de esta suposición, en la medida de que en realidad las membranas no tienen un comportamiento exacto al de las barras en dos direcciones.

36 Limitaciones de la Teoría Membranal: Es aplicable en condiciones de bordes convenientes. No es compatible con la teoría membranal las cargas concentradas que actúen perpendicularmente a la superficie media. El espesor de la membrana es delgado, esto es, no es gruesa y tampoco de espesor despreciable.

37 Teoría Membranal Hipótesis fundamentales: El material se supone continuo isótropo y homogéneo. De comportamiento elástico y lineal. Las deformaciones elásticas son pequeñas en relación al espesor de la cáscara.

38 Teoría Membranal Hipótesis fundamentales: La normal a la superficie media se mantiene tras la deformación. Se podrán despreciar las tensiones normales perpendiculares a la sup. media.

39 Teoría Membranal de las cáscaras de revolución Eje de la cáscara Paralelo Meridiano a P n t 1 O 2 O 1

40 Hipótesis Actúan solo tensiones normales (Nx, Ny) y tangenciales ( Nxy, Nyx ) alojadas en el plano tangente a la superficie de la membrana. P n t2 t1 Plano tangente

41 Hipótesis Generales Las tensiones normales y tangenciales son uniformes en el espesor de la membrana. No existen momentos flectores, ni torsores, ni esfuerzos de corte. Las deformaciones son muy pequeñas, por lo que se consideran inexistentes. Las deformaciones no tienen influencia sobre los esfuerzos. Interesa el cálculo de deformaciones, cuando interesa hallar esfuerzos complementarios de borde.

42 Eje Eje Condiciones necesarias para la existencia del estado membranal 1. Condiciones de deformación. Acción de frenado de los paralelos Arco Superficie membranal La linea de presiones no coincide con el meridiano. Hay flexión La linea de presiones coincide con el meridiano. No hay flexión

43 Condiciones necesarias para la existencia del estado membranal 2. Condiciones de apoyo. N1 N1 Apoyo sin equilibrio Apoyo en equilibrio

44 Condiciones necesarias para la existencia del estado membranal 3- Condiciones de carga exterior. No son compatibles las cargas concentradas que actúen perpendicularmente a la superficie media P N1 N1 Sin equilibrio

45 Membrana de revolución con simetría radial N1 N1 n r n Q N1 = Q 2 r sen

46 Membrana de revolución con simetría radial

47 Membrana de revolución con simetría radial N2 = R2 ( Z - ) N1 R1

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites INDICE 1. Desigualdades 1 1. Desigualdades 1 2. Valor absoluto 8 3. Valor absoluto y desigualdades 11 2. Relaciones, Funciones, Graficas 16 1. Conjunto. Notación de conjuntos 16 2. El plano coordenado.

Más detalles

Se puede considerar una superficie, como una lámina infinitamente delgada, que recubre un cuerpo, separa dos medios o dos regiones del espacio.

Se puede considerar una superficie, como una lámina infinitamente delgada, que recubre un cuerpo, separa dos medios o dos regiones del espacio. SUPERFICIES SUPERFICIES Se puede considerar una superficie, como una lámina infinitamente delgada, que recubre un cuerpo, separa dos medios o dos regiones del espacio. Una Superficie puede estar engendrada

Más detalles

1 Super cies regladas

1 Super cies regladas 1 Super cies regladas 1.1 De nición y ejemplos Vamos a estudiar una clase importante de super cies que son aquellas generadoas por una recta que se mueve a lo largo de una curva. Por tanto, son aquellas

Más detalles

08 Losas delgadas Teoría de Kirchhoff. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales

08 Losas delgadas Teoría de Kirchhoff. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 08 Losas delgadas Teoría de Kirchhoff Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Introducción Elementos laminares delgados Losas o placas (son elementos

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.

Más detalles

INDICE. 88 determinante 36. Familias de líneas rectas Resumen de resultados 96

INDICE. 88 determinante 36. Familias de líneas rectas Resumen de resultados 96 INDICE Geometría Analítica Plana Capitulo Primero Sistema de Coordenadas Articulo 1. Introducción 1 2. Segmento rectilíneo dirigido 1 3. Sistema coordenado lineal 3 4. Sistema coordenado en el plano 5

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

ALGEBRA Y GEOMETRÍA I DPTO. DE MATEMÁTICA ESCUELA DE FORMACIÓN BÁSICA F.C.E.I.A U.N.R

ALGEBRA Y GEOMETRÍA I DPTO. DE MATEMÁTICA ESCUELA DE FORMACIÓN BÁSICA F.C.E.I.A U.N.R ALGEBRA Y GEOMETRÍA I DPTO. DE MATEMÁTICA ESCUELA DE FORMACIÓN BÁSICA F.C.E.I.A U.N.R SUPERFICIES ING. RICARDO F. SAGRISTÁ -2006- SUPERFICIES.- 1.- Ecuaciones de superficies. Ya hemos estudiado la superficie

Más detalles

1 CUÁDRICAS Cuádricas. Estudio particular. 1 x y z. 1 x y z. a 00 a 01 a 02 a 03 a 10 a 11 a 12 a 13 a 20 a 21 a 22 a 23 a 30 a 31 a 32 a 33

1 CUÁDRICAS Cuádricas. Estudio particular. 1 x y z. 1 x y z. a 00 a 01 a 02 a 03 a 10 a 11 a 12 a 13 a 20 a 21 a 22 a 23 a 30 a 31 a 32 a 33 CUÁDRICAS. CUÁDRICAS.. Cuádricas. Estudio particular. Una cuádrica se dene como el lugar geométrico de los puntos del espacio euclídeo que, respecto de una referencia cartesiana rectangular, satisfacen

Más detalles

f x = 0 f y = 6 kp=cm 3 f z = 17 kp=cm 3

f x = 0 f y = 6 kp=cm 3 f z = 17 kp=cm 3 Relación de problemas: Elasticidad lineal 1. Una barra de sección rectangular con anchura 100 mm, fondo 50 mm y longitud 2 m se somete a una tracción de 50 Tm; la barra sufre un alargamiento de 1 mm y

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

Conceptos geométricos II

Conceptos geométricos II Conceptos geométricos II Ángulo Ángulos Consecutivos Ángulos Alternos y Ángulos Correspondientes Polígono Polígono Regular Polígono Irregular Triángulo Cuadrilátero Superficie Círculo Superficie reglada

Más detalles

Superficies Curvas. Guía de clase elaborada por Ing. Guillermo Verger

Superficies Curvas. Guía de clase elaborada por Ing. Guillermo Verger Superficies Curvas Guía de clase elaborada por Ing. Guillermo Verger www.ingverger.com.ar Superficie cilíndrica Es aquella generada por una recta llamada generatriz que se mueve en el espacio manteniendose

Más detalles

INDICE. 88 determinante 36. Familias de líneas rectas Resumen de resultados 96 Capitulo IV

INDICE. 88 determinante 36. Familias de líneas rectas Resumen de resultados 96 Capitulo IV INDICE Geometría Analítica Plana Capitulo Primero Artículo 1. Introducción 1 2. Segmento rectilíneo dirigido 1 3. Sistema coordenado lineal 3 4. Sistema coordenado en el plano 5 5. Carácter de la geografía

Más detalles

Mecánica. Cecilia Pardo Sanjurjo. Tema 04. Cables. DPTO. DE INGENIERÍA ESTRUCTURAL Y MECÁNICA

Mecánica. Cecilia Pardo Sanjurjo. Tema 04. Cables. DPTO. DE INGENIERÍA ESTRUCTURAL Y MECÁNICA Mecánica Tema 04. Cables. Cecilia Pardo Sanjurjo DPTO. DE INGENIERÍA ESTRUCTURAL Y MECÁNICA Este tema se publica bajo Licencia: CreaHve Commons BY NC SA 3.0 Cables Los hilos o cables son elementos ampliamente

Más detalles

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje. LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de

Más detalles

1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de

1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de 1. Calcular el momento de inercia de una lámina rectangular y plana de dimensiones a y b, cuando gira sobre un eje perpendicular a su base a y paralelo a b. 7. Calcular el momento de inercia de un cilindro

Más detalles

LA PARÁBOLA ECUACIÓN CANÓNICA DE LA PARÁBOLA DEFINICIÓN ELEMENTOS DE LA PARÁBOLA. x 2px p y x 2px p. Geometría Analítica

LA PARÁBOLA ECUACIÓN CANÓNICA DE LA PARÁBOLA DEFINICIÓN ELEMENTOS DE LA PARÁBOLA. x 2px p y x 2px p. Geometría Analítica ECUACIÓN CANÓNICA DE LA PARÁBOLA DEFINICIÓN LA PARÁBOLA Parábola es el lugar geométrico de todos los puntos P del plano que equidistan de una recta fija llamada directriz (L) y de un punto fijo exterior

Más detalles

1.- Torsión. Momento de Torsión

1.- Torsión. Momento de Torsión MECÁNICA TÉCNICA TEMA XX 1.- Torsión. Momento de Torsión En un caso más general, puede suceder que el plano del Momento, determinado por el momento resultante de todos los momentos de las fuerzas de la

Más detalles

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q. 1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

CAPÍTULO IV: ANÁLISIS ESTRUCTURAL 4.1. Introducción al comportamiento de las estructuras Generalidades Concepto estructural Compo

CAPÍTULO IV: ANÁLISIS ESTRUCTURAL 4.1. Introducción al comportamiento de las estructuras Generalidades Concepto estructural Compo CAPITULO 0: ACCIONES EN LA EDIFICACIÓN 0.1. El contexto normativo Europeo. Programa de Eurocódigos. 0.2. Introducción al Eurocódigo 1. Acciones en estructuras. 0.3. Eurocódigo 1. Parte 1-1. Densidades

Más detalles

I.PROGRAMA DE ESTUDIOS. Unidad 1. Conceptos básicos de la teoría de las estructuras

I.PROGRAMA DE ESTUDIOS. Unidad 1. Conceptos básicos de la teoría de las estructuras I.PROGRAMA DE ESTUDIOS Unidad 1 Conceptos básicos de la teoría de las estructuras 1.1.Equilibrio 1.2.Relación fuerza desplazamiento 1.3.Compatibilidad 1.4.Principio de superposición 1.5.Enfoque de solución

Más detalles

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV FISICA PREUNIERSITARIA MOIMIENTO CIRCULAR - MCU - MCU MOIMIENTO CIRCULAR - MCU - MCU CONCEPTO Es el movimiento de trayectoria circular en donde el valor de la velocidad del móvil se mantiene constante

Más detalles

1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y

1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 5 1. Hallar la ecuación del plano que

Más detalles

B22 Homología. Geometría plana

B22 Homología. Geometría plana Geometría plana B22 Homología Homología y afinidad Homología: es una transformación biunívoca e inequívoca entre los puntos de dos figuras F y F'. A cada punto y recta de la figura F le corresponde un

Más detalles

2- El flujo de un campo vectorial se define para una superficie abierta o cerrada?

2- El flujo de un campo vectorial se define para una superficie abierta o cerrada? ASIGNATURA FISICA II AÑO 2012 GUIA NRO. 2 LEY DE GAUSS Bibliografía Obligatoria (mínima) Capítulo 24 Física de Serway Tomo II Apunte de la cátedra: Capìtulo III PREGUNTAS SOBRE LA TEORIA Las preguntas

Más detalles

Dibujar los siguientes cuerpos, de los que se dan algunos de sus elementos.

Dibujar los siguientes cuerpos, de los que se dan algunos de sus elementos. Cilindro recto de altura mm. Cilindro oblicuo de altura mm. Tronco de cilindro recto. Cono recto de altura mm. Cono oblicuo de vértice V. Tronco de cono recto de Cilindro recto de altura mm. Cilindro oblicuo

Más detalles

5.- Superficies Superficies regladas

5.- Superficies Superficies regladas 5.- Superficies 5.1.- Superficies regladas Una de las grandes aportaciones de Gaudí a la arquitectura moderna ha sido el uso constructivo de las superficies regladas. Muchas de ellas contaban con una historia

Más detalles

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC:

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC: ÓPTICA GEOMÉTRICA Conceptos generales: Imágenes reales. No se ven a simple vista, pero pueden recogerse sobre una pantalla. Se forman por la intersección de rayos convergentes. Imágenes virtuales. No existen

Más detalles

Lección 4. Integrales múltiples. 4. Superficies parametrizadas.

Lección 4. Integrales múltiples. 4. Superficies parametrizadas. GRADO DE INGENIERÍA AEROESPACIAL CURSO 0 MATEMÁTICAS III DPTO DE MATEMÁTICA APLICADA II Lección 4 Integrales múltiples 4 Superficies parametrizadas Representación paramétrica de una superficie La primera

Más detalles

2 Análisis de estructuras laminares

2 Análisis de estructuras laminares Contenidos 1. INTRODUCCIÓN 7 1.1. Conceptos básicos........................ 7 1.. Sobre las teorías de estructuras de pared delgada....... 9 1..1. De acuerdo al espesor relativo de la lámina...... 10 1...

Más detalles

Ecuaciones diferenciales de Equilibrio

Ecuaciones diferenciales de Equilibrio Ecuaciones diferenciales de Equilibrio 28 de marzo de 2006 1. Elasticidad en una dimensión 1.1. Esfuerzo σ y carga lineal b(x) Para examinar un cuerpo desde el contínuo, que es la primera hipótesis (a),

Más detalles

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada Dirección de una curva Dado que la derivada de f (x) se define como la pendiente de la recta tangente

Más detalles

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO.

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. FACULTAD DE MATEMATICAS UNIVERSIDAD VERACRUZANA 2010 Xalapa, Ver. México 1 1. La distancia entre dos puntos en la recta real es 5. Si uno de los puntos

Más detalles

TEMA 9 CUERPOS GEOMÉTRICOS

TEMA 9 CUERPOS GEOMÉTRICOS Tel: 98 9 6 91 Fax: 98 1 89 96 TEMA 9 CUERPOS GEOMÉTRICOS Objetivos / Criterios de evaluación O.1.1 Conocer las fórmulas de áreas y volúmenes de figuras geométricas sencillas de D. O.1. Resolver problemas

Más detalles

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIDAD III. HIDROCINEMÁTICA Introducción. La hidrocinemática o cinemática de los líquidos se ocupa del estudio de las partículas que integran

Más detalles

e+ 2 Fay* Límites de una función Teoremas de los límites de funciones Límites unilaterales Límites infinitos 105

e+ 2 Fay* Límites de una función Teoremas de los límites de funciones Límites unilaterales Límites infinitos 105 e+ I f 1.1 Números reales y desigualdades 2 1.2 Coordenadas y rectas 16 1.3 Circunferencias y gráficas de ecuaciones 32 1.4 Funciones 42 1.5 Gráficas de funciones S5 1.6 Funciones trigonométricas 61 Ejercicios

Más detalles

Mecánica del Cuerpo Rígido

Mecánica del Cuerpo Rígido Mecánica del Cuerpo Rígido Órdenes de Magnitud Cinemática de la Rotación en Contexto 7.1 Estime la frecuencia de giro a potencia máxima de un ventilador de techo y su correspondiente velocidad angular.

Más detalles

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 3 Geometría del plano y del espacio José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es

Más detalles

Campo Eléctrico en el vacío

Campo Eléctrico en el vacío Campo Eléctrico en el vacío Electrostática: Interacción entre partículas cargadas q1 q2 Ley de Coulomb En el vacío: K = 8.99 109 N m2/c2 0 = 8.85 10 12 C2/N m2 Balanza de torsión Electrostática: Interacción

Más detalles

CONSIDERACIONES GENERALES SOBRE ESTÁTICA

CONSIDERACIONES GENERALES SOBRE ESTÁTICA CONSIDERACIONES GENERALES SOBRE ESTÁTICA Índice 1. CONCEPTOS ÚTILES 2 1.1. Configuración geométrica de un sistema....................... 2 1.2. Ligaduras....................................... 2 1.3. Coordenadas

Más detalles

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas.

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Introducción y ecuaciones que rigen la propagación del oleaje. La propagación de oleaje en un fluido es un proceso no lineal. Podemos tratar

Más detalles

Mecánica de Fluidos. Análisis Diferencial

Mecánica de Fluidos. Análisis Diferencial Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de

Más detalles

DIBUJO TÉCNICO. UNIDAD DIDÁCTICA VIII: Geometría 3D (IV)

DIBUJO TÉCNICO. UNIDAD DIDÁCTICA VIII: Geometría 3D (IV) UNIDAD DIDÁCTICA VIII: Geometría 3D (IV) ÍNDICE Página: 1 SUPERFICIES DE REVOLUCIÓN 2 2 SUPERFICIE CILÍNDRICA 2 21 CILINDROS 2 22 PROYECCIONES DE UN CILINDRO 3 23 SECCIONES PLANAS 4 3 SUPERFICIES CÓNICAS

Más detalles

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación CONTENIDO Definición de sólido rígido Cálculo de la posición del centro de masas Movimiento de rotación y de traslación Movimiento del sólido rígido en el plano Momento de inercia Teorema de Steiner Tema

Más detalles

Secciones cónicas. Tema 02: Cónicas, cuádricas, construcción de conos y cilindros. Secciones Cónicas. Aplicaciones de las cónicas

Secciones cónicas. Tema 02: Cónicas, cuádricas, construcción de conos y cilindros. Secciones Cónicas. Aplicaciones de las cónicas Secciones cónicas Tema 02: Cónicas, cuádricas, construcción de conos y cilindros Juan Ignacio Del Valle Gamboa Sede de Guanacaste Universidad de Costa Rica Ciclo I - 2014 Las secciones cónicas toman su

Más detalles

Sistemas de coordenadas

Sistemas de coordenadas Sistemas de coordenadas. Introducción En un sistema de coordenadas un punto se representa como la intersección de tres superficies ortogonales llamadas superficies coordenadas del sistema: u u u = cte

Más detalles

**********************************************************************

********************************************************************** 13.1.- Representar las leyes de variación del momento flector, el esfuerzo cortante y el esfuerzo normal en la viga de la figura, acotando los valores más característicos. Hallar además la epresión analítica

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

LUGARES GEOMÉTRICOS: ELIPSE, HIPÉRBOLA, PARÁBOLA Y CIRCUNFERENCIA. APLICACIONES Y DIDÁCTICA.

LUGARES GEOMÉTRICOS: ELIPSE, HIPÉRBOLA, PARÁBOLA Y CIRCUNFERENCIA. APLICACIONES Y DIDÁCTICA. LUGARES GEOMÉTRICOS: ELIPSE, HIPÉRBOLA, PARÁBOLA Y CIRCUNFERENCIA. APLICACIONES Y DIDÁCTICA. AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO Y BACHILLERATO Resumen EN ÉSTE

Más detalles

El vector de desplazamiento también puede inscribirse como: D (r) = εe (r)

El vector de desplazamiento también puede inscribirse como: D (r) = εe (r) ENTREGA 2 Dieléctricos Elaborado por liffor astrillo, Ariel Hernández Muñoz, Rafael López Sánchez y Armando Ortez Ramos, Universidad Nacional Autónoma de Managua. Vector de desplazamiento eléctrico Se

Más detalles

MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN

MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN Concepto de Poliedro Definiremos como poliedro a un cuerpo geométrico tridimensional que encierra un espacio limitado. La palabra proviene de

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

CUERPOS EN EL ESPACIO

CUERPOS EN EL ESPACIO CUERPOS EN EL ESPACIO 1. Poliedros. 2. Fórmula de Euler. 3. Prismas. 4. Paralelepípedos. Ortoedros. 5. Pirámides. 6. Cuerpos de revolución. 6.1. Cilindros. 6.2. Conos. 6.3. Esferas. 6.4. Coordenadas geográficas.

Más detalles

Prof. Enrique Mateus Nieves. Doctorando en Educación Matemática. Cálculo multivariado REPASO DE SECCIONES CONICAS

Prof. Enrique Mateus Nieves. Doctorando en Educación Matemática. Cálculo multivariado REPASO DE SECCIONES CONICAS REPASO DE SECCIONES CONICAS SUPERFICIES CUADRICAS Y SUS TRAZAS Elipsoide x z Ecuación canónica: 1 a b c Secciones paralelas al plano x: Elipses; Secciones paralelas al plano xz: Elipses; Secciones paralelas

Más detalles

Resumen de Optica. Miguel Silvera Alonso. Octubre de 2000

Resumen de Optica. Miguel Silvera Alonso. Octubre de 2000 Resumen de Optica Miguel Silvera Alonso Octubre de 2000 Índice 1. Sistemas Opticos ideales 2 1.1. Espejo Plano................. 2 1.2. Espejo Esférico................ 2 1.3. lámina delgada................

Más detalles

RELACIÓN DE EJERCICIOS PROPUESTOS PARA EVALUACIONES DE GEOMETRÍA DESCRIPTIVA EN LOS CURSOS , ,

RELACIÓN DE EJERCICIOS PROPUESTOS PARA EVALUACIONES DE GEOMETRÍA DESCRIPTIVA EN LOS CURSOS , , RELACIÓN DE EJERCICIOS PROPUESTOS PARA EVALUACIONES DE GEOMETRÍA DESCRIPTIVA EN LOS CURSOS 2006-2007, 2007-2008, 2008-2009 PROF: MORENO VARGAS ARQ. FEBRERO 07 DIÉDRICO. PROCEDIMIENTOS El segmento MC es

Más detalles

CENTRO DE GRAVEDAD Y CENTROIDE. Considerando el sistema de n partículas fijo dentro de una región del espacio,

CENTRO DE GRAVEDAD Y CENTROIDE. Considerando el sistema de n partículas fijo dentro de una región del espacio, CENTRO DE GRAVEDAD Y CENTROIDE Centro de gravedad y centro de masa para un sistema de partículas Centro de gravedad Considerando el sistema de n partículas fijo dentro de una región del espacio, Los pesos

Más detalles

Se clasifican en dos grandes familias: las desarrollables y las alabeadas. Las propiedades fundamentales que caracterizan estas superficies son:

Se clasifican en dos grandes familias: las desarrollables y las alabeadas. Las propiedades fundamentales que caracterizan estas superficies son: A I: SUPERFICIES REGLADAS Reciben este nombre [67] las superficies generadas por el movimiento de una recta que es la generatri. A estas superficies puede adaptárseles el canto de una regla, de modo que

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

8. Geometrías no euclidianas. Modelo de Poincaré de la Geometría Hiperbólica

8. Geometrías no euclidianas. Modelo de Poincaré de la Geometría Hiperbólica LECTURA N 14 Capítulo 8 de LA GEOMETRÍA EN LA FORMACIÓN DE PROFESORES de Luis SANTALÓ - Red Olímpica. Buenos Aires. 1993 8. Geometrías no euclidianas. Modelo de Poincaré de la Geometría Hiperbólica Bibliografía:

Más detalles

La circunferencia es una curva plana y cerrada, cuyos puntos equidistan de otro punto interior llamado centro.

La circunferencia es una curva plana y cerrada, cuyos puntos equidistan de otro punto interior llamado centro. Geometría y Trigonometría Circunferencia 6. CIRCUNFERENCIA 6.1 Definición y notación de una circunferencia La circunferencia es una curva plana y cerrada, cuyos puntos equidistan de otro punto interior

Más detalles

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES TEMA : CÁLCULO DE FUNCIONES DE AIAS AIABLES. Hallar f,. f, f,. 4 4. Hallar el valor de la función f, en los puntos de la circunferencia.. Calcular los guientes límites: cos lim,, sen lim,, c, lim con,

Más detalles

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas Ondas mecánicas Definición: Una onda mecánica es la propagación de una perturbación a través de un medio. Donde. Así, la función de onda se puede escribir de la siguiente manera, Ondas transversales: Son

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA 1) Sean las rectas EJERCICIOS DE GEOMETRÍA x 2y 6z 1 r : x y 0 x y 1 s: z 2 a a) Determinar la posición relativa de r y s según los valores de a. b) Calcular la distancia entre las rectas r y s cuando

Más detalles

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:

Más detalles

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO 1. Objetivo El objetivo de esta aplicación es ilustrar cómo se pueden integrar las ecuaciones diferenciales

Más detalles

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica I Contenido 1 Introducción 2 La Circunferencia 3 Parábola 4 Elipse 5 Hiperbola Objetivos Se persigue que el estudiante:

Más detalles

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si Las pesas de la figura ruedan sin deslizar y sin 6 cm rozamiento por un plano inclinado 30 y de 10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si 100 cm las pesas parten

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

Si se incrementa el número de elementos en los cuales se ha dividido la placa y simultáneamente se disminuye el tamaño de cada elemento se obtiene

Si se incrementa el número de elementos en los cuales se ha dividido la placa y simultáneamente se disminuye el tamaño de cada elemento se obtiene Capítulo 5 Fuerzas distribuidas. Centroides y centros de gravedad Introducción La acción de la Tierra sobre un cuerpo rígido debe representarse por un gran número de pequeñas fuerzas distribuidas sobre

Más detalles

UNIDAD Nº Momento de una fuerza

UNIDAD Nº Momento de una fuerza UNIDAD Nº 3 3.1 Momento de una fuerza El efecto producido sobre un cuerpo por una fuerza de magnitud y dirección dadas, depende de la posición de la línea de acción de la fuerza. Línea de acción de F 2

Más detalles

Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo,

Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 42 Índice. 1. Superficies. 2. El espacio eucĺıdeo tridimensional. Coordenadas Cartesianas. 3. Distancia entre

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

TEMA VI: Cálculo de recipientes de pared delgada

TEMA VI: Cálculo de recipientes de pared delgada TEMA VI: Cálculo de recipientes de pared delgada 1. Introducción. Envolventes de pequeño espesor Podemos definir una envolvente como aquel sólido elástico en el que una de sus dimensiones es mucha menor

Más detalles

Los pesos de las partículas pueden reemplazarse por una única (equivalente) resultante con un punto de aplicación G bien definido.

Los pesos de las partículas pueden reemplazarse por una única (equivalente) resultante con un punto de aplicación G bien definido. UNIDAD 2 EQUILIBRIO DE CUERPOS RÍGIDOS. CENTROS DE GRAVEDAD GENERALIDADES.- El centro de gravedad es aquel que localiza el peso resultante de un sistema de partículas y el centro de masas de un sistema

Más detalles

CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE

CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE UNIERSIDD NION DE O FUTD DE INGENIERÍ EÉTRI Y EETRÓNI ESUE PROFESION DE INGENIERÍ EÉTRI ENTRO DE GREDD, ENTRO DE MS Y ENTROIDE ING. JORGE MONTÑO PISFI O, 2010 ENTRO DE GREDD, ENTRO DE MSYY ENTROIDE ENTRO

Más detalles

1.1 Proyecciones empleadas en Colombia

1.1 Proyecciones empleadas en Colombia 1.1 Proyecciones empleadas en Colombia En el país se ha determinado el empleo de dos sistemas básicos de proyección. 1.1.1 Proyección Conforme de Gauss Los mapas de escala media (1:25000 a 1:100000) se

Más detalles

3. Método de cálculo.

3. Método de cálculo. Método de cálculo 7. Método de cálculo. Como método de cálculo vamos a seguir el método de los desplazamientos, en el que las incógnitas son los desplazamientos de los nudos de la estructura. Y para estudiar

Más detalles

1.1 Introducción Las ecuaciones diferenciales como modelos matemáticos

1.1 Introducción Las ecuaciones diferenciales como modelos matemáticos 1.1.. Las ecuaciones diferenciales como modelos matemáticos Los modelos matemáticos surgen en todos los campos de la ciencia. Aunque la relación entre modelos y fenómenos físicos en otras ciencias no es

Más detalles

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos

Más detalles

CI 32B ANALISIS DE ESTRUCTURAS ISOSTATICAS 10 U.D. REQUISITOS: FI 21A, MA 22A DH:(3,0-2,0-,5,0) Obligatorio de la Licenciatura en Ingeniería Civil

CI 32B ANALISIS DE ESTRUCTURAS ISOSTATICAS 10 U.D. REQUISITOS: FI 21A, MA 22A DH:(3,0-2,0-,5,0) Obligatorio de la Licenciatura en Ingeniería Civil 1 CI 32B ANALISIS DE ESTRUCTURAS ISOSTATICAS 10 U.D. REQUISITOS: FI 21A, MA 22A DH:(3,0-2,0-,5,0) CARACTER: OBJETIVOS: CONTENIDOS Obligatorio de la Licenciatura en Ingeniería Civil Capacitar al alumno

Más detalles

Tema 7: Superficies regladas desarrollables. Pirámide-cono, prisma-cilindro.

Tema 7: Superficies regladas desarrollables. Pirámide-cono, prisma-cilindro. Tema 7: Superficies regladas desarrollables. Pirámide-cono, prisma-cilindro. Definición y representación diédrica. Las superficies regladas están generadas por el movimiento de una recta. En las superficies

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

Capítulo 8. DEFORMACIONES EN LAS VIGAS

Capítulo 8. DEFORMACIONES EN LAS VIGAS Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 8. DEFORMACIONES EN LAS VIGAS 1. APLICACIÓN DEL CÁLCULO DE LAS DEFORMACIONES A LA RESOLUCIÓN DE ESTRUCTURAS

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA UNI - NORTE Facultad de Tecnología de la Construcción. Dibujo y Geometría Descriptiva II

UNIVERSIDAD NACIONAL DE INGENIERIA UNI - NORTE Facultad de Tecnología de la Construcción. Dibujo y Geometría Descriptiva II UNIVERSIDAD NACIONAL DE INGENIERIA UNI - NORTE Facultad de Tecnología de la Construcción Dibujo y Geometría Descriptiva II Unidad II Intersecciones Ing. Sergio Navarro Hudiel Estelí, Noviembre 2005 Unidad

Más detalles

Elementos Uniaxiales Sometidos a Carga Axial Pura

Elementos Uniaxiales Sometidos a Carga Axial Pura Elementos Uniaiales Sometidos a Carga ial ura Definición: La Tensión representa la intensidad de las fuerzas internas por unidad de área en diferentes puntos de una sección del sólido aislada (Fig. 1a).

Más detalles

FUERZAS CENTRALES. Física 2º Bachillerato

FUERZAS CENTRALES. Física 2º Bachillerato FUERZAS CENTRALES 1. Fuerza central. Momento de una fuerza respecto de un punto. Momento de un fuerza central 3. Momento angular de una partícula 4. Relación entre momento angular y el momento de torsión

Más detalles

Los sistemas coordenados sirven para localizar puntos en el espacio. La localización de un punto se obtiene por intersección de tres superficies.

Los sistemas coordenados sirven para localizar puntos en el espacio. La localización de un punto se obtiene por intersección de tres superficies. Los sistemas coordenados sirven para localizar puntos en el espacio. La localización de un punto se obtiene por intersección de tres superficies. La intersección de dos superficies da lugar a una línea.

Más detalles

CUERPOS DE REVOLUCIÓN

CUERPOS DE REVOLUCIÓN PROPÓSITOS: Identificar los cuerpos redondos o de revolución. Resolver problemas, donde se aplique el volumen y área de cuerpos de revolución. CUERPOS DE REVOLUCIÓN Existen cuerpos geométricos que no tienen

Más detalles

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea

Más detalles

Estática. Equilibrio de un cuerpo rígido

Estática. Equilibrio de un cuerpo rígido Estática 5 Equilibrio de un cuerpo rígido Objectivos Escribir las ecuaciones de equilibrio de un cuerpo rígido. Concepto de diagrama de cuerpo libre para un cuerpo rígido. Resolver problemas de equilibrio

Más detalles

Cuál es la misión de un neumático? La respuesta es fácil, el neumático tiene dos misiones que cumplir:

Cuál es la misión de un neumático? La respuesta es fácil, el neumático tiene dos misiones que cumplir: Cuál es la misión de un neumático? La respuesta es fácil, el neumático tiene dos misiones que cumplir: -Permitir la transferencia de la fuerza conductora o fuerza de frenado al suelo; -Generar las fuerzas

Más detalles

CORTES A UN CONO. El problema de los cortes a un cuerpo redondo

CORTES A UN CONO. El problema de los cortes a un cuerpo redondo CORTES A UN CONO El problema de los cortes a un cuerpo redondo a) Existirá algún un cuerpo geométrico tal que al cortarse con un plano en cualquier posición, se obtenga siempre una sección de forma circular?

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

Cónicas y Cuádricas con Surfer

Cónicas y Cuádricas con Surfer Cónicas y Cuádricas con Surfer Daniel Alejandro Grimaldi 29/08/2016-2do Cuatrimestre de 2016 Denición: Se conoce como cuádrica a la supercie en R n que representa los ceros de un polinomio de grado 2 con

Más detalles

Geometría de masas: Cálculos del tensor de Inercia

Geometría de masas: Cálculos del tensor de Inercia Departamento: Física Aplicada Mecánica acional (ngeniería ndustrial) Curso 007-08 eometría de masas: Cálculos del tensor de nercia Tensor de inercia de una varilla delgada. Calculo del tensor de inercia

Más detalles

Superficies paramétricas

Superficies paramétricas SESIÓN 7 7.1 Introducción En este curso ya se han estudiando superficies S que corresponden a gráficos de funciones de dos variables con dos tipos de representaciones: Representación explícita de S, cuando

Más detalles