Ejercicios. 1. Definir en Maxima las siguientes funciones y evaluarlas en los puntos que se indican:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejercicios. 1. Definir en Maxima las siguientes funciones y evaluarlas en los puntos que se indican:"

Transcripción

1 Ejercicios. 1. Definir en Maxima las siguientes funciones y evaluarlas en los puntos que se indican: 2. Graficar las funciones anteriores, definiendo adecuadamente los rangos de x e y, para visualizar su comportamiento. 3. Utilizar el software para analizar gráficamente el comportamiento de la función representando en un mismo gráfico diferentes funciones que se obtienen al asignarle a cada una de las constantes distintos valores y manteniendo la otra fija. 4. Determinar el dominio y los ceros de f(x), h(x) y m(x), utilizando la función Solver. 5. Encontrar los puntos de intersección entre la parábola y la recta, utilizando la función Solver, corroborar el resultado mediante un gráfico y evaluando ambas funciones en los valores de x obtenidos. 6. Calcular los siguientes límites: 7. Calcular la primera y segunda derivada de las funciones del ejercicio 1). 8. Usar el software para resolver el siguiente problema: La población de una colonia de células que crece exponencialmente en un cultivo es de 300 después de 2minutos y de 1400 después de 5 minutos. a) Hallar la fórmula mediante la cual se puede estimar el tamaño poblacional en función del tiempo en minutos. b) Hallar la tasa de crecimiento en porcentaje. c) Representar gráficamente la función. d) Cuál es el tamaño poblacional de la colonia después de 20 minutos?

2 Práctico Ejercicio para analizar funciones: Analizar la función estudiando: Un granjero desea construir una cerca rectangular a la orilla de un río, para lo que dispone de 120m de valla. El lado que mira al río no será cerrado. Cuál es el área de la región más grande que se puede cercar? Se lanza un objeto hacia arriba, la función describe la posición del objeto en función del tiempo con respecto a l suelo. La posición se mide en metros y el tiempo en segundos. a) Indicar el dominio para que la función tenga sentido físico y graficar. b) Hallar la altura máxima que alcanza el objeto. c) La función da la expresión de la velocidad del objeto en función del tiempo. Qué valor tiene en, y en la altura máxima? d) Cuánto tiempo duró el movimiento? e) En qué momento el móvil se encuentra a un metro del suelo? En un instituto de enseñanza de inglés se anotaron 90 personas para el curso inicial. La cuota ha sido fijada en $100 mensuales para cada estudiante. Se formarán grupos de igual número de alumnos. Se ofrecerán becas, y el número de las mismas será determinado por el número de alumnos del grupo. (Si los grupos son de 3 alumnos, el instituto ofrecerá 3 becas. Si los grupos son de 7 alumnos, el total de becas será 7.) La beca consiste en una rebaja del 50% de la cuota. El salario del profesor de cada grupo será de $125 mensuales. De cuántas personas le convendrá al instituto formar los grupos para obtener la mayor ganancia posible? Se desea confeccionar una caja sin tapa que tenga el máximo volumen posible, utilizando un recorte de cartulina de forma cuadrada de 30 cm de lado. Qué dimensiones tendrá la caja? Un área de 5000 pies cuadrados, ha sido planteada para el nuevo exhibidor rectangular de focas en el zoológico local. El borde tendrá 10 pies de ancho en dos de los lados opuestos y 20 pies de ancho en los otros dos lados. El área para la piscina se muestra en la figura. Qué dimensiones maximizará el área de la piscina? Problemas para definir funciones: La población de una colonia de células que crece exponencialmente en un cultivo es de 300 después de 2minutos y de 1400 después de 5 minutos. a) Hallar la fórmula mediante la cual se puede estimar el tamaño poblacional en función del tiempo en minutos (Plantear el sistema de ecuaciones asociados y resolverlo utilizando el Solver.) b) Hallar la tasa de crecimiento en porcentaje. c) Representar gráficamente la función. d) Cuál es el tamaño poblacional de la colonia después de 20 minutos? Temas: Definir funciones (incluso a trozos)

3 Evaluar funciones Graficar (una y varias funciones en un grafico) Calcular ceros (resolver ecuaciones y sistemas) Calcular límites Calcular derivadas Función Como opera Ejemplo abs (expr) Devuelve el valor absoluto de expr. Si la expresión es compleja, retorna el módulo de expr. max (x_1,..., x_n) Devuelve el mayor valor min (x_1,..., x_n) Devuelve el menor valor factorial (x) o x! Devuelve el factorial de un valor exp (x) Representa la función exponencial. log (x) * cos (x) Representa el logaritmo natural (en base e) de x. Representa el coseno de x sin (x) Representa el seno de x tan (x) Representa la tangente de x sqrt (x) o x^(1/2) Raíz cuadrada de x. Maxima no tiene definida una función para el logaritmo de base 10 u otras bases. El usuario puede hacer uso de la definición log10(x):= log(x) / log(10). Contenidos: Presentación y exploración del programa Maxima y su entorno gráfico WXMaxima.

4 Aprender a calcular los ceros, límites y derivadas de funciones conocidas usando el programa. Aprender a definir funciones continuas o a trozos. Analizar los problemas que surgen al querer calcular límites, derivadas e integrales de las funciones a trozos y como solucionarlos. Graficar funciones de una variable. Enfatizar sobre la importancia de haber seleccionado rangos adecuados para las variables. Analizar, usando las herramientas aprendidas, el comportamiento de diferentes funciones. En Maxima, un comentario es cualquier texto encerrado entre las marcas /* y */. Variable opcional: inchar Valor por defecto: %i La variable inchar es el prefijo de las etiquetas de las expresiones introducidas por el usuario. Maxima crea automáticamente una etiqueta para cada expresión de entrada concatenando inchar y linenum. A inchar se le puede asignar cualquier símbolo o cadena, no necesariamente un caracácter sencillo. Puesto que internamente Maxima solo tiene en cuenta el primer carácter del prefijo, los prefijos inchar, outchar y linechar deben comenzar con caracteres diferentes; en caso contrario, sentencias como kill(inlables) pueden dar resultados inesperados. Véase también labels. Ejemplo: (%i1) inchar: "input"; (%o1) input (input2) expand((a+b)^3); (%o2) b + 3 a b + 3 a b + a (input3) Variable opcional: outchar Valor por defecto: %o La variable outchar es el prefijo de las etiquetas de las expresiones calculadas por Maxima. Maxima crea automáticamente una etiqueta para cada expresión calculada concatenando outchar y linenum. A outchar se le puede asignar cualquier símbolo o cadena, no necesariamente un caracácter sencillo. Puesto que internamente Maxima solo tiene en cuenta el primer carácter del prefijo, los prefijos inchar, outchar y linechar deben

5 comenzar con caracteres diferentes; en caso contrario, sentencias como kill(inlables) pueden dar resultados inesperados. Véase también labels. Ejemplo: (%i1) outchar: "output"; (output1) output (%i2) expand((a+b)^3); (output2) b + 3 a b + 3 a b + a (%i3) Como vemos, Maxima opera con aritmética racional y, por defecto, nos devuelve una fracción como resultado. Si añadimos una coma (, ) seguida de la orden numer, se obtendrá una expresión numérica, por defecto, con 16 cifras decimales.

6 Funciones definidas a trozos Las funciones definidas a trozos plantean algunos problemas de difícil solución para Maxima. Esencialmente hay dos formas de definir y trabajar con funciones a trozos: a) definir una función para cada trozo con lo que tendremos que ocuparnos nosotros de ir escogiendo de elegir la función adecuada, o b) utilizar una estructura if-then-else para definirla.4 Cada uno de los métodos tiene sus ventajas e inconvenientes. El primero de ellos nos hace aumentar el número de funciones que definimos, usamos y tenemos que nombrar y recordar. Además de esto, cualquier cosa que queramos hacer, ya sea representar gráficamente o calcular una integral tenemos que plantearlo nosotros. Maxima no se encarga de esto. La principal limitación del segundo método es que las funciones definidas de esta manera no nos sirven para derivarlas o integrarlas, aunque sí podremos dibujar su gráfica. Por ejemplo, la función f.x.. (x2; si x < 0 x3; en otro caso la podemos definir de la siguiente forma utilizando el segundo método (%i13) f(x):=if x< 0 then xb2 else xb3; (%o13) f(x):=if x< 0 then x2 else x3 4 En la sección explicamos con más detalle este tipo de estructuras

Proyecto de Innovación Docente: Guía multimedia para la elaboración de un modelo econométrico.

Proyecto de Innovación Docente: Guía multimedia para la elaboración de un modelo econométrico. 1 Primeros pasos en R. Al iniciarse R (ver Figura 16), R espera la entrada de órdenes y presenta un símbolo para indicarlo. El símbolo asignado, como puede observarse al final, es > Figura 16. Pantalla

Más detalles

2FUNCIONES CUADRÁTICAS

2FUNCIONES CUADRÁTICAS CONTENIDOS El modelo cuadrático La función cuadrática Desplazamientos de la gráfica Máximos, mínimos, ceros, crecimiento y decrecimiento Ecuaciones cuadráticas Sistemas mixtos En este capítulo se analizan

Más detalles

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 TEMA 4 - FUNCIONES ELEMENTALES 4.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : Una función real de variable real es una aplicación de un subconjunto

Más detalles

Gráficas de funciones

Gráficas de funciones Apuntes Tema 1 Gráficas de funciones 1.1 Gráficas de funciones a) Función constante: f(x) = k b) Recta vertical: x = k c) Función lineal: f(x) = mx Todas pasan por el origen O(0, 0). 2 d) Función afín:

Más detalles

FUNCIONES 1. DEFINICION DOMINIO Y RANGO

FUNCIONES 1. DEFINICION DOMINIO Y RANGO 1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad

Más detalles

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3 CONTENIDOS Límite y asíntotas Cálculo de límites Continuidad Derivadas Estudio de funciones Problemas de optimización Varias de las características de diferentes tipos de funciones ya han sido estudiadas

Más detalles

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1 Página 3 EJERCICIOS PROBLEMAS PROPUESTOS PARA PRACTICAR Dominio de definición Halla el dominio de definición de estas funciones: 3 x a) y = y = x + x (x ) c) y = d) y = e) y = x + x + 3 5x x f) y = x x

Más detalles

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Una de las primeras necesidades que surgen en las Ciencias Experimentales es la de poder expresar los valores

Más detalles

Examen de Matemáticas 2 o de Bachillerato Mayo 2003

Examen de Matemáticas 2 o de Bachillerato Mayo 2003 Examen de Matemáticas o de Bachillerato Mayo 00 1. Expresar el número 60 como suma de tres enteros positivos de forma que el segundo sea el doble del primero y su producto sea máximo. Determinar el valor

Más detalles

Funciones. Catedrática Recinto Universitario de Mayagüez AFAMaC Residencial Sept. 4 de 2010

Funciones. Catedrática Recinto Universitario de Mayagüez AFAMaC Residencial Sept. 4 de 2010 Funciones Prof. Nilsa I. Toro Catedrática Recinto Universitario de Mayagüez AFAMaC Residencial Sept. 4 de 010 Introducción Es frecuente que se describa una cantidad en términos de otra; por ejemplo: 1.

Más detalles

La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota

La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota INTRODUCCIÓN En este experimento voy a relacionar el tiempo que tarda una pelota en rebotar 6 veces desde distintas

Más detalles

La calculadora de Windows

La calculadora de Windows La calculadora de Windows Vicente Trigo Aranda La calculadora es un accesorio que se incluye en Windows desde su versión 95 y, a pesar de su innegable utilidad, es seguramente el accesorio menos conocido

Más detalles

Lecturas previas Cuando llegue a su primera sesión de laboratorio debe haber estudiado el contenido de la lectura que aparece a continuación.

Lecturas previas Cuando llegue a su primera sesión de laboratorio debe haber estudiado el contenido de la lectura que aparece a continuación. Laboratorio 1 Medición e incertidumbre La descripción de los fenómenos naturales comienza con la observación; el siguiente paso consiste en asignar a cada cantidad observada un número, es decir en medir

Más detalles

Curso de GNU Octave y L A TEXpara el apoyo a la investigación en ingeniería

Curso de GNU Octave y L A TEXpara el apoyo a la investigación en ingeniería Curso de GNU Octave y L A TEXpara el apoyo a la investigación en ingeniería Red de investigaciones y Tecnología Avanzada - RITA Facultad de ingeniería Universidad Distrital Francisco José de Caldas Copyleft

Más detalles

FUNDAMENTOS DE INFORMÁTICA

FUNDAMENTOS DE INFORMÁTICA FUNDAMENTOS DE INFORMÁTICA Tema 4 Programación estructurada: Funciones y procedimientos Departamento de Ingeniería de Sistemas y Automática Universidad de Vigo Fundamentos de Informática. Departamento

Más detalles

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas BLOQUE IV Funciones 0. Funciones. Rectas y parábolas. Funciones racionales, irracionales, exponenciales y logarítmicas. Límites y derivadas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo

Más detalles

Instructivo de Microsoft Excel 2003

Instructivo de Microsoft Excel 2003 Instructivo de Microsoft Excel 2003 El presente instructivo corresponde a una guía básica para el manejo del programa y la adquisición de conceptos en relación a este utilitario. Que es Microsoft Excel?

Más detalles

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11 1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el

Más detalles

Problemas de optimización

Problemas de optimización Problemas de optimización 1º) La producción de cierta hortaliza en un invernadero (Q(x) en Kg) depende de la temperatura x (ºC) según la expresión. a) Calcula razonadamente cuál es la temperatura óptima

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en

Más detalles

Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica.

Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica. Tema 1 Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica. 1.1. Un esbozo de qué es el Cálculo: paradojas y principales problemas planteados. Los orígenes del Cálculo se

Más detalles

Aplicaciones Educativas de Matemáticas con Guadalinex V3

Aplicaciones Educativas de Matemáticas con Guadalinex V3 Aplicaciones Educativas de Matemáticas con Guadalinex V3 Daniel López Avellaneda dani@lubrin.org La calculadora Manual para el curso organizado por: CEP Cuevas-Olula +CEP El Ejido +CEP Almería Enero-Febrero

Más detalles

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la

Más detalles

Una función es una relación entre dos conjuntos de tal manera que para cada elemento del primer conjunto corresponde un solo elemento del segundo

Una función es una relación entre dos conjuntos de tal manera que para cada elemento del primer conjunto corresponde un solo elemento del segundo Una función es una relación entre dos conjuntos de tal manera que para cada elemento del primer conjunto corresponde un solo elemento del segundo conjunto. Ejemplos reales de relaciones que envuelven funciones:

Más detalles

Ejercicios para aprender a derivar

Ejercicios para aprender a derivar Ejercicios para aprender a derivar Derivación de polinomios y series de potencias Reglas de derivación: f ( ) k f '( ) 0 f ( ) a f '( ) a n n f ( ) a f '( ) an f ( ) u( ) + v( ) f '( ) u' + v' Ejemplos:

Más detalles

CAPÍTULO VI. Funciones

CAPÍTULO VI. Funciones CAPÍTULO VI Funciones FUNCIONES 1. Indicar si las siguientes expresiones son o no funciones indicando razonadamente por qué. ( ) a) f : Z N : x x 2 + 1 b) f : Z R : x 1 x 2 c) La recta que pasa por los

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

Cálculo Diferencial Taller de pre-requisitos. 1. Exponentes. Simplifique las siguientes expresiones sin usar calculadora.

Cálculo Diferencial Taller de pre-requisitos. 1. Exponentes. Simplifique las siguientes expresiones sin usar calculadora. Cálculo Diferencial Taller de pre-requisitos. Exponentes. Simplifique las siguientes expresiones sin usar calculadora. p 6s t v 5p 6st 5 v, b) (x p x ) c) 0 6 y + y y. Multiplicación. Expanda el producto

Más detalles

Práctica 0 Cálculo con Mathematica

Práctica 0 Cálculo con Mathematica Práctica 0 Cálculo con Mathematica 1.- Introducción al Mathematica El programa Mathematica constituye una herramienta muy potente para la realización de todo tipo de cálculos matemáticos: operaciones aritméticas,

Más detalles

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................

Más detalles

b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. dx x 2 1 x 1 si x >1 x 1 x < 0

b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. dx x 2 1 x 1 si x >1 x 1 x < 0 ANÁLISIS. (Junio 994) a) Encontrar las asíntotas de la curva f () = 2 3 2 4 b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. 2. (Junio

Más detalles

Calculadora ClassPad

Calculadora ClassPad Calculadora ClassPad Tema: Ejercicios varios sobre Análisis de funciones y optimización. Nivel: 1º y º de Bachiller Comentario: La siguiente actividad que propongo es para la evaluación de los conceptos

Más detalles

Manual básico de Maxima

Manual básico de Maxima Asignatura: Cálculo Grado de Ingeniería. Departamento de Matemática Aplicada I 2 Índice general 1. Cómo utilizo este Manual?................... 4 2. Preguntas básicas sobre Maxima................. 4 2.1.

Más detalles

Winplot DIBUJAR LA GRÁFICA DE UNA FUNCIÓN. Ventana > 2-dim: aparece la ventana sinnombre1.wp2. Ecua > Explícita: aparece la ventana de edición y=f(x).

Winplot DIBUJAR LA GRÁFICA DE UNA FUNCIÓN. Ventana > 2-dim: aparece la ventana sinnombre1.wp2. Ecua > Explícita: aparece la ventana de edición y=f(x). 1 DIBUJAR LA GRÁFICA DE UNA FUNCIÓN Winplot Ventana > 2-dim: aparece la ventana sinnombre1.wp2. Ecua > Explícita: aparece la ventana de edición y=f(x). En el recuadro f(x)= se escribe la expresión de la

Más detalles

1. Definición 2. Operaciones con funciones

1. Definición 2. Operaciones con funciones 1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de

Más detalles

Aplicaciones de Máximos y Mínimos

Aplicaciones de Máximos y Mínimos Aplicaciones de Máximos y Mínimos Los métodos para calcular los máximos y mínimos de las funciones se pueden aplicar a la solución de algunos problemas prácticos. Estos problemas pueden expresarse verbalmente

Más detalles

De aquí sale el proyecto MACsyma (MAC s SYmbolic MAnipulator)

De aquí sale el proyecto MACsyma (MAC s SYmbolic MAnipulator) El proyecto Matemáticas y Computación (MAC) se inicia en la década de los años 60 en el MIT (con el apoyo financiero de los Departamentos de Defensa y Energía de los EE.UU.) para atender sus necesidades

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente.

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente. 3 Ecuaciones 17 3 Ecuaciones Una ecuación es una igualdad en la que aparecen ligados, mediante operaciones algebraicas, números y letras Las letras que aparecen en una ecuación se llaman incógnitas Existen

Más detalles

Graphmatica 2.0g. Figura 1. Pantalla principal del programa.

Graphmatica 2.0g. Figura 1. Pantalla principal del programa. Graphmatica 2.0g Graphmatica es un software que permite graficar funciones de una variable, ecuaciones, inecuaciones, curvas parámetricas y soluciones de ecuaciones diferenciales ordinarias. Presenta asimismo

Más detalles

EJERCICIOS DE MATEMÁTICAS B, 4º ESO. (Septiembre 2011)

EJERCICIOS DE MATEMÁTICAS B, 4º ESO. (Septiembre 2011) EJERCICIOS DE MATEMÁTICAS B, º ESO. (Septiembre ) ARITMÉTICA. Realiza las siguientes operaciones, simplificando cuando sea posible 9 e). Realiza los siguientes ejercicios con potencias 9 e) 9 8.- Realiza

Más detalles

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones:

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: F. EJERCICIOS PROPUESTOS. 1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: (a) f(x) =x 3 /3+3x 2 /2 10x. Resp.: Crece en (, 5) y en (2, ); decrece en ( 5, 2). (b) f(x) =x 3

Más detalles

Funciones polinomiales de grados cero, uno y dos

Funciones polinomiales de grados cero, uno y dos Funciones polinomiales de grados cero, uno y dos A una función p se le llama polinomio si: p x = a n x n + a n 1 x n 1 + + a 2 x 2 + a 1x + a 0 Donde un entero no negativo y los números a 0, a 1, a 2,

Más detalles

Introducción bloques intro Control+Intro mayúsculas y minúsculas

Introducción bloques intro Control+Intro mayúsculas y minúsculas Wiris Wiris... 1 Introducción... 2 Aritmética... 3 Álgebra... 4 Ecuaciones y Sistemas... 4 Análisis... 5 Objetos matemáticos, definición de identificadores y funciones... 7 Funciones predefinidas:... 10

Más detalles

Unidad I Funciones Expresar una función. Dominios

Unidad I Funciones Expresar una función. Dominios Unidad I Funciones Epresar una función 1. Un rectángulo tiene un perímetro de 0m. Eprese el área del rectángulo como función de la longitud de uno de sus lados.. Un rectángulo tiene un área de 16 m. Eprese

Más detalles

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 UNIDAD 1: LOS NÚMEROS NATURALES. OPERACIONES Y RELACIONES El sistema de numeración decimal Estimación y redondeo de un número natural Las operaciones con números

Más detalles

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder

Más detalles

5 Demostrar cada una de las siguientes afirmaciones empleando la definición de

5 Demostrar cada una de las siguientes afirmaciones empleando la definición de Hallar el dominio de las siguientes funciones: x 3 a) x +ln(x ) b) ln x + 6 x + c) x x d) ln x x + e) cos x + ln(x 5π) + 8π x Graficar la función sen(x π ). Hallar para que valores de x es 3 Hallar las

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple

Más detalles

MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN. Contenidos Mínimos. I. Estrategias, habilidades, destrezas y actitudes generales

MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN. Contenidos Mínimos. I. Estrategias, habilidades, destrezas y actitudes generales MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN Contenidos Mínimos I. Estrategias, habilidades, destrezas y actitudes generales II. Números: Resolución de problemas utilizando toda

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA 7 APLICACIONES DE LA DERIVADA Página 68 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f decrece

Más detalles

Problemas de Cinemática 1 o Bachillerato

Problemas de Cinemática 1 o Bachillerato Problemas de Cinemática 1 o Bachillerato 1. Sean los vectores a = i y b = i 5 j. Demostrar que a + b = a + b a b cos ϕ donde ϕ es el ángulo que forma el vector b con el eje X.. Una barca, que lleva una

Más detalles

La Función Exponencial y la Función Logarítmica

La Función Exponencial y la Función Logarítmica 1 Capítulo 7 La Función Exponencial y la Función Logarítmica M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco

Más detalles

Tu calculadora científica

Tu calculadora científica Tu calculadora científica Cajón de Ciencias Hasta primero de ESO, más o menos, podemos apañarnos con una calculadora normalita, con las teclas de los números, las operaciones básicas de suma, resta, multiplicación

Más detalles

Supervisado por: Alfonsa García, Francisco García, Rafael Miñano y Blanca Ruiz

Supervisado por: Alfonsa García, Francisco García, Rafael Miñano y Blanca Ruiz 2011 Departamento de Matemática Aplicada EU Informática 1 [MINI MANUAL WXMAXIMA] Elaborado por: Rubén Haro Sanz Supervisado por: Alfonsa García, Francisco García, Rafael Miñano y Blanca Ruiz Trabajo parcialmente

Más detalles

INSTITUTO POLITECNICO NACIONAL SECRETARIA ACADEMICA DIRECCION DE EDUCACION MEDIA SUPERIOR

INSTITUTO POLITECNICO NACIONAL SECRETARIA ACADEMICA DIRECCION DE EDUCACION MEDIA SUPERIOR INSTITUTO POLITECNICO NACIONAL SECRETARIA ACADEMICA DIRECCION DE EDUCACION MEDIA SUPERIOR CENTRO DE ESTUDIOS CIENTÍFICOS Y TECNOLÓGICOS NÚM. 13 RICARDO FLORES MAGÓN Guía para el ETS (ordinario o especial)

Más detalles

EJERCICIOS PARA RECUPERAR MATEMÁTICAS PENDIENTES 2º ESO

EJERCICIOS PARA RECUPERAR MATEMÁTICAS PENDIENTES 2º ESO MATEMÁTICAS PENDIENTES º ESO Operaciones combinadas con enteros Calcula + ( (+ 0 ) ) + 0 + ( + ) ( (+ 8 + 9 )) 0 + + + + 6 68 + 6+ 9 6 ( + 6+ ( + 6)) + 0 (( + 8 ) + (+ ) + ) + + 8 + ( + + 6+ ) 66 ( + 6

Más detalles

12 Límites. y derivadas. 1. Funciones especiales. Solución: Ent(x) Dec(x) x 3,6 3,6 0,8 0,8. Signo(x) Signo(x) 1 1 1 1

12 Límites. y derivadas. 1. Funciones especiales. Solución: Ent(x) Dec(x) x 3,6 3,6 0,8 0,8. Signo(x) Signo(x) 1 1 1 1 Límites y derivadas. Funciones especiales Completa la tabla siguiente: 3,6 3,6 0, 0, Ent() Dec() Signo() P I E N S A C A L C U L A 3,6 3,6 0, 0, Ent() 4 3 0 Dec() 0,4 0,6 0, 0, 3,6 3,6 0, 0, Signo() A

Más detalles

Operadores lógicos y matemáticos en Visual Basic. Math. Comentarios en VB. Rem. Ejemplos. (CU00314A)

Operadores lógicos y matemáticos en Visual Basic. Math. Comentarios en VB. Rem. Ejemplos. (CU00314A) aprenderaprogramar.com Operadores lógicos y matemáticos en Visual Basic. Math. Comentarios en VB. Rem. Ejemplos. (CU00314A) Sección: Cursos Categoría: Curso Visual Basic Nivel I Fecha revisión: 2029 Autor:

Más detalles

LA PARABOLA. R(-a, y) P (x, y) con el origen del sistema de coordenadas cartesianas y el eje de la parábola con el

LA PARABOLA. R(-a, y) P (x, y) con el origen del sistema de coordenadas cartesianas y el eje de la parábola con el LA PARABOLA Señor... cuando nos equivoquemos, concédenos la voluntad de rectificar; y cuando tengamos razón... no permitas que nos hagamos insufribles para el prójimo. Marshall En la presente entrega,

Más detalles

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS INTRODUCCIÓN La noción actual de función comienza a gestarse en el siglo XIV, cuando empiezan a preocuparse de medir y representar las variaciones de ciertas

Más detalles

DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo:

DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo: Titulo: DOMINIO Y RANGO I N D I C E Página DE UNA FUNCIÓN Año escolar: 4to. Año de Bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela

Más detalles

EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE

EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE AUTORÍA MARÍA FRANCISCA OJEDA EGEA TEMÁTICA EXPERIMENTO FÍSICA Y QUÍMICA, APLICACIÓN MÉTODO CIENTÍFICO ETAPA EDUCACIÓN

Más detalles

Formato de salida : 1er Laboratorio de MN II. Comando format 1. GRABACION DE CONTENIDOS EN UNA SESION DE MATLAB

Formato de salida : 1er Laboratorio de MN II. Comando format 1. GRABACION DE CONTENIDOS EN UNA SESION DE MATLAB 1er Laboratorio de MN II 1. GRABACION DE CONTENIDOS EN UNA SESION DE MATLAB Para salir de MATLAB se escribe quit ó exit. Al terminar una sesión de MATLAB, las variables en el espacio de trabajo se borran.

Más detalles

2.1.5 Teoremas sobre derivadas

2.1.5 Teoremas sobre derivadas si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la

Más detalles

MATEMÁTICAS: 2º BACHILLERATO SOLUCIONES A LOS PROBLEMAS DE OPTIMIZACIÓN: HOJA 6

MATEMÁTICAS: 2º BACHILLERATO SOLUCIONES A LOS PROBLEMAS DE OPTIMIZACIÓN: HOJA 6 MATEMÁTICAS: º BACHILLERATO SOLUCIONES A LOS PROBLEMAS DE OPTIMIZACIÓN: HOJA 6 1.- Determina dos números cuya suma sea y tales que el producto de uno de ellos por el cubo del otro sea máimo. = 1 er número;

Más detalles

Introducción al Cálculo Simbólico a través de Maple

Introducción al Cálculo Simbólico a través de Maple 1 inn-edu.com ricardo.villafana@gmail.com Introducción al Cálculo Simbólico a través de Maple A manera de introducción, podemos decir que los lenguajes computacionales de cálculo simbólico son aquellos

Más detalles

LAS FUNCIONES ELEMENTALES

LAS FUNCIONES ELEMENTALES UNIDAD LAS FUNCIONES ELEMENTALES Página 98. Las siguientes gráficas corresponden a funciones, algunas de las cuales conoces y otras no. En cualquier caso, vas a trabajar con ellas. Las ecuaciones correspondientes

Más detalles

ACTIVIDADES UNIDAD 6: Funciones

ACTIVIDADES UNIDAD 6: Funciones ACTIVIDADES UNIDAD 6: Funciones 1. Indica las características de la siguiente función: Dominio:, 1 1,1 1, 1,1 Imagen o recorrido:,0 1, Monotonía: - Creciente:, 1 1,0 - Decreciente: 0,11, - Máimos relativos:

Más detalles

3FUNCIONES LOGARÍTMICAS

3FUNCIONES LOGARÍTMICAS 3FUNCIONES LOGARÍTMICAS Problema 1 Si un cierto día, la temperatura es de 28, y hay mucha humedad, es frecuente escuchar que la sensación térmica es de, por ejemplo, 32. La sensación térmica depende de

Más detalles

CAPÍTULO 2 APLICACIONES DE LA DERIVADA

CAPÍTULO 2 APLICACIONES DE LA DERIVADA CAPÍTULO 2 APLICACIONES DE LA DERIVADA 2.1 ANÁLISIS Y TRAZO DE CURVAS 2.1.1 Estudio de la Variación de una Función a) Tabulación y Graficación de una Función b) Dominio y Rango de una Función 2.1.2 Intersecciones

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

Texto de Cálculo I Intervalos de la recta real R Versión preliminar. L. F. Reséndis O.

Texto de Cálculo I Intervalos de la recta real R Versión preliminar. L. F. Reséndis O. Texto de Cálculo I Intervalos de la recta real R Versión preliminar L. F. Reséndis O. 2 Contents 1 Números reales L.F. Reséndis O. 5 1.1 Números racionales e irracionales.l.f. Reséndis O............ 5

Más detalles

U i n d id d a 3. El Element os á bá i s cos de un programa

U i n d id d a 3. El Element os á bá i s cos de un programa Programación Digital U id d 3 El t bá i Unidad 3. Elementos básicos de un programa 1. Concepto de Programa Es un conjunto de instrucciones (órdenes dadas a la computadora), que producirán la ejecución

Más detalles

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en . [204] [ET-A] Dada la función f(x) = x2-8x+6 x 2-8x+5 a) Su dominio y puntos de corte con los ejes. -x+5, 0 x 2. [204] [JUN-A] En una sesión, el valor de cierta acción, en euros, vino dado por la función:

Más detalles

PLAN DE TRABAJO para el VERANO

PLAN DE TRABAJO para el VERANO PLAN DE TRABAJO para el VERANO MATEMÁTICAS 4 º ESO OPCIÓN A PENDIENTES IES JOVELLANOS Nombre: Esta colección de ejercicios ha sido diseñada con el objetivo de ayudar a preparar a aquellos alumnos y alumnas

Más detalles

Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.

Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D. Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función

Más detalles

SELECCIÓ D ACTIVITATS RESOLTES 4RT ESO MATEMÁTIQUES B

SELECCIÓ D ACTIVITATS RESOLTES 4RT ESO MATEMÁTIQUES B SELECCIÓ D ACTIVITATS RESOLTES 4RT ESO MATEMÁTIQUES B Ejercicio nº 1.- a) Escribe en forma decimal cada uno de estos números: A = 9,7 10 9 B = 3,85 10 7 b) Expresa en notación científica las siguientes

Más detalles

Primeras Nueve Semanas Extienda el dominio de funciones trigonométricas usando la unidad circulo F-TF.3 F-TF.4

Primeras Nueve Semanas Extienda el dominio de funciones trigonométricas usando la unidad circulo F-TF.3 F-TF.4 Primeras Nueve Semanas Extienda el dominio de funciones trigonométricas usando la unidad circulo F-TF.3 (+) Use triángulos especiales para determinar geométricamente los valores de seno, coseno, tangente

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura Índice Dada una función f : D R R y un intervalo I D

Más detalles

LENGUAJE DE PROGRAMACIÓN SCILAB

LENGUAJE DE PROGRAMACIÓN SCILAB LENGUAJE DE PROGRAMACIÓN SCILAB CONTENIDO 1. Operaciones básicas. Suma. Resta. Producto. División. Potencia. Raíz cuadrada. Números complejos 2. Funciones. Exponencial. Logarítmica. Trigonométricas. Evaluación

Más detalles

Funciones elementales

Funciones elementales 10 Funciones elementales Objetivos En esta quincena aprenderás a: Reconocer y distinguir algunas de las funciones más habituales. Utilizar algunas funciones no lineales: cuadráticas, de proporcionalidad

Más detalles

Álgebra y Trigonometría CNM-108

Álgebra y Trigonometría CNM-108 Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

DERIVE también representa superficies en el espacio.

DERIVE también representa superficies en el espacio. CAPÍTULO II TUTORIAL DERIVE Aritmética, álgebra, funciones, derivadas e integrales 2.1 INTRODUCCIÓN DERIVE es un programa informático de cálculo simbólico. Es decir que, además de calcular el valor numérico

Más detalles

Oleksandr Karelin Carlos Rondero Guerrero Anna Tarasenko DESIGUALDADES Métodos de cálculo no tradicionales

Oleksandr Karelin Carlos Rondero Guerrero Anna Tarasenko DESIGUALDADES Métodos de cálculo no tradicionales Oleksandr Karelin Carlos Rondero Guerrero Anna Tarasenko DESIGUALDADES Métodos de cálculo no tradicionales Patrocinado por: Universidad Autónoma del Estado de Hidalgo Madrid - Buenos Aires - México Oleksandr

Más detalles

CUADERNO Nº 10 NOMBRE: FECHA: / / Funciones lineales

CUADERNO Nº 10 NOMBRE: FECHA: / / Funciones lineales Funciones lineales Contenidos 1. Función de proporcionalidad directa Definición Representación gráfica 2. Función afín Definición Representación gráfica 3. Ecuación de la recta Forma punto-pendiente Recta

Más detalles

PROBLEMAS ORIENTATIVOS PARA EL EXAMEN DE INGRESO AL CICLO FORMATIVO DE GRADO MEDIO

PROBLEMAS ORIENTATIVOS PARA EL EXAMEN DE INGRESO AL CICLO FORMATIVO DE GRADO MEDIO OPERACIONES BÁSICAS CON NÚMEROS NATURALES, ENTEROS, DECIMALES Y FRACCIONES (SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN) Y OPERACIONES COMBINADAS DE LAS ANTERIORES. 1. Realizar las siguientes operaciones con

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES ALUMNO: CONTENIDOS PARA LA RECUPERACION DE ÁREA EN SEPTIEMBRE

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES ALUMNO: CONTENIDOS PARA LA RECUPERACION DE ÁREA EN SEPTIEMBRE TRABAJO DE VERANO 2014 1º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES ALUMNO: ARITMÉTICA Y ÁLGEBRA CONTENIDOS PARA LA RECUPERACION DE ÁREA EN SEPTIEMBRE Números: reales, irracionales, racionales.

Más detalles

b1ct Propuesta Actividades Recuperación Matemáticas

b1ct Propuesta Actividades Recuperación Matemáticas b1ct Propuesta Actividades Recuperación Matemáticas Bloque Números 1 Resuelve: a. Si tomas como valor de 11. 1 la aproximación. 1, qué errores absoluto y relativo has cometido?. Solución: 0. 000; 0. 0%

Más detalles

LA DERIVADA. Según la figura la tasa de cambio promedio es igual a la pendiente del segmento (x, f(x))

LA DERIVADA. Según la figura la tasa de cambio promedio es igual a la pendiente del segmento (x, f(x)) LA DERIVADA La derivada de una función se puede utilizar para determinar la tasa de cambio de la variable dependiente con respecto a la variable independiente. A través de la derivada se puede obtener

Más detalles

Guía de Ejercicios. Matemática 11

Guía de Ejercicios. Matemática 11 Guía de Ejercicios Matemática 11 Matemática 11 Resolver: 1) 5 + 3x 31 3x 5) 3(2x 1) > 4+5(x 1) 6) x + 4 3 > 2x 3 +1 4 1 7) 4 (2x 1) x

Más detalles

Departamento de Matematicas UNIVERSIDAD DE LOS ANDES. Precálculo. (2Cos(2w) 1)(2Sen(3w) 2) = 0. hallar β en el intervalo [0, 2π]

Departamento de Matematicas UNIVERSIDAD DE LOS ANDES. Precálculo. (2Cos(2w) 1)(2Sen(3w) 2) = 0. hallar β en el intervalo [0, 2π] Departamento de Matematicas UNIVERSIDAD DE LOS ANDES. Precálculo Parcial III 15 % Estudiante: Tiempo: 1 h. Fecha: 1 Resolver la ecuación para w en 0 w 2π. (2Cos(2w) 1)(2Sen(3w) 2) = 0 2 Hallar los ceros

Más detalles

1. Funciones de varias variables

1. Funciones de varias variables Análisis Matemático II. Curso 2008/2009. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 2: CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES 1. Funciones de varias variables

Más detalles

El Teorema de Pitágoras

El Teorema de Pitágoras LECCIÓN CONDENSADA 9.1 El Teorema de Pitágoras En esta lección Conocerás el Teorema de Pitágoras, que establece la relación entre las longitudes de los catetos y la longitud de la hipotenusa de un triángulo

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

BLOQUE III Funciones y gráficas

BLOQUE III Funciones y gráficas BLOQUE III Funciones y gráficas. Características globales de las funciones 9. Rectas e hipérbolas 0. Función cuadrática Características globales de las funciones. Funciones Considera los rectángulos con

Más detalles