Nociones Básicas de Sémantica: Semántica Denotacional

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Nociones Básicas de Sémantica: Semántica Denotacional"

Transcripción

1 Nociones Básicas de Sémantica: Semántica Denotacional Análisis de Lenguajes de Programación Mauro Jaskelioff 21/08/2015

2 Acerca de la Semántica Operacional En la semántica operacional el significado de un término es el término al que termina reduciendo. En realidad ese es el significado cuando ese término final existe: Términos atascados. Secuencias de reducción infinitas. No hay un significado inherente mas allá de la sintaxis de los términos. El foco está en el comportamiento; aspectos importantes como la no terminación surgen del comportamiento.

3 Semántica Denotacional En la semántica denotacional: Hay una función semántica que mapea sintaxis a significado. El significado se da en un dominio semántico Los dominios tienen objetos semánticos apropiados (booleanos, números, funciones,... ). Pero además poseen estructura. Las funciones semánticas son totales; en particular, incluso una computación divergente es mapeada a un elemento del dominio semántico.

4 Ejemplo (1 + 2) * 3 = 9 Notar que (1 + 2) * 3 es sintaxis abstracta. Por el contrario 9 es el significado. En este caso el dominio semántico es Z. Usamos la notación, o variaciones como E para funciones semánticas. y se llaman corchetes de Scott, o también corchetes semánticos.

5 Composicionalidad Es usual requerir que la semántica denotacional sea composicional. El significado de un fragmento de programa está dado por el significado de sus partes. Una semántica composicional nos garantiza: que la semántica está bien definida; que se tengan algunas importantes propiedades de la metateoría. Nos permite razonar acerca de una parte, sin tener que tener en cuenta el todo.

6 Ejemplo de Composicionalidad (1 + 2) * 3 = La composicionalidad se evidencia en que el significado de la sintaxis abstracta (1 + 2) * 3 se define en términos del significado de sus subtérminos 1+2 y 3. La multiplicación en el lado derecho es una multiplicación semántica.

7 Definición Formalmente, una semántica denotacional de un lenguaje L está dado por un par (D, ) donde D es el dominio semántico : L D es la función de evaluación o función semántica. En casos simples D es simplemente un conjunto. En general se requiere más estructura como los dominios de la teoría de dominios

8 Ejemplo: Lenguaje de Expresiones Aritméticas Definimos una semántica denotacional (D, ) para el lenguaje: t ::= true false if t then t else t 0 succ t pred t iszero t Por simplicidad, tomamos como dominio semántico los naturales N. D = N = T N

9 Ejemplo de Función Semántica Definimos la función semántica mediante ecuaciones semánticas true = 1 false = 0 if t 1 then t 2 else t 3 = 0 = 0 succ t 1 = t pred t 1 = t 1 1 iszero t 1 = { t2 cuando t 1 0 t 3 cuando t 1 = 0 { 0 cuando t1 0 1 cuando t 1 = 0

10 Ecuaciones Dirigidas por Sintaxis La función semántica en el ejemplo anterior está bien definida ya que las ecuaciones dadas satisfacen dos condiciones fundamentales: Existe exactamente una ecuación para cada producción de la gramática abstracta. Cada ecuación expresa el significado de un término en función de los significados de sus subtérminos. Un conjunto de ecuaciones que cumple estas condiciones se dice que es dirigido por sintaxis.

11 Ejercicios Encontrar la denotación de if (iszero (succ 0)) then true else false Extender la semántica denotacional para la siguiente extensión del lenguaje t ::=... not t t & t t + t t - t t * t

12 Ejemplos extremos Podemos dar semántica denotacional a cualquier lenguaje L, con un conjunto de términos T de la siguiente maneras: Todo es igual. Tomamos como dominio semántico { }, el conjunto con un sólo elemento. Tomamos como función semántica T { } la única función posible, la función constante que devuelve siempre. Todo es distinto. Tomamos como dominio semántico el conjunto de términos T. Tomamos como función semántica T T la identidad.

13 Observaciones y Contextos Las semánticas anteriores no son muy buenas. Para formalizar esto, suponemos que existe un conjunto de términos observables, y un conjunto O de observaciones que consiste de funciones de términos observables en resultados. Un contexto C es un término observable en el cual un subtérmino fue reemplazado por un agujero (que escribimos ). Escribimos C para denotar el conjunto de contextos. C[t] denota el resultado de reemplazar el agujero por el término t.

14 Ejemplos de Observaciones y Contextos En el lenguaje para expresiones aritméticas consideramos que todos los términos son observables. Una observación de O podría ser la función de normalización de términos según la semántica operacional (sin distinguir términos atascados). Un contexto para este lenguaje es cualquier término con un agujero. Por ej. C [ ] = if then 0 else (succ 0). En general, tenemos términos no observables cuando agregamos funciones al lenguaje. A pesar de no poder observar funciones, siempre podemos ponerlas en un contexto que observe el resultado de aplicarlas (si el resultado es observable).

15 Abstracción Una función semántica 1 es tan abstracta como otra función semántica 0 cuando t, t T. t 0 = t 0 t 1 = t 1 O sea, una semántica es tan abstracta como otra, cuando iguala al menos tantos términos como ella. Por lo tanto, todas las semánticas son tan abstractas como la semántica Todo es distinto. La semántica Todo es igual es tan abstracta como cualquier otra.

16 Consistencia Una función semántica es consistente sii t, t T. t 0 = t 0 O O. C C. O(C[t]) = O(C[t ]) O sea, la semántica es consistente si nunca iguala términos que, en algún contexto, son diferenciables. En general, la semántica Todo es igual no es consistente.

17 Abstracción Total Una función semántica es totalmente abstracta sii, para todo término t y t t 0 = t 0 O O. C C. O(C[t]) = O(C[t ]) O sea, una semántica es totalmente abstracta si distingue términos sólo cuando en algún contexto tienen comportamiento diferente. Una semántica totalmente abstracta es tan abstracta como cualquier otra semántica consistente. Nota: Consistencia y abstracción total dependen de la elección de qué es observable y de cuáles son los contextos.

18 Ejercicio Considerar la semántica denotacional dada para el lenguaje de expresiones aritméticas y como observación, la evaluación a forma normal según la semántica operacional. Es una semántica consistente? Analizar si es totalmente abstracta y caso contrario dar una semántica totalmente abstracta.

19 Operacional y Denotacional Dado un lenguaje L, y dadas una semántica operacional L L. una semántica denotacional (D, ) Cómo se relacionan estas semánticas? Dos términos cerrados t 1, t 2 L son semánticamente o denotacionalmente equivalentes sii t 1 = t 2 Supongamos que los valores de D se pueden mapear a un valor V, es decir que existe una función : D V que mapea un valor semántico d D a un término que lo representa d V (recordar que V L).

20 Operacional y Denotacional (cont.) Suponiendo que el término t termina. Corrección de la semántica operacional con respecto a la denotacional: t v t = v Completitud de la semántica operacional con respecto a la denotacional: t = d t d la semántica operacional es computacionalmente adecuada con respecto a la denotacional: t v t = v

21 Resumen Formas de especificar la semántica de lenguajes. Semántica operacional. Valores,relación de evaluación, árbol de derivación, forma normal, términos atascados. Propiedades: determinismo, valores como forma normal, unicidad de formas normales, terminación. Semántica denotacional Interpreta sintaxis en un dominio semántico. Puede ser más fácil de razonar que con una semántica operacional, ya que trabajamos con objetos matemáticos, y no con sintaxis. Propiedades: abstracción, consistencia, y abstracción total. Relación entre semántica operacional y denotacional.

22 Referencias Types and Programming Languages. Benjamin Pierce. Capítulo 3. Theories of Programming Languages. J. Reynolds. The Formal Semantics of Programming Languages. G. Winskel.

Lenguajes y Compiladores

Lenguajes y Compiladores Información: http://www.cs.famaf.unc.edu.ar/wiki/ Profesores: Héctor Gramaglia, Miguel Pagano, Demetrio Vilela Régimen de regularidad y Promoción Se tomarán 2 parciales Promoción: obteniendo al menos 7

Más detalles

Lenguajes y Compiladores

Lenguajes y Compiladores 2015 Estructura de la materia a grandes rasgos: Primera Parte: Lenguaje imperativo Segunda Parte: Lenguaje aplicativo puro, y lenguaje aplicativo con referencias y asignación Ejes de contenidos de la primer

Más detalles

Escenas de episodios anteriores

Escenas de episodios anteriores Clase 16/10/2013 Tomado y editado de los apuntes de Pedro Sánchez Terraf Escenas de episodios anteriores objetivo: estudiar formalmente el concepto de demostración matemática. caso de estudio: lenguaje

Más detalles

Nota 2. Luis Sierra. Marzo del 2010

Nota 2. Luis Sierra. Marzo del 2010 Nota 2 Luis Sierra Marzo del 2010 Cada mecanismo de definición de conjuntos que hemos comentado sugiere mecanismos para definir funciones y probar propiedades. Recordemos brevemente qué son las funciones

Más detalles

Universidad Católica del Maule. Fundamentos de Computación Especificación de tipos de datos ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS

Universidad Católica del Maule. Fundamentos de Computación Especificación de tipos de datos ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS Especificación algebraica ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS Un tipo abstracto de datos se determina por las operaciones asociadas, incluyendo constantes que se consideran como operaciones sin

Más detalles

2 + intexp + intexp. (2) intexp. 2 + intexp

2 + intexp + intexp. (2) intexp. 2 + intexp 1. Semántica de un lenguaje: primera aproximación El establecer el significado de las frases de un lenguaje de programación es un problema de múltiples aristas en tanto puede tener variados objetivos,

Más detalles

Semánticas de procesos y aplicaciones

Semánticas de procesos y aplicaciones Semánticas de procesos y aplicaciones Clase 09: Manipulación básica de procesos, parte 2 Qué vimos Definición precisa de lo que es que una derivación en lógica ecuacional. Reglas de derivación. Axiomas

Más detalles

Compiladores y Lenguajes de Programación. Maria de Guadalupe Cota Ortiz

Compiladores y Lenguajes de Programación. Maria de Guadalupe Cota Ortiz Compiladores y Lenguajes de Programación Maria de Guadalupe Cota Ortiz Organizaciones que rigen las normas para estandarización de Lenguajes de Programación IEEE (Instituto de Ingenieros Eléctricos y Electrónicos)

Más detalles

Tipos Abstractos de Datos y Diseño por Contrato

Tipos Abstractos de Datos y Diseño por Contrato Tipos Abstractos de Datos y Diseño por Contrato 1.- Motivación de los tipos abstractos de datos Nuestro objetivo es obtener descripciones apropiadas de los objetos, para lo cual se necesita un método que

Más detalles

Semántica Denotacional

Semántica Denotacional Semántica Denotacional Idea: El significado de un programa es la función denotada por el programa Componentes del metalenguaje para la definición semántica denotacional de un L.P.: Dominios sintácticos

Más detalles

Métodos para la construcción de software fiable: Interpretación Abstracta. María del Mar Gallardo Melgarejo Pedro Merino Gómez

Métodos para la construcción de software fiable: Interpretación Abstracta. María del Mar Gallardo Melgarejo Pedro Merino Gómez Métodos para la construcción de software fiable: Interpretación Abstracta María del Mar Gallardo Melgarejo Pedro Merino Gómez Dpto. de Lenguajes y Ciencias de la Computación Universidad de Málaga (gallardo,pedro)@lcc.uma.es

Más detalles

Unidad II: Diseño de Bases de Datos y el modelo E-R. 2.1 El Proceso de Diseño

Unidad II: Diseño de Bases de Datos y el modelo E-R. 2.1 El Proceso de Diseño Unidad II: Diseño de Bases de Datos y el modelo E-R. 2.1 El Proceso de Diseño El proceso de diseño para una base de datos consta básicamente de 7 pasos, los cuáles se describen en la siguiente imagen.

Más detalles

Tipos Abstractos de Datos

Tipos Abstractos de Datos Objetivos Repasar los conceptos de abstracción de datos y (TAD) Diferenciar adecuadamente los conceptos de especificación e implementación de TAD Presentar la especificación algebraica como método formal

Más detalles

Clase 11. Análisis dinámico, 2ª parte.

Clase 11. Análisis dinámico, 2ª parte. Clase 11. Análisis dinámico, 2ª parte. Continuamos con el mismo tema de la clase anterior, pero esta vez nos ocuparemos principalmente de la fase de prueba. Nos detendremos brevemente en algunas de las

Más detalles

Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones:

Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones: 2. Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma informal,

Más detalles

Seminario: Expresividad semántica y lógica de segundo orden:

Seminario: Expresividad semántica y lógica de segundo orden: Seminario: Expresividad semántica y lógica de segundo orden: Eduardo Barrio Javier Castro Albano UBA 1er cuatrimestre de 2008 1.- Definiciones: L: Lenguaje: conjunto de expresiones. LP: Lenguaje de primer

Más detalles

MLM 1000 - Matemática Discreta

MLM 1000 - Matemática Discreta MLM 1000 - Matemática Discreta L. Dissett Clase 04 Resolución. Lógica de predicados c Luis Dissett V. P.U.C. Chile, 2003 Aspectos administrativos Sobre el tema vacantes: 26 personas solicitaron ingreso

Más detalles

UNIDAD I: LÓGICA PROPOSICIONAL

UNIDAD I: LÓGICA PROPOSICIONAL UNIDAD I: LÓGICA PROPOSICIONAL ASIGNATURA: INTRODUCCIÓN A LA COMPUTACIÓN CARRERAS: LICENCIATURA Y PROFESORADO EN CIENCIAS DE LA COMPUTACIÓN DEPARTAMENTO DE INFORMÁTICA FACULTAD DE CIENCIAS FÍSICO MATEMÁTICA

Más detalles

Tema 0: Funciones y gráficas

Tema 0: Funciones y gráficas Matemáticas I Tema 0: Funciones y gráficas 24/9/2012 Edgar Martínez-Moro. Índice Objetivos de aprendizaje Funciones Función inversa Funciones lineales Inversa de una función lineal Ajustando funciones

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

Secuencias. Mauro Jaskelioff 18/05/2015

Secuencias. Mauro Jaskelioff 18/05/2015 Secuencias Mauro Jaskelioff 18/05/2015 Secuencias Seq es un TAD para representar secuencias de elementos. A continuación veremos algunas de sus operaciones y las especificaremos en términos de la noción

Más detalles

Módulo 9 Sistema matemático y operaciones binarias

Módulo 9 Sistema matemático y operaciones binarias Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional

Más detalles

Ingeniería del Software I

Ingeniería del Software I - 1 - Ingeniería del Software I Introducción al Modelo Conceptual 2do. Cuatrimestre 2005 INTRODUCCIÓN... 2 CLASES CONCEPTUALES... 3 ESTRATEGIAS PARA IDENTIFICAR CLASES CONCEPTUALES... 3 Utilizar lista

Más detalles

CAPÍTULO IV BREVE DESCRIPCIÓN DE LA INFRAESTRUCTURA DE CÓMPUTO VISUAL BASIC 6.0 PARA WINDOWS

CAPÍTULO IV BREVE DESCRIPCIÓN DE LA INFRAESTRUCTURA DE CÓMPUTO VISUAL BASIC 6.0 PARA WINDOWS CAPÍTULO IV BREVE DESCRIPCIÓN DE LA INFRAESTRUCTURA DE CÓMPUTO VISUAL BASIC 6.0 PARA WINDOWS 4.1 Antecedentes históricos El lenguaje de programación BASIC (Beginner's All purpose Symbolic Instruction Code)

Más detalles

Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d

Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d Relaciones binarias En esta sección estudiaremos formalmente las parejas de objetos que comparten algunas características o propiedades en común. La estructura matemática para agrupar estas parejas en

Más detalles

una partícula como se verá más adelante. A partir de un objeto matemático como lo como el electromagnético o el de nuestro caso de estudio.

una partícula como se verá más adelante. A partir de un objeto matemático como lo como el electromagnético o el de nuestro caso de estudio. Capítulo 2 Marco Teórico En el presente capítulo se presentan algunos de los elementos básicos y principales de las herramientas utilizadas para el estudio de un campo de spin 2. La importancia de estas

Más detalles

Matrices invertibles. La inversa de una matriz

Matrices invertibles. La inversa de una matriz Matrices invertibles. La inversa de una matriz Objetivos. Estudiar la definición y las propiedades básicas de la matriz inversa. Más adelante en este curso vamos a estudiar criterios de invertibilidad

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

LENGUAJES DE CONSULTA ORIENTADOS A OBJETOS

LENGUAJES DE CONSULTA ORIENTADOS A OBJETOS LENGUAJES DE CONSULTA ORIENTADOS A OBJETOS Los lenguajes de consulta constituyen una funcionalidad importante de los SGBDOO. El usuario puede recuperar los datos especificando simplemente las condiciones

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

Ejemplos de conversión de reales a enteros

Ejemplos de conversión de reales a enteros Ejemplos de conversión de reales a enteros Con el siguiente programa se pueden apreciar las diferencias entre las cuatro funciones para convertir de reales a enteros: program convertir_real_a_entero print

Más detalles

Funciones a trozos. Imágenes de funciones definidas a trozos.

Funciones a trozos. Imágenes de funciones definidas a trozos. Funciones a trozos. Imágenes de funciones definidas a trozos. En matemáticas, una función definida a trozos (también conocida como función por partes) es una función cuya definición (la regla que define

Más detalles

Euclides extendido y Test de primalidad probabiĺıstico

Euclides extendido y Test de primalidad probabiĺıstico Euclides extendido y Test de primalidad probabiĺıstico Taller de Álgebra I Verano de 2014 Lema de Bézout Recordemos este lema: Lema (Étienne Bézout) Sean a, b Z, alguno distinto de 0. Entonces existen

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Estructuras Discretas. César Bautista Ramos Carlos Guillén Galván Daniel Alejandro Valdés Amaro

Estructuras Discretas. César Bautista Ramos Carlos Guillén Galván Daniel Alejandro Valdés Amaro Estructuras Discretas César Bautista Ramos Carlos Guillén Galván Daniel Alejandro Valdés Amaro Facultad de Ciencias de la Computación Benemérita Universidad Autónoma de Puebla 1. CONJUNTOS Y CLASES 1

Más detalles

Modulo 1 El lenguaje Java

Modulo 1 El lenguaje Java Modulo 1 El lenguaje Java 13 - Codificación en Java Una de las grandes diferencias entre Java y Pascal en cuando a la codificación es que Java se trata de un lenguaje de los llamados case sensitive Esto

Más detalles

Capítulo VI. Diagramas de Entidad Relación

Capítulo VI. Diagramas de Entidad Relación Diagramas de Entidad Relación Diagramas de entidad relación Tabla de contenido 1.- Concepto de entidad... 91 1.1.- Entidad del negocio... 91 1.2.- Atributos y datos... 91 2.- Asociación de entidades...

Más detalles

Introducción a la Programación en MATLAB

Introducción a la Programación en MATLAB Introducción a la Programación en MATLAB La programación en MATLAB se realiza básicamente sobre archivos M, o M-Files. Se los denomina de esta forma debido a su extensión.m. Estos archivos son simple archivos

Más detalles

1. Se establecen los conceptos fundamentales (símbolos o términos no definidos).

1. Se establecen los conceptos fundamentales (símbolos o términos no definidos). 1. ÁLGEBRA DE BOOLE. El álgebra de Boole se llama así debido a George Boole, quien la desarrolló a mediados del siglo XIX. El álgebra de Boole denominada también álgebra de la lógica, permite prescindir

Más detalles

Apuntes de Microcontroladores (Repaso de temas previos)

Apuntes de Microcontroladores (Repaso de temas previos) Apuntes de Microcontroladores (Repaso de temas previos) Por M. C. Miguelangel Fraga Aguilar Enero 2015 Representaciones numéricas En estos apuntes se usara el posfijo b para denotar un número escrito en

Más detalles

PROYECTO CALIDAD DE DATOS CURSO 2011

PROYECTO CALIDAD DE DATOS CURSO 2011 PROYECTO CALIDAD DE DATOS CURSO 2011 GRUPO 4 1A. PARTE: MEDICIÓN DE CALIDAD EN LAS FUENTES DE DATOS Estela Pratto C.I. 3.267.004-3 Alexander Llanes C.I. 4.587.761-0 Fernando Plachicoff C.I. 4.611.006-9

Más detalles

Proyecto de Normalización Automática de Base de Datos

Proyecto de Normalización Automática de Base de Datos Proyecto de Normalización Automática de Base de Datos Lic. Beatriz Steimberg * Resumen En el primer cuatrimestre del año 2003 se encaró el proyecto de Normalización Automática de Base de Datos. El objetivo

Más detalles

Ingeniería de Software I

Ingeniería de Software I Ingeniería de Software I Diagramas de Actividad 2 Cuatrimestre 1998 1. INTRODUCCIÓN 1 2. DIAGRAMA DE ACTIVIDAD 1 2.1. SEMÁNTICA 1 2.2. NOTACIÓN 1 2.3. EJEMPLO 2 3. ACCIÓN 3 3.1. SEMÁNTICA 3 3.2. NOTACIÓN

Más detalles

Integrales y ejemplos de aplicación

Integrales y ejemplos de aplicación Integrales y ejemplos de aplicación I. PROPÓSITO DE ESTOS APUNTES Estas notas tienen como finalidad darle al lector una breve introducción a la noción de integral. De ninguna manera se pretende seguir

Más detalles

{} representa al conjunto vacío, es decir, aquel que no contiene elementos. También se representa por.

{} representa al conjunto vacío, es decir, aquel que no contiene elementos. También se representa por. 2. Nociones sobre Teoría de Conjuntos y Lógica Para llevar a cabo nuestro propósito de especificar formalmente los problemas y demostrar rigurosamente la correctitud de nuestro programas, introduciremos

Más detalles

y los conos serán todos los diagramas (acá usamos la palabra en el sentido habitual, no en el que acabamos de definir) de la forma

y los conos serán todos los diagramas (acá usamos la palabra en el sentido habitual, no en el que acabamos de definir) de la forma (Novena clase: Límites y colímites) Las definiciones de obeto terminal, producto binario, ecualizador y pullback, son casos particulares de un concepto general, llamado límite, que presentaremos a continuación.

Más detalles

Programación Genética

Programación Genética Programación Genética Programación Genética consiste en la evolución automática de programas usando ideas basadas en la selección natural (Darwin). No sólo se ha utilizado para generar programas, sino

Más detalles

SÍNTESIS Y PERSPECTIVAS

SÍNTESIS Y PERSPECTIVAS SÍNTESIS Y PERSPECTIVAS Los invitamos a observar, a identificar problemas, pero al mismo tiempo a buscar oportunidades de mejoras en sus empresas. REVISIÓN DE CONCEPTOS. Esta es la última clase del curso.

Más detalles

Resumen. El rol del lenguaje SQL en los SGBDR y en la Relacional. cjimenez@inf.udec.cl, tamrstro@inf.udec.cl

Resumen. El rol del lenguaje SQL en los SGBDR y en la Relacional. cjimenez@inf.udec.cl, tamrstro@inf.udec.cl El rol del lenguaje SQL en los SGBDR y en la Relacional. cjimenez@inf.udec.cl, tamrstro@inf.udec.cl Resumen demandas de almacenamiento y procesamiento de datos. Es el conjunto de estas dos capacidades

Más detalles

Curso: Teoría de la Computación. Unidad 2, Sesión 8: Complejidad computacional (2)

Curso: Teoría de la Computación. Unidad 2, Sesión 8: Complejidad computacional (2) Curso: Teoría de la Computación. Unidad 2, Sesión 8: Complejidad computacional (2) Instituto de Computación, Facultad de Ingeniería Universidad de la República, Montevideo, Uruguay dictado semestre 2-2009

Más detalles

EJERCICIOS DEL CAPÍTULO I

EJERCICIOS DEL CAPÍTULO I EJERCICIOS DEL CAPÍTULO I 1. Un grupo es una tipo particular de Ω estructura cuando Ω es el tipo Ω = { } siendo una operación de aridad dos. Pero un grupo también es una Ω -estructura siendo Ω = {e, i,

Más detalles

Capítulo I. Marco Teórico

Capítulo I. Marco Teórico 1 Capítulo I. Marco Teórico 1. Justificación Hoy en día existe una gran diversidad de aplicaciones que corren sobre la World Wide Web (WWW o Web), y cada una orientada a un fin en particular, el cuál depende

Más detalles

Auditoría Externa: Responsabilidades cuando se Trabaja con Otros Profesionales

Auditoría Externa: Responsabilidades cuando se Trabaja con Otros Profesionales Auditoría Externa: Responsabilidades cuando se Trabaja con Otros Profesionales María Belén Padin 1 Universidad de Buenos Aires RESUMEN DEL ARTÍCULO El contador público cuando acepta ser designado como

Más detalles

Modelo Semántico Extendido de Greeno Un análisis necesario. María Elena Truyol

Modelo Semántico Extendido de Greeno Un análisis necesario. María Elena Truyol Modelo Semántico Extendido de Greeno Un análisis necesario María Elena Truyol Objetivos Comprender la propuesta. Discutir sus alcances y sus limitaciones. Evaluar los aportes que la misma puede realizar

Más detalles

Ejemplos y problemas resueltos de análisis complejo (2014-15)

Ejemplos y problemas resueltos de análisis complejo (2014-15) Variable Compleja I (3 o de Matemáticas y 4 o de Doble Titulación) Ejemplos y problemas resueltos de análisis complejo (04-5) Teoremas de Cauchy En estos apuntes, la palabra dominio significa, como es

Más detalles

BASE DE DATOS RELACIONALES

BASE DE DATOS RELACIONALES BASE DE DATOS RELACIONALES Una base de datos relacional es una base de datos que cumple con el modelo relacional, el cual es el modelo más utilizado en la actualidad para implementar bases de datos ya

Más detalles

Anexo a la guía 4 Geometría: ejemplos y comentarios

Anexo a la guía 4 Geometría: ejemplos y comentarios Anexo a la guía 4 Geometría: ejemplos y comentarios Sergio Dain 26 de mayo de 2014 En las guías 1 y 2 discutimos vectores, covectores y tensores de manera puramente algebraica, sin hacer referencia a la

Más detalles

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales:

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales: ADICIÓN Y RESTA DE NUMEROS REALES ADICIÓN L a adición o suma de números reales se representa mediante el símbolo más (+) y es considerada una operación binaria porque se aplica a una pareja de números,

Más detalles

March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO

March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO March 25, 2010 CAPÍTULO 2: LÍMITE Y CONTINUIDAD DE FUNCIONE EN EL EPACIO EUCLÍDEO 1. Producto Escalar en R n Definición 1.1. Dado x = (x 1,..., x n ), y = (y 1,..., y n ) R n, su producto escalar está

Más detalles

UNIDAD 2: Abstracción del Mundo real Al Paradigma Orientado a Objetos

UNIDAD 2: Abstracción del Mundo real Al Paradigma Orientado a Objetos 2.1. Principios básicos del Modelado de Objetos UNIDAD 2: Abstracción del Mundo real Al Paradigma Orientado a Objetos Hoy en día muchos de los procesos que intervienen en un negocio o empresa y que resuelven

Más detalles

Unidad 1 Sistemas de numeración Binario, Decimal, Hexadecimal

Unidad 1 Sistemas de numeración Binario, Decimal, Hexadecimal Unidad 1 Sistemas de numeración Binario, Decimal, Hexadecimal Artículo adaptado del artículo de Wikipedia Sistema Binario en su versión del 20 de marzo de 2014, por varios autores bajo la Licencia de Documentación

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

Algoritmos y Estructuras de Datos II

Algoritmos y Estructuras de Datos II 8 de abril de 2015 Clase de hoy 1 Repaso Tipos concretos versus abstractos Tipos abstractos de datos 2 3 4 TAD Pila Especificación del TAD Pila Repaso Tipos concretos versus abstractos Tipos abstractos

Más detalles

Fundamentos algebraicos

Fundamentos algebraicos Fundamentos algebraicos 1. Grupos Sea S un conjunto. Se denota con S S el conjunto de los pares ordenados (s, t) con s, t en S. Un mapeo de S S en S se llama operación binaria en S. Esta definición requiere

Más detalles

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b La función lineal Una función polinomial de grado uno tiene la forma: y = a 0 + a 1 x El semestre pasado estudiamos la ecuación de la recta. y = m x + b En la notación de funciones polinomiales, el coeficiente

Más detalles

Matemáticas 1204, 2013 Semestre II Tarea 5 Soluciones

Matemáticas 1204, 2013 Semestre II Tarea 5 Soluciones Matemáticas 104, 01 Semestre II Tarea 5 Soluciones Problema 1: Una definición errónea de línea tangente a una curva es: La línea L es tangente a la curva C en el punto P si y sólamente si L pasa por C

Más detalles

El modelo relacional

El modelo relacional El modelo relacional El modelo relacional constituye una alternativa para la organización y representación de la información que se pretende almacenar en una base de datos. Se trata de un modelo teórico

Más detalles

COMO CREAR UN DIAGRAMA DE FLUJO

COMO CREAR UN DIAGRAMA DE FLUJO COMO CREAR UN DIAGRAMA DE FLUJO Los diagramas de flujo son una manera de representar visualmente el flujo de datos a través de sistemas de tratamiento de información. Los diagramas de flujo describen qué

Más detalles

Ejercicios. 1. Definir en Maxima las siguientes funciones y evaluarlas en los puntos que se indican:

Ejercicios. 1. Definir en Maxima las siguientes funciones y evaluarlas en los puntos que se indican: Ejercicios. 1. Definir en Maxima las siguientes funciones y evaluarlas en los puntos que se indican: 2. Graficar las funciones anteriores, definiendo adecuadamente los rangos de x e y, para visualizar

Más detalles

Embelleciendo a Gödel

Embelleciendo a Gödel Embelleciendo a Gödel Eric C.R. Hehner - Universidad de Toronto 1990 1. Introducción Los teoremas de la incompletitud de Kurt Gödel [1931] se consideran entre los más importantes resultados de la matemática.

Más detalles

Técnicas Avanzadas de Testing Automático

Técnicas Avanzadas de Testing Automático Técnicas Avanzadas de Testing Automático Marcelo Frias ITBA - Buenos Aires, Argentina CONICET Preliminares: Calidad Validación y Verificación Especificaciones y V&V Análisis estático y dinámico Inspecciones

Más detalles

En la actualidad ASCII es un código de 8 bits, también conocido como ASCII extendido, que aumenta su capacidad con 128 caracteres adicionales

En la actualidad ASCII es un código de 8 bits, también conocido como ASCII extendido, que aumenta su capacidad con 128 caracteres adicionales Definición(1) Sistemas numéricos MIA José Rafael Rojano Cáceres Arquitectura de Computadoras I Un sistema de representación numérica es un sistema de lenguaje que consiste en: un conjunto ordenado de símbolos

Más detalles

Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 2012

Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 2012 Grupo: Matrícula: Nombre: Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 22. (pts) Sea A una matriz cuadrada. Indique validez a cada una de las siguientes

Más detalles

1. Números Reales 1.1 Clasificación y propiedades

1. Números Reales 1.1 Clasificación y propiedades 1. Números Reales 1.1 Clasificación y propiedades 1.1.1 Definición Número real, cualquier número racional o irracional. Los números reales pueden expresarse en forma decimal mediante un número entero,

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................

Más detalles

Datos del autor. Nombres y apellido: Germán Andrés Paz. Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina

Datos del autor. Nombres y apellido: Germán Andrés Paz. Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina Datos del autor Nombres y apellido: Germán Andrés Paz Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina Correo electrónico: germanpaz_ar@hotmail.com =========0========= Introducción

Más detalles

Unidad V: Integración

Unidad V: Integración Unidad V: Integración 5.1 Introducción La integración es un concepto fundamental de las matemáticas avanzadas, especialmente en los campos del cálculo y del análisis matemático. Básicamente, una integral

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

Semana 08 [1/15] Axioma del Supremo. April 18, 2007. Axioma del Supremo

Semana 08 [1/15] Axioma del Supremo. April 18, 2007. Axioma del Supremo Semana 08 [1/15] April 18, 2007 Acotamiento de conjuntos Semana 08 [2/15] Cota Superior e Inferior Antes de presentarles el axioma del supremo, axioma de los números reales, debemos estudiar una serie

Más detalles

Representación lógica del tiempo social

Representación lógica del tiempo social Representación lógica del tiempo social Copyright Título Asunto Clave Archivo Creación Impresión Distribución Revisión 1998, Bayes Inference, S.A. Representación lógica del tiempo social Diseño de una

Más detalles

Tema 3. Interpretación Abstracta

Tema 3. Interpretación Abstracta Tema 3. Interpretación Abstracta Herramientas Avanzadas para el Desarrollo de Software Profesora: Alicia Villanueva DSIC, Escuela Técnica Superior de Ingeniería Informática Curso 2011-2012 Indice Indice

Más detalles

Proyecto Unico Interpretador de SetCalc

Proyecto Unico Interpretador de SetCalc Universidad Simón Bolívar Dpto. de Computación y Tecnología de la Información CI3721 - Traductores e Interpretadores Abril-Julio 2008 Proyecto Unico Interpretador de SetCalc A continuación se describe

Más detalles

Tema 3. Espacios vectoriales

Tema 3. Espacios vectoriales Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición

Más detalles

TEMA 3: CONTINUIDAD DE FUNCIONES

TEMA 3: CONTINUIDAD DE FUNCIONES TEMA 3: CONTINUIDAD DE FUNCIONES. Valor Absoluto Trabajaremos en el campo de los números reales, R. Para el estudio de las propiedades de las funciones necesitamos el concepto de valor absoluto de un número

Más detalles

IWG-101: Introducción a la Ingeniería. Departamento de Informática, UTFSM 1

IWG-101: Introducción a la Ingeniería. Departamento de Informática, UTFSM 1 IWG-101: Introducción a la Ingeniería Departamento de Informática, UTFSM 1 Introducción a UML Historia Potencialidades Diagramas soportados UML en el proceso de desarrollo de SW. Introducción a UML Necesidad

Más detalles

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace Ecuaciones Diferenciales Tema 2. Trasformada de Laplace Ester Simó Mezquita Matemática Aplicada IV 1 1. Transformada de Laplace de una función admisible 2. Propiedades básicas de la transformada de Laplace

Más detalles

GENERACIÓN DE CÓDIGO

GENERACIÓN DE CÓDIGO GENERACIÓN DE CÓDIGO INTRODUCCION La generación de código es la fase más compleja de un compilador, puesto que no sólo depende de las características del lenguaje fuente sino también de contar con información

Más detalles

Instituto Tecnológico de Celaya

Instituto Tecnológico de Celaya LENGUAJES Lenguaje es el empleo de notaciones, señales y vocales (voz, palabras) para expresar ideas, comunicarse, y establecer relaciones entre los seres humanos. Un lenguaje no sólo consta de palabras,

Más detalles

INTERPRETACION DE DOCUMENTOS HTML VIA RDF SCHEMA

INTERPRETACION DE DOCUMENTOS HTML VIA RDF SCHEMA INTERPRETACION DE DOCUMENTOS HTML VIA RDF SCHEMA Jacqueline Guzman, Silvia Revello jguzman@adinet.com.uy, revellos@adinet.com.uy RESUMEN Este trabajo fue realizado en el marco de la materia de Facultad

Más detalles

Teorema de Green. 6.1. Curvas de Jordan

Teorema de Green. 6.1. Curvas de Jordan Lección 6 Teorema de Green En la lección anterior, previa caracterización de los campos conservativos, hemos visto que un campo irrotacional puede no ser conservativo. Tenemos por tanto una condición fácil

Más detalles

DISEÑO DE COMPONENTES DE SOFTWARE *

DISEÑO DE COMPONENTES DE SOFTWARE * DISEÑO DE COMPONENTES DE SOFTWARE * NOTAS DEL CURSO Ingeniería de Software I DRA. MARIA DEL PILAR GÓMEZ GIL INAOEP * Resumen del capítulo 10 de libro de [Pressman 2010] V:18-11-2008 (c) P. Gomez-Gil, INAOE.

Más detalles

Introducción a la Teoría de Probabilidad

Introducción a la Teoría de Probabilidad Capítulo 1 Introducción a la Teoría de Probabilidad Para la mayoría de la gente, probabilidad es un término vago utilizado en el lenguaje cotidiano para indicar la posibilidad de ocurrencia de un evento

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

Un filtro general de respuesta al impulso finita con n etapas, cada una con un retardo independiente d i y ganancia a i.

Un filtro general de respuesta al impulso finita con n etapas, cada una con un retardo independiente d i y ganancia a i. Filtros Digitales Un filtro general de respuesta al impulso finita con n etapas, cada una con un retardo independiente d i y ganancia a i. En electrónica, ciencias computacionales y matemáticas, un filtro

Más detalles

Límites. Definición de derivada.

Límites. Definición de derivada. Capítulo 4 Límites. Definición de derivada. 4.1. Límites e indeterminaciones Hemos visto en el capítulo anterior que para resolver el problema de la recta tangente tenemos que enfrentarnos a expresiones

Más detalles

Introducción. Lógica de proposiciones: introducción. Lógica de proposiciones. P (a) x. Conceptos

Introducción. Lógica de proposiciones: introducción. Lógica de proposiciones. P (a) x. Conceptos Introducción César Ignacio García Osorio Lógica y sistemas axiomáticos 1 La lógica ha sido históricamente uno de los primeros lenguajes utilizados para representar el conocimiento. Además es frecuente

Más detalles

Números Reales. MathCon c 2007-2009

Números Reales. MathCon c 2007-2009 Números Reales z x y MathCon c 2007-2009 Contenido 1. Introducción 2 1.1. Propiedades básicas de los números naturales....................... 2 1.2. Propiedades básicas de los números enteros........................

Más detalles

Introducción a los certificados digitales

Introducción a los certificados digitales Sergio Talens-Oliag InfoCentre (http://www.infocentre.gva.es/) stalens@infocentre.gva.es Introducción Los certificados digitales son el equivalente digital del DNI, en lo que a la autentificación de individuos

Más detalles

Matemáticas Discretas

Matemáticas Discretas Matemáticas Discretas Conjuntos (11) Curso Propedéutico 2009 Maestría en Ciencias Computacionales, INAOE Conjuntos (2) Dr Luis Enrique Sucar Succar esucar@inaoep.mx Dra Angélica Muñoz Meléndez munoz@inaoep.mx

Más detalles

Diseño, Implementación y Evaluación de un Modelo de Optimización de Costos en Comunicaciones Telefónicas

Diseño, Implementación y Evaluación de un Modelo de Optimización de Costos en Comunicaciones Telefónicas Diseño, Implementación y Evaluación de un Modelo de Optimización de Costos en Comunicaciones Telefónicas Mauricio Notti - Pablo Pilotti - Pablo Speciale Optimización de Costos en Comunicaciones Telefónicas

Más detalles