Primer Nivel Problema 1 Solución Problema 2 Solución Probelam 3

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Primer Nivel Problema 1 Solución Problema 2 Solución Probelam 3"

Transcripción

1 Primer Nivel Problema 1 Hallar todos los números enteros positivos de cuatro cifras que son múltiplos de 11 y tienen sus dos últimas cifras iguales a 04. Un número es múltiplo de 11 si y sólo si la suma de los dígitos de las posiciones pares menos la suma de los dígitos de las posiciones impares es múltiplo de 11. Sea ab04 un número de cuatro dígitos (a distinto de 0). Este número es múltiplo de 11 si y sólo si (a + 0) (b + 4) = a b- 4 es múltiplo de 11. Como a y b son dígitos, las únicas posibilidades son a b 4 = - 11 y a b 4 = 0 En el primer caso, a = b 7 y tenemos a = 1 y b = 8; a = 2 y b = 9. En segundo caso a = b + 4 y tenemos a = 4 y b = 0; a = 5 y b =1; a = 6 y b = 2; a = 7 y b = 3; a = 8 y b = 4; a = 9 y b = 5. Hemos obtenido ocho números: 1804 = ; 2904 = ; 4004 = ; 5104 = ; 6204 = = ; 8404 = ; 9504 = Problema 2 Se considera una semicircunferencia de centro O y de diámetro AD. El punto C de la circunferencia es tal que CAD = 44º. Se traza por O la recta perpendicular a la cuerda AC que corta a la semicircunferencia en el punto B. Sea F el Punto de intersección de AC y BD. Calcular la medida del ángulo CFD. A O D Sea E el punto de intersección de BO y AC. En el triángulo rectángulo AEO se tiene que AOE = 90º - 44º = 46º. Por otra parte el triángulo OBD es isósceles, pues BO y DO son radias de la semicircunferencia, luego OBD = ODB = 180º - BOD = AOB = 46º = 23º Finalmente, en el triángulo rectángulo BEF tenemos EFB = 90º - EBF = 90º - OBD = 90º - 23º = 67º, y como CFD y EFB son opuestos por el vértice, CFD = EFB = 67º Probelam 3 Hacer la lista de todos los enteros positivos de tres o más dígitos tales que cada par de dígitos consecutivos sea un número de dos dígitos que es cuadrado perfecto. Por ejemplo, 164 es un número de la lista, porque 16 = 4 y 64 = 8, pero 1645 no está en la lista porque 45 no es un cuadrado perfecto y 381 no está en la lista porque 38 no es un cuadrado perfecto.

2 Los cuadrados de dos dígitos son seis: 16; 25; 36; 49; 64; 81. Veamos todas las posibilidades para los números la lista. Si el primer dígito es 1: 164 y El primer dígito no puede ser 2, porque en tal caso el segundo sería 5 y no hay ningún cuadrado de dos cifras que empiece con 5. Si el primer dígito es el 3: 364 y El primer dígito no puede ser 4, porque en tal caso el segundo dígito sería 9 y no hay cuadrados de dos dígitos que comiencen con 9. Si el primer dígito es 6: 649. El primer dígito no puede ser 7, porque no hay cuadrados de dos cifras que comiencen con 7. Si el primer dígito es 8: 816, 8164, Y no hay más números en la lista, porque ningún cuadrado de dos cifras comienza con 9. En síntesis, la lista tiene 8 números: 164; 1649; 364; 3649; 649; 816; 8164; Problema 4 Sea ABCD un trapecio de bases AB y CD y lados no paralelos BC y AD, tal que ABC = 65 y ADC = 130. Se traza la bisectriz del ángulo ADC que corta a la base AB en E. Se sabe que AD = 12 y BE = 15. Calcular las medidas de las bases del trapecio. A E B Tenemos que ADE = CDE = 65, pues DE es bisectriz. Por otra parte, AED = CDE = 65, pues son alternos internos entre las paralelas AB y CD. Entonces, el triángulo ADE es isósceles, con AE = AD = 12. Como AED = ABC = 65, se tiene que DE es paralelo a BC Luego, el cuadrilátero BCDE tiene sus pares de lados opuestos paralelos y entonces es un paralelogramo, con CD = BE =15. Finalmente, las bases del trapecio ABCD miden CD = 15 y AB = AE + BE = = 27. Problema 5 Sea ABCD un trapecio de bases AD y BC, AD mayor que BC, y lados no paralelos AB y CD. Si se sabe que el área del trapecio ABCD es igual al triple del área del triángulo ABC, calcular el cociente área (ABD). área (ABC)

3 Por otro lado, P es la intersección de las mediatrices de los lados BC y AB del triángulo ABC, en tonces PA = PB = PC. En particular, el triáng ulo PA C es isósceles en P y se tiene que PCA = PA C = 3, Los triángulos ABC y BCD tienen la misma base BC y los vértices A y D están en una recta paralela a BC, por lo tanto área (ABC) = área (BCD). Como área (ABCD) = área (ABD) + área (BCD) y área (ABCD) = 3 área (ABC), se tiene 3 área (ABC) = área (ABD) + área (BCD) = área (ABD) + área (ABC). Entonces 2 área (ABC) = área (ABD), luego área (ABD) = 2. área (ABC) Problema 6 Se considera un triángulo isósceles ABC con AC = BC y el ángulo BCA mayor que 90. Sea M el punto medio del lado AB. La bisectriz del ángulo CAB corta a CM en O y la mediatriz del lado BC corta a la recta CM en P. La bisectriz del ángulo ACM corta a AP en Q. Se sabe que MO = MP (pero O P). Calcular el ángulo AQC. Denotamos CAB = 2α, entonces CÁO = MAO = α. Dado que el triángulo ABC es isósceles, se tiene que la mediana CM es también altura, de donde se deduce que AM ΟP. En el triángulo AOP, se tiene que M es el punto medio de OP y AM OP, entonces el triángulo es isósceles, con AO = AP. Además MAP = MAO = α. Por otro lado, P es la intersección de las mediatrices de los lados BC y AB del triángulo ABC, entonces PA = PB = PC. En particular, el triángulo PAC es isósceles en P y se tiene que PCA = PAC = 3 α, pues PAC = CÁB+MAP.

4 Con lo que sabemos hasta aquí podemos decir que los ángulos del triángulo ABC miden A = B = 2α y C = 6 α. Como la suma de los ángulos de un triángulo es 180, se deduce que A+B+C = 2α+ 2α+6α=10α = 180, de donde =18. Para calcular AQC usamos la suma de los ángulos del triángulo AQC: AQC = 180 o - CAQ - ACQ = 180 o - 3 α - j α = 180 o - 81 o = 99. Problema 7 Distribuir los números 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, uno en cada una de las casillas de un tablero de 4 x 4 de tal forma que la suma de los números ubicados en cada una de las cuatro filas, de las cuatro columnas y de las dos diagonales sea un número primo. La suma de los 16 números dados es 2( ) = 72. Los primos que se pueden obtener al sumar cuatro de los números dados son 7, 11, 13, 17, 19, 23 y 29. Hay varias maneras de expresar a 72 como suma de cuatro de estos primos, por ejemplo , , , , etc. También hay varias maneras de completar el cuadrado con dos copias de cada número entero del 1 al 8 de modo que en cada fila, en cada columna y en cada diagonal la suma de los cuatro números sea un primo. Damos dos ejemplos

5 Problema 8 Se considera una semicircunferencia de centro O y diámetro AD. El punto C de la semicircunferencia es tal que CAD = 44. Se traza por O la recta perpendicular a la cuerda AC que corta a la semicircunferencia en el punto B. Sea F el punto de intersección de AC y BD. Calcular la medidandel ángulo CFD. O Sea E el punto de intersección de BO y AC. En el triángulo rectángulo AEO se tiene que AOE = = 46. Por otra parte, el triángulo OBD es isósceles, pues BO y DO son radios de la semicircunferencia, luego OBD = ODB = 180º - BOD = AOB = 46º = Finalmente, en el triángulo rectángulo BEF tenemos EFB = 90 - EBF = 90 -OBD = = 67, A A y como CFD y EFB son opuestos por el vértice, CFD = EFB = 67. D

6 Segundo nivel Problema 1 Hallar la cantidad de números capicúa de 5 cifras que son múltiplos de 101. Sea n un número capicúa de 5 cifras, entonces n = abcba = 10 4 a b c + 10 b + a = a b c 100. Como = , 1010 = y 100 = 101 1, tenemos n = ( ) a b + (101 1)c = = 101 (99 a + 10 b + c ) + 2 a c. Este número es divisible por 101 si y sólo si 2 a c es divisible por 101. Como a y c son dígitos, la única posibilidad es 2a c = 0. Los valores que puede tomar a son cuatro : 1, 2, 3 y 4. Para cada uno de ellos hay un único valor de c, que es respectivamente 2, 4, 6 y 8, hay 10 valores posibles de b, que puede ser cualquier dígito de 0 a 9. por lo tanto hay = 40 capicúas que son múltiplos de 101. Problema 2 En el triángulo isósceles ABC, con AB = CB, se traza por A la perpendicular a BC que corta a BC en D y se traza por B la perpendicular a AC que corta en E. Si AC = 10 y BE = 12, calcular el área del triángulo CDE. A E C Como el triángulo ABC es isósceles y BE es la altura correspondiente al lado desigual, E es el punto medio de AC. En el Triángulo rectángulo CAD, DE es la mediana correspondiente a la hipotenusa AC, luego DE = EC. Así resulta que le triángulo CDE es isósceles y semejante al ABC, pues comparten el ángulo en C. Por lo tanto área (CDE) = EC 2 área (ABC) BC 2 de donde área (CDE) = EC 2 área (ABC). BC 2 Por lo tanto, área (ABC) = AC. BE = = 60 y EC = 5, pues Calculamos BC por el teorema de Pitágoras en el triángulo rectángulo CBE, BC = la raíz cuadrada de BE 2 + CE 2 = a la raíz cuadrada de = 13 Finalmente Área (CDE)= =

7 Problema 3 En un triángulo acutángulo ABC sea D en el lado BC tal que AD AC. Si C = 45º, AB = 15 y AE = 9, calcular la medida de AD. C D B Aplicamos el teorema de Pitágoras en el triángulo rectángulo ABE: BE = Raíz cuadrada de AB 2 AE 2 = Raiz cuadrada de = 12 El triángulo rectángulo BEC es isósceles, pues BCE = 45º, entonces CE = BE = 12. Luego AC = AE + CE = = 21. El triángulo Rectángulo ACD también es isósceles (DCA= 45º), de modo que CD = AD. Por el teorema de Pitágoras, 2AD 2 = AC 2, AD = Raíz cuadrada de AC 2 = raíz cuadrada de 21 2 = raíz cuadrada de 2 Problema 4 Una hoja rectangular de 120 x 144 cuadriculada en cuadritos de 1 x 1 se corta en dos triángulos mediante un corte rectilíneo a lo largo de una diagonal. Determinar el número de cuadritos de 1 x 1 que quedaron divididos por este corte. ACLARACIÓN: un cuadrito de 1 x 1 queda dividido por el corte si tiene una parte en cada uno de los dos triángulos en que se dividió la hoja. Imaginemos que la hoja está contenida en el plano cartesiano, con sus lados paralelos a los ejes, el vértice izquierdo inferior en (0,0) y el vértice superior derecho en (144,120). Se corta la hoja a lo largo de la diagonal que pasa por estos dos vértices, o sea por la recta de pendiente 120/144 = 5/6. Los únicos puntos de coordenadas enteras de la hoja por los que pasa esta recta son (0,0), (6,5), (12, 10), (18, 15),, (144, 120), es decir los de la forma (6t, 5t) con 0 t 24. La diagonal está cubierta por 24 rectángulos iguales de 5 x6, que no se solapan. Cada rectángulo tiene dos vértices opuestos de coordenadas enteras sobre esta diagonal. En cada rectángulo, la diagonal divide exactamente a 10 cuadritos, como se ve en la figura. En la hoja hay un total de 24 x 10 = 240 cuadritos divididos por el corte.

8 Problema 5 La figura muestra 5 balanzas con objetos y los pesos totales en cada balanza: Una de las balanzas funciona mal y la otras 4 indican el peso correcto. Determinar cuál es la balanza que funciona mal y hallar los pesos de cada objeto, y. Aclaración: Todos los son de igual peso, y los mismo ocurre con todos los y todos los. : Numeramos las balanzas 1, 2, 3, 4, 5, de izquierda a derecha, que indican 110 g, 80g, 140g, 130g, 100g, respectivamente. Sean x, y, z los pesos de,,, respectivamente. Si las balanzas 1 y 2 indicaron ambas el peso correcto, tendríamos 3x + 2y = 110 (1) 2x + 2y = 80 (2) Restamos (1) y (2) y obtenemos x = 30. Si lo reemplazamos en (2), resulta y = 10. Si las balanzas 4 y 5 indicaran ambas el peso correcto, 4y + 2z =130 (3) y + 5z = 100 (4) De (4), y = 100 5z. Luego, en (3), 4 (100 5z) + 2z = 130, De donde se despeja z = 15. Entonces, en (4), y= x 15 = 25. Es imposible que las balanzas 1, 2, 4 y 5 indiquen todas el peso correcto, porque el valor obtenido para y entre las dos primeras balanzas es diferente del que se obtuvo entre las dos últimas (en un caso fue 10 y en el otro 15). Como hay sólo una balanza que funciona mal, debe ser una de estas cuatro, 1, 2, 4 o 5, y podemos afirmar que la balanza 3 indica el peso correcto. Supongamos que las balanzas 1 y 2 indican el peso correcto. Hemos visto que en tal caso, x = 30, y = 10. De acuerdo con lo que indica la balanza 3, x + 3y + 3z = x z = 140 Y tenemos z = 80 / 3. El peso de los objetos de la balanza 4 es = y el peso de los objetos de la balanza 5 es = En tal caso, las balanzas 4 y 5 estarían las dos erradas, en contradicción con la hipótesis de que sólo una de las cinco balanzas funciona mal. Por lo tanto, la balanza que funciona mal debe ser la 1 o la 2, y la 4 y la 5 funcionan correctamente. Como las balanzas 4 y 5 indican el peso verdadero, de acuerdo con (3) y (4), tenemos que y = 25, z = 15. Además la balanza 3 también es confiable, de modo que x = 140 y resulta x = 0. Ya tenemos los pesos de las tres clases de objetos. Veamos cual de las balanzas 1 o 2 falla.

9 En la 1 tendríamos 3x + 2y = = 110, de modo que la balanza 1 funciona bien. En la balanza 2, 2x + 2y = = 90 80, de modo que ésta es la balanza que falla. Problema Nº 6 En un cuadrado ABCD de lados AB = BC=CD=DA = 14 se considera un punto E en el lado AD. La perpendicular a CE trazada por C corta a la prolongación del lado AB en F. Si se sabe que el área del triángulo CEF es 116, calcular el área del triángulo AEF. A B Veamos primero que los triángulos rectángulos CDE y CBF son iguales. En efecto tienen CD = CB y DCE = 90 - BCE = B. Como CDE = CBF - 90, los triángulos tienen respectivamente iguales un lado y sus ángulos adyacentes. Ahora, área (AEF) = área (AFCD) - área (CEF) - área (CDE) = = área (ABCD) + área (CBF) - área (CEF) - área (CDE) = = área (ABCD) - área (CEF). Por lo tanto Área (AEF) = = 80. Problema 7 Gabriela escribe la siguiente lista de números: el primero es 25 y luego, cada uno de los siguientes es la suma de los cuadrados de los dígitos del último número. Los primeros tres números de la lista son 25, 29 y 85, porque 29 = y 85 = Hallar el número que aparece en la posición 2005 de la lista de Gabriela. Los primeros números de la lista son 25, 29, 85, 89, 145, 42, 20, 4, 16, 37, 58, 89,... una vez que se repite un número, todo se repite y se forman ciclos. En este caso, el ciclo es 89, 145, 42, 20, 4, 16, 37, 58, de 8 números. Hasta la posición 2005 tenemos las 3 posiciones iniciales (25, 29, 85) más 250 ciclos de 8 números más dos posiciones de un nuevo ciclo, porque 2005 = Por lo tanto, el número de la posición 2005 es 145. Problema 8 Determinar la cantidad de números capicúas de 5 dígitos que son múltiplos de 37. Sea n = abcba, con a 0, un número capicúa de 5 dígitos múltiplo de 37, es decir n = 10 4 a + l0 3 b + l0 2 c + 10b + a =

10 = (10 4 +l)a + ( )b c 0 (mod37). Como l = = ll, = 1010 = ll, 10 2 =100 = , tenemos que (mod37), (mod37), (mod37). Entonces n 11a + 11b + 26c (mod37) Como 26 = 37-11, se tiene que (mod37) y en consecuencia n 11a + 11b - 11c 11(a+b-c) (mod37). Como n 0(mod37), se tiene 11(a + b-c) 0 (mod37), es decir 11 (a + b - c) es múltiplo de 37. Dado que 37 y 11 son primos, esto implica que a + b - c es múltiplo de 37. Pero a, b y c son dígitos, luego la única posibilidad es que a + b c = 0 (pues 8 18), es decir, c = a + b. El problema se reduce a contar las ternas a, b, c de dígitos tales que a 1 y a + b 9. Para cada valor de a, 1 a 9, los valores posibles de b son 0, 1,, 9 a, es decir, para a = 1 hay 9 valores de b, para a = 2, hay 8 valores de b, etc. En total son = 45 posibilidades. En consecuencia, la cantidad de capicúas de 5 dígitos que son múltiplos de 37 es 45.

11 Tercer Nivel Problema 1 Sea ABC un triángulo rectángulo en C con AB = 120 y AC = 72. Se considera el punto P de AB tal que 3BP = AB y el punto Q de BC tal que PQ es perpendicular a AB. Calcular el área del cuadrilátero APQC. A C Q B Por el teorema de Pitágoras en el triángulo rectángulo ABC tenemos BC = raíz cuadrada = 96, luego Área (ABC) = BC.AC = = Los triángulos ABC y QBP son semejantes, pues comparen el ángulo en B, y como BP = AB = 40, la razón de semejanza es BP = 40 = 5. Entonces 3 BC área (QBP) = 5/12 2 área (ABC) = ( 5/12) =600. Finalmente Área (APQC) = área (ABC) área (QBP) = = 2856 Problema 2 Sea n = x54y102 z un número entero de 8 cifras, donde z, y, z son dígitos. Se sabe que n es divisible por 8 y que n + 1 es divisible por 3 y por 11. Hallar todos los valores posibles de n. Para que n sea múltiplo de 8 debe ser z = 4, luego n = x54y1024 y n 1 = x54y1025. Por otro lado, n + 1 es divisible por 11 si y sólo si x y = x y 3 es múltiplo de 11. los valores posibles de x y son 3 y 8, o sea x = y + 3 o y = x+8. Además, n + 1 es divisible por 3 si y sólo si X y = x + y + 17 es múltiplo de 3, o sea si y sólo si x + y + 2 es múltiplo de 3, luego y puede ser 2 ó 5 y x es, respectivamente, 5 u 8. Si y = x + 8, el único valor posible de x es 1 y en tal caso, x + y + 2 = = 12 es múltiplo de 3. Los valores de n que resuelven el problema son tres: , ,

12 Problema 3 Sea ABC un triángulo rectángulo en A con AB = 16 y AC = 18. Una paralela a AB corta lado AC en P y al lado BC en Q de modo que el área del trapecio ABQP es 63. Calcular la longitud del segmento BQ El área del triángulo rectángulo ABC es AB AC = = El área del triángula rectángulo PQC A P C es igual a Área (ABC) área (ABQP) = 81. Por otra parte, los triángulos ABC y PQC son semejantes, pues sus lados son respectivamente paralelas, luego la razón entre sus áreas es igual al cuadrado de la razón entre sus lados correspondientes. Entonces [ PQ / AB ] 2 = área (PQC) / área (ABC) = 81 / 144. Por lo tanto, PQ / AB = 9 / 12 = ¾, de donde PQ = ¾ 16 = 12. Problema 4 Gabriel escribe una lista de 200 números de acuerdo con las siguientes reglas: el primer número es 2005, el segundo número es 1, y a partir de allí, en cada paso escribe la resta del último número ya escrito menos el penúltimo número escrito mas 5. Por ejemplo, el tercer número es 1999, pues = Calcular la suma de los 200 números de la lista de Gabriel. Calculamos los primeros números de la lista: 2005, 1, , , 9, 2009, 2005, 1, El séptimo y el octavo número de la lista coinciden, respectivamente, con el primero y el segundo, luego la secuencia se repute cíclicamente cada 6 números. Como 200 = , hasta 200 hay 33 ciclos completos y dos números más (2005 y 1). La suma de los 200 números es 33S , donde S es la suma de los primeros 6 números de la lista. S = (- 1999) + ( ) = 30. Entonces la suma buscada es = Problema 5 Hallar todos los enteros positivos a y b tales que a + b 100 y a + 1 / b = 13 1 / a +b

13 La ecuación original equivale a ab + 1 b = 13, ab + 1 a o sea, a = 13, b a = 13b Además a + b = 14b 100, entonces b 7. Los pares a y b que resuelven el problema son los de la forma a = 13b, 1 b 7. Problema 6 Al plegar una hoja rectangular se obtuvo un rectángulo de 9 x 12, como muestra la figura Calcular las dimensiones de la hoja antes de plegarse. La diagonal del rectángulo de lados 9 y 12 es raíz cuadrada de = 15. Observamos que el rectángulo desplegado tiene uno de sus lados igual a la diagonal del rectángulo inicial, o sea, 15. Por otra parte, el área del rectángulo desplegado es el doble del área del rectángulo de 9 x 12, pues este lo cubre dos veces. Entonces, el rectángulo desplegado tiene área = 216. Como dos de sus lados son iguales a 15, los otros dos son iguales a 216 / 15 = 72 / 5 = 14,4. Problema 7 Consideramos un tablero de 10 x 10 cuadriculado en cuadritos de 1 x 1, y tres tipos de fichas que cubren cada una exactamente 4 cuadritos del tablero. Tipo1 tipo 2 tipo 3 a) Decidir si se puede cubrir el tablero utilizando 4 fichas de tipo 1 y 21 fichas de tipo2. b) Decidir si se puede cubrir el tablero utilizando 4 fichas de tipo 1, 19 fichas de tipo 2 y 2 fichas de tipo 3. ACLARACIÓN: las fichas se pueden girar y/o dar vuelta.

14 a) Es imposible cubrir el tablero con 21 piezas de tipo 2 y 4 de tipo 1. Para demostrarlo, coloreamos el tablero con 2 colores, como muestra la figura. Hay 49 casillas blancas y 51 negras. Cada ficha tipo 1 cubre 2 casillas blancas y 2 negras. Cada ficha de tipo 2 cubre 2 casillas blancas y 2 negreas o 4 casillas blancas o 4 casillas negras. Lo importante es que cada ficha tipo 1 o 2 cubre un número par de casillas de cada color. En consecuencia, con 21 piezas de tipo 2 y 4 de tipo 1 se cubre un número par de casillas blancas y un número par de casillas negras. Como es necesario cubrir un número impar de casillas de cada color, el cubrimiento es imposible. b) El cubrimiento es posible, por ejemplo:

15

5 Geometría analítica plana

5 Geometría analítica plana Solucionario Geometría analítica plana ACTIVIDADES INICIALES.I. Halla las coordenadas del punto medio del segmento de extremos A(, ) y B(8, ). El punto medio es M(, 8)..II. Dibuja un triángulo isósceles

Más detalles

EL TRIÁNGULO. Recordemos algunas propiedades elementales de los triángulos

EL TRIÁNGULO. Recordemos algunas propiedades elementales de los triángulos EL TRIÁNGULO 1. EL TRIÁNGULO. PRIMERAS PROPIEDADES El triángulo es un polígono que tiene tres lados y tres ángulos. Es, por tanto, el polígono más simple y el conocimiento de sus características y propiedades

Más detalles

Preparación para la XLVII Olimpiada Matemática Española (II) Soluciones

Preparación para la XLVII Olimpiada Matemática Española (II) Soluciones Preparación para la XLVII Olimpiada Matemática Española (II) Soluciones Eva Elduque Laburta y Adrián Rodrigo Escudero 5 de noviembre de 010 Problema 1. Construir un triángulo conocidos 1. un lado, su ángulo

Más detalles

Seminario de problemas-eso. Curso 2012-13. Hoja 7

Seminario de problemas-eso. Curso 2012-13. Hoja 7 Seminario de problemas-eso. Curso 2012-13. Hoja 7 43. La suma de las edades de mamá, papá, mi hermano y yo es 83. Seis veces la edad de papá es igual a siete veces la edad de mamá, y la edad de mamá es

Más detalles

MINISTERIO DE EDUCACIÓN Concurso Nacional de Matemática Educación Preuniversitaria Curso 2009 2010 Temario por Grados

MINISTERIO DE EDUCACIÓN Concurso Nacional de Matemática Educación Preuniversitaria Curso 2009 2010 Temario por Grados MINISTERIO DE EDUCACIÓN Concurso Nacional de Matemática Educación Preuniversitaria Curso 009 010 Temario por Grados Nombre: Grado: Escuela: Provincia: Municipio: Número C.I.: Calif: La distribución de

Más detalles

Segundo Examen eliminatorio estatal 28va OMM Durango

Segundo Examen eliminatorio estatal 28va OMM Durango Segundo Examen eliminatorio estatal 28va OMM Durango 1. En la división de 999 entre n donde n es un entero de dos cifras, el residuo es 3. Cuál es el residuo de la división de 2001 entre n? (a)3 (b)5 (c)6

Más detalles

PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta

PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta PROBLEMAS MÉTRICOS Página 3 REFLEXIONA Y RESUELVE Diagonal de un ortoedro Halla la diagonal de los ortoedros cuyas dimensiones son las siguientes: I) a =, b =, c = II) a = 4, b =, c = 3 III) a =, b = 4,

Más detalles

4.- Deduce la ecuación de la recta cuyos puntos de intersección con los ejes son A=(6,0) y B=(0,-2). Sol: x-3y-6=0.

4.- Deduce la ecuación de la recta cuyos puntos de intersección con los ejes son A=(6,0) y B=(0,-2). Sol: x-3y-6=0. Tipos de rectas. Vector director. Pendiente. Paralelas y perpendiculares. 1.- Encuentra la ecuación vectorial, paramétrica y continua de la recta que pasa por los puntos A=(3,2) y B=(1,-1). Sol: (x,y)=(3,2)+t(2,3);

Más detalles

C u r s o : Matemática ENSAYO UNIVERSIA Nº 6 MATEMÁTICA

C u r s o : Matemática ENSAYO UNIVERSIA Nº 6 MATEMÁTICA C u r s o : Matemática ENSAYO UNIVERSIA Nº 6 MATEMÁTICA PSU MATEMÁTICA INSTRUCCIONES ESPECÍFICAS. Esta prueba consta de 70 preguntas. Usted dispone de horas y 5 minutos para responderla.. A continuación

Más detalles

CONSTRUCCIONES GEOMÉTRICAS CON GEOGEBRA

CONSTRUCCIONES GEOMÉTRICAS CON GEOGEBRA CONSTRUCCIONES GEOMÉTRICAS CON GEOGEBRA GEOGEBRA es un programa de geometría dinámica libre. Todos los problemas presentados se pueden trabajar con cualquiera de los programas de geometría dinámica, hemos

Más detalles

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3). SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el

Más detalles

DEPARTAMENTO DE GEOMETRIA ANALITICA SEMESTRE 2016-1 SERIE ÁLGEBRA VECTORIAL

DEPARTAMENTO DE GEOMETRIA ANALITICA SEMESTRE 2016-1 SERIE ÁLGEBRA VECTORIAL 1.-Sea C(2, -3, 5) el punto medio del segmento dirigido AB. Empleando álgebra vectorial, determinar las coordenadas de los puntos A y B, si las componentes escalares de AB sobre los ejes coordenados X,

Más detalles

OLIMPÍADA JUVENIL DE MATEMÁTICA 2009 CANGURO MATEMÁTICO PRUEBA PRELIMINAR SÉPTIMO GRADO

OLIMPÍADA JUVENIL DE MATEMÁTICA 2009 CANGURO MATEMÁTICO PRUEBA PRELIMINAR SÉPTIMO GRADO OLIMPÍADA JUVENIL DE MATEMÁTICA 2009 CANGURO MATEMÁTICO PRUEBA PRELIMINAR SÉPTIMO GRADO RESPONDE LA PRUEBA EN LA HOJA DE RESPUESTA ANEXA 1. Cuál de los siguientes números es par? A 2009 B 2 + 0 + 0 + 9

Más detalles

TEMA 6: LA GEOMETRÍA DEL TRIÁNGULO

TEMA 6: LA GEOMETRÍA DEL TRIÁNGULO TEMA 6: LA GEOMETRÍA DEL TRIÁNGULO Matías Arce, Sonsoles Blázquez, Tomás Ortega, Cristina Pecharromán 1. INTRODUCCIÓN... 1 2. CLASIFICACIÓN DE TRIÁNGULOS... 2 3. PUNTOS Y RECTAS NOTABLES... 3 4. SEMEJANZA

Más detalles

8 GEOMETRÍA ANALÍTICA

8 GEOMETRÍA ANALÍTICA 8 GEOMETRÍA ANALÍTICA EJERCICIOS PROPUESTOS 8. Las coordenadas de los vértices de un rectángulo son A(, ); B(, 5); C(6, 5), y D(6, ). Halla las coordenadas y representa los vectores AB, BC, CD y DA. Qué

Más detalles

Curso: Matemática ENSAYO EX CÁTEDRA Nº 1 MATEMÁTICA

Curso: Matemática ENSAYO EX CÁTEDRA Nº 1 MATEMÁTICA Curso: Matemática ENSAYO EX CÁTEDRA Nº MATEMÁTICA PSU MATEMÁTICA INSTRUCCIONES ESPECÍFICAS. Esta prueba consta de 75 preguntas. Usted dispone de horas y 5 minutos para responderla.. A continuación encontrará

Más detalles

CENAFE MATEMÁTICAS POLÍGONOS

CENAFE MATEMÁTICAS POLÍGONOS POLÍGONOS Es la porción del plano comprendida dentro de una línea poligonal cerrada. Es la superficie del plano limitada por una línea poligonal. La medida de un polígono es su área. Criterios de clasificación:

Más detalles

Geometria Analítica Laboratorio #1 Sistemas de Coordenadas

Geometria Analítica Laboratorio #1 Sistemas de Coordenadas 1. Verificar las identidades siguientes: 1) P (3, 3), Q( 1, 3), R(4, 0) Laboratorio #1 Sistemas de Coordenadas 2) O( 10, 2), P ( 6, 3), Q( 5, 1) 2. Demuestre que los puntos dados forman un triángulo isósceles.

Más detalles

6. VECTORES Y COORDENADAS

6. VECTORES Y COORDENADAS 6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES

Más detalles

13 LONGITUDES Y ÁREAS

13 LONGITUDES Y ÁREAS 1 LONGITUDES Y ÁREAS EJERCICIOS PROPUESTOS 1.1 Calcula el perímetro de las siguientes figuras. a),5 cm b) cm cm cm cm a) p,5 8 5 1 cm b) p 9 cm 1. Halla el perímetro de estas figuras. a) Un cuadrado de

Más detalles

Geometría analítica. Geometría analítica. La caricia del escorpión

Geometría analítica. Geometría analítica. La caricia del escorpión Geometría analítica Geometría analítica LITERATURA Y MATEMÁTICAS La caricia del escorpión Continuamos, pues, en ese piso calamitoso de Delicias, achicando inundaciones domésticas, martilleando en las cañerías.

Más detalles

GEOMETRÍA ANALÍTICA EJERCITARIO DE FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) UNIVERSIDAD NACIONAL DE ASUNCIÓN

GEOMETRÍA ANALÍTICA EJERCITARIO DE FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) UNIVERSIDAD NACIONAL DE ASUNCIÓN UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO DE GEOMETRÍA ANALÍTICA (ÁLGEBRA VECTORIAL - TEORÍA) AÑO 2014 ÁLGEBRA VECTORIAL - EJERCICIOS TEÓRICOS

Más detalles

4. Resolver eliminando signos de agrupación: -3, * ( ) + - 5. Demostrar la propiedad conmutativa de la suma con:

4. Resolver eliminando signos de agrupación: -3, * ( ) + - 5. Demostrar la propiedad conmutativa de la suma con: GUIA DE EJERCICIOS DE MATEMÁTICA PRIMER AÑO APELLIDOS NOMBRES 1-La suma de dos números consecutivos es 61. cuáles son los números? 2. La suma de dos números pares consecutivos es 146. cuáles son los números?

Más detalles

Q + simboliza el conjunto de los números fraccionarios y está formado por

Q + simboliza el conjunto de los números fraccionarios y está formado por CONJUNTOS NUMÉRICOS N simboliza el conjunto de los números naturales: N = {0; ; ; 3; 4; } Q + simboliza el conjunto de los números fraccionarios y está formado por a todas las fracciones de la forma ;

Más detalles

XIII Concurso Intercentros de Matemáticas de la Comunidad de Madrid

XIII Concurso Intercentros de Matemáticas de la Comunidad de Madrid PRU POR QUIPOS 1º y 2º de.s.o. (45 minutos) 1. n el triángulo dibujamos tres paralelas a la base que dividen a la altura sobre dicho lado en cuatro partes iguales. Si el área del trapecio rayado es 35

Más detalles

Tema 7. Geometría en plano. Vectores y rectas

Tema 7. Geometría en plano. Vectores y rectas Tema 7. Geometría en plano. Vectores y rectas. Vectores y puntos en el plano. Coordenadas.... Operaciones con vectores... 5.. Suma y resta de vectores... 5.. Producto de un número real por un vector....

Más detalles

Primer Simposio Latinoamericano para la integración de la tecnología en el aula de ciencias y matemáticas

Primer Simposio Latinoamericano para la integración de la tecnología en el aula de ciencias y matemáticas Primer Simposio Latinoamericano para la integración de la tecnología en el aula de ciencias y matemáticas PROBLEMAS DE OPTIMIZACIÓN 1.-Entre todos los rectángulos de perímetro 10 cm. encontrar el de mayor

Más detalles

EVALUACIÓN DIAGNÓSTICA

EVALUACIÓN DIAGNÓSTICA ASESORIA DE OLIMPIADAS EVALUACIÓN DIAGNÓSTICA M en C. LUZMA ORTIZ BARRETO NOMBRE DEL ALUMNO: GPO: N.L. 5 1) Resolver la siguiente ecuación i x es un número real y 7 3 x 7 3 x Cuál es el valor de x? 2)

Más detalles

El Teorema de Pitágoras

El Teorema de Pitágoras LECCIÓN CONDENSADA 9.1 El Teorema de Pitágoras En esta lección Conocerás el Teorema de Pitágoras, que establece la relación entre las longitudes de los catetos y la longitud de la hipotenusa de un triángulo

Más detalles

XLIV Olimpiada Matemática Española Fase nacional 2008 (Valencia) PRIMERA SESIÓN (28 de marzo)

XLIV Olimpiada Matemática Española Fase nacional 2008 (Valencia) PRIMERA SESIÓN (28 de marzo) Fase nacional 008 (Valencia) PRIMERA SESIÓN (8 de marzo).- Halla dos enteros positivos a y b conociendo su suma y su mínimo común múltiplo. Aplícalo en el caso de ue la suma sea 97 y el mínimo común múltiplo

Más detalles

Problemas geométricos

Problemas geométricos 8 Problemas geométricos Objetivos En esta quincena aprenderás a: Aplicar las razones trigonométricas para estudiar las relaciones que existen entre los ángulos y los lados de las figuras planas. Calcular

Más detalles

TEMA 5: CIRCUNFERENCIA Y CÍRCULO

TEMA 5: CIRCUNFERENCIA Y CÍRCULO TEMA 5: CIRCUNFERENCIA Y CÍRCULO Matías Arce, Sonsoles Blázquez, Tomás Ortega, Cristina Pecharromán 1. INTRODUCCIÓN... 1 2. LA CIRCUNFERENCIA Y EL CÍRCULO... 1 3. MEDICIÓN DE ÁNGULOS... 3 4. ÁNGULOS EN

Más detalles

Movimientos en el plano

Movimientos en el plano 7 Movimientos en el plano Objetivos En esta quincena aprenderás a: Manejar el concepto de vector como elemento direccional del plano. Reconocer los movimientos principales en el plano: traslaciones, giros

Más detalles

LA CIRCUNFERENCIA EN EL PLANO CARTESIANO

LA CIRCUNFERENCIA EN EL PLANO CARTESIANO LA CIRCUNFERENCIA EN EL PLANO CARTESIANO Si un hombre es perseverante, aunque sea duro de entendimiento se hará inteligente; y aunque sea débil se transformará en fuerte Leonardo Da Vinci TRASLACION DE

Más detalles

9 VECTORES Y RECTAS EN EL PLANO

9 VECTORES Y RECTAS EN EL PLANO 9 VECTRES RECTAS EN EL PLAN EJERCICIS PRPUESTS 9. Dibuja cuatro vectores equipolentes al vector AB de la figura que tengan sus orígenes en los puntos, C, D y E. D E AB C D C E 9. En la figura siguiente,

Más detalles

6. Circunferencia. y polígonos

6. Circunferencia. y polígonos 6. Circunferencia y polígonos Matemáticas 2º ESO 1. Lugares geométricos 2. Polígonos en la circunferencia 3. Simetrías en los polígonos 4. Longitud de la circunferencia y superficie del círculo 192 Circunferencia

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 180 EJERCICIOS Semejanza de figuras 1 Sobre un papel cuadriculado, haz un dibujo semejante a este ampliado al triple de su tamaño: 2 En un mapa a escala 1 :50 000 la distancia entre dos pueblos,

Más detalles

EJERCICIOS DE ELECTROMAGNETISMO. Pruebas y Exámenes 1991 2002. Prof. Manuel Aguirre A.

EJERCICIOS DE ELECTROMAGNETISMO. Pruebas y Exámenes 1991 2002. Prof. Manuel Aguirre A. EJERCICIOS DE ELECTROMAGNETISMO Pruebas y Exámenes 1991 Prof. Manuel Aguirre A. ENUNCIADOS E 1.. FUERZA ENTRE CARGAS PUNTUALES Y CAMPO ELÉCTRICO E 1..1. Tres cargas puntuales, Q 1 >, Q < y Q 3 >, se encuentran

Más detalles

Transformaciones Isométricas

Transformaciones Isométricas Introducción Transformaciones Isométricas Actividad: En los siguientes pares de transformaciones, reconoce aquellas en las que se mantiene la forma y el tamaño. Una transformación de una figura geométrica

Más detalles

GEOMETRIA ANALITICA PROBLEMARIO. M. en C. JOSÉ CORREA BUCIO ELABORADO POR:

GEOMETRIA ANALITICA PROBLEMARIO. M. en C. JOSÉ CORREA BUCIO ELABORADO POR: GEOMETRIA ANALITICA PROBLEMARIO ELABORADO POR: SEMESTRE AGOSTO 13 - ENERO 1 GEOMETRIA ANALITICA CBTis No. 1 SISTEMA UNIDIMENSIONAL 1.- Localizaremos en un eje de coordenadas los puntos que tienen por coordenadas

Más detalles

8 GEOMETRÍA DEL PLANO

8 GEOMETRÍA DEL PLANO EJERIIOS PROPUESTOS 8.1 alcula la medida del ángulo que falta en cada figura. a) 6 b) 145 15 105 160 130 a) En un triángulo, la suma de las medidas de sus ángulos es 180. p 180 90 6 8 El ángulo mide 8.

Más detalles

Portal Fuenterrebollo Olimpiada Matemáticas Nivel II (1º 2º ESO) OLIMPIADA MATEMÁTICAS NIVEL II (1º - 2º ESO)

Portal Fuenterrebollo Olimpiada Matemáticas Nivel II (1º 2º ESO) OLIMPIADA MATEMÁTICAS NIVEL II (1º - 2º ESO) Portal Fuenterrebollo Olimpiada Matemáticas Nivel II (1º º ESO) OLIMPIADA MATEMÁTICAS NIVEL II (1º - º ESO) 1. En mi huerto cosecho una cebolla cada 4 días, un tomate cada 15 días y una lechuga cada 18

Más detalles

9 Geometría. analítica. 1. Vectores

9 Geometría. analítica. 1. Vectores 9 Geometría analítica 1. Vectores Dibuja en unos ejes coordenados los vectores que nacen en el origen de coordenadas y tienen sus extremos en los puntos: A(, ), B(, ), C(, ) y D(, ) P I E N S A C A L C

Más detalles

Geometría plana y Trigonometría

Geometría plana y Trigonometría MÓDULO Geometría plana y Trigonometría Contenido. Elementos básicos del método del método deductivo.. Teorema, axioma y postulado.. Hipótesis y la tesis en una proposición dada.. Ángulos.. Definición..

Más detalles

8 Geometría. analítica. 1. Vectores

8 Geometría. analítica. 1. Vectores Geometría analítica 1. Vectores Dibuja en unos ejes coordenados los vectores que nacen en el origen de coordenadas y tienen sus extremos en los puntos: A(, ), B(, ), C(, ) y D(, ) P I E N S A C A L C U

Más detalles

Preguntas resueltas y para resolver Profesor José Barreto www.abaco.com.ve Teléfono(0416)3599615 Caracas Venezuela

Preguntas resueltas y para resolver Profesor José Barreto www.abaco.com.ve Teléfono(0416)3599615 Caracas Venezuela 1 MODIFIADO ON WORD 2000. Si no lo ve alineado (las figuras), abra Word y2000 o versión superior y abralo desde el menu archivo (file), verea la versión HTML correcta. 1. 1 1 = 2 2 2 2 PARTE MATEMATIAS

Más detalles

EJERCICIOS DE SISTEMAS DE ECUACIONES

EJERCICIOS DE SISTEMAS DE ECUACIONES EJERCICIOS DE SISTEMAS DE ECUACIONES Ejercicio nº 1.- a) Resuelve por sustitución: 5x y 1 3x 3y 5 b) Resuelve por reducción: x y 6 4x 3y 14 Ejercicio nº.- a) Resuelve por igualación: 5x y x y b) Resuelve

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA AÑO 2014 RECTAS - EJERCICIOS TEÓRICOS 1- Demostrar que la ecuación

Más detalles

Tema 1: Cuerpos geométricos. Aplicaciones

Tema 1: Cuerpos geométricos. Aplicaciones Tema 1: Cuerpos geométricos. Aplicaciones 1.- los polígonos. Un polígono es un trozo de plano limitado por una línea poligonal (sin curvas) cerrada. Es un polígono No son polígonos Hay dos clases de polígonos:

Más detalles

Olimpiada Mexicana de Matemáticas 2005.

Olimpiada Mexicana de Matemáticas 2005. Olimpiada Mexicana de Matemáticas 005. Fase Estatál. Yucatán. Problemario. 8 de marzo de 005 Problemas 1 Hubo un robo en la joyería Factorial. Los dos sospechosos son los empleados de la joyería: Combinado

Más detalles

GEOMETRÍA. 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto?

GEOMETRÍA. 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto? GEOMETRÍA 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto? A) 740 B) 840 C) 540 D) 640 308. El largo de un rectángulo

Más detalles

Bisectrices. Incentro.

Bisectrices. Incentro. 78 CAPÍTULO 7: GEOMETRÍA DEL PLANO. Matemáticas 3º de ESO 1. LUGARES GEOMÉTRICOS Muchas veces definimos una figura geométrica como los puntos del plano que cumplen una determinada condición. Decimos entonces

Más detalles

RAZONAMIENTO MATEMÁTICO EJERCICIOS DE PRÁCTICA PARA LA PAA

RAZONAMIENTO MATEMÁTICO EJERCICIOS DE PRÁCTICA PARA LA PAA RAZONAMIENTO MATEMÁTICO EJERCICIOS DE PRÁCTICA PARA LA PAA 1. Juan compra 12 dulces por 30 pesos. Si al día siguiente el precio de cada dulce se incremento a 6 pesos, cuanto se ahorro Juan por dulce al

Más detalles

Problemas para el Concurso Estatal de Olimpiada de Matemáticas en Yucatán. Dr. D idie r Solí s Gamboa M.M. P edro David Sá nchez S alazar

Problemas para el Concurso Estatal de Olimpiada de Matemáticas en Yucatán. Dr. D idie r Solí s Gamboa M.M. P edro David Sá nchez S alazar Problemas para el Concurso Estatal de Olimpiada de Matemáticas en Yucatán. Dr. D idie r Solí s Gamboa M.M. P edro David Sá nchez S alazar La siguiente es una lista de ejercicios de práctica para el concurso

Más detalles

VECTORES LIBRES DEL PLANO

VECTORES LIBRES DEL PLANO VECTORES LIBRES DEL PLANO ESPACIO VECTORIAL NUMERICO R² 1.-En un espacio vectorial: a) Cuantas operaciones están definidas. b) Cuantos conjuntos intervienen. c) Cita e indica las operaciones. d) Haz las

Más detalles

UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL SISTEMA DE EDUCACIÓN A DISTANCIA CARRERA DE CIENCIAS DE EDUCACIÓN AREA DE MATEMÁTICAS. Módulo

UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL SISTEMA DE EDUCACIÓN A DISTANCIA CARRERA DE CIENCIAS DE EDUCACIÓN AREA DE MATEMÁTICAS. Módulo UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL SISTEMA DE EDUCACIÓN A DISTANCIA CARRERA DE CIENCIAS DE EDUCACIÓN AREA DE MATEMÁTICAS Módulo TRIGONOMETRÍA Y DIBUJO TÉCNICO Msc. Sexto Nivel Tercera Edición Quito, marzo

Más detalles

Movimientos en el plano

Movimientos en el plano Movimientos en el plano TEORIA Vectores Concepto de vector. Coordenadas Un vector AB está determinado por dos puntos del plano, A(x1, y1) que es su origen y B(x 2,y 2 ) que es su extremo. Las coordenadas

Más detalles

Unidad 9: Vectores. 1. Sistemas de coordenadas y lugares geométricos. 1.1. Introducción.

Unidad 9: Vectores. 1. Sistemas de coordenadas y lugares geométricos. 1.1. Introducción. Facultad de Ciencias Exactas, Ingeniería y Agrimensura Departamento de Matemática Escuela de Ciencias Exactas y Naturales GEOMETRÍA I Licenciatura en Matemática - Profesorado en Matemática - Año 2014 Equipo

Más detalles

NOCIONES BÁSICAS DE LA GEOMETRÍA ANALÍTICA

NOCIONES BÁSICAS DE LA GEOMETRÍA ANALÍTICA . NOCIONES BÁSICAS DE LA GEOETRÍA ANALÍTICA NOCIONES BÁSICAS DE LA GEOETRÍA ANALÍTICA CONTENIDO Sistema de coordenadas rectangulares o cartesianas Coordenadas cartesianas de un punto Distancia entre dos

Más detalles

GEOMETRÍA DEL ESPACIO EUCLÍDEO

GEOMETRÍA DEL ESPACIO EUCLÍDEO CAPÍTULO I. GEOMETRÍA DEL ESPACIO EUCLÍDEO SECCIONES 1. Vectores. Operaciones con vectores. 2. Rectas y planos en R 3. 3. Curvas y superficies en R 3. 4. Nociones de topología métrica. 1 1. VECTORES. OPERACIONES

Más detalles

x y y x 2x y x y x 2y 2 5 x 2y 2 5 EJERCICIOS PROPUESTOS

x y y x 2x y x y x 2y 2 5 x 2y 2 5 EJERCICIOS PROPUESTOS Solucionario 6 CÓNICAS 6.I. Calcula las ecuaciones de los siguientes lugares geométricos e identifícalos. a) Puntos que equidistan de A(3, 3) y de B(, 5). b) Puntos que equidistan de r: y 0 y s: y 0. c)

Más detalles

Geometría Analítica. Efraín Soto Apolinar

Geometría Analítica. Efraín Soto Apolinar Geometría Analítica Efraín Soto Apolinar TÉRMINOS DE USO Derechos Reservados c 010. Todos los derechos reservados a favor de Efraín Soto Apolinar. Soto Apolinar, Efraín. Geometría Analítica 010 edición.

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de ádiz Departamento de Matemáticas MATEMÁTIAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 5 La circunferencia Elaborado por la Profesora Doctora María Teresa González

Más detalles

Unidad VII. Geometría, trigonometría y series

Unidad VII. Geometría, trigonometría y series Geometría, trigonometría y series Unidad VII En esta unidad usted aprenderá a: Conocer y utilizar la semejanza de los triángulos. Utilizar algunos elementos de la trigonometría. Aplicar el teorema de Pitágoras.

Más detalles

EJERCICIOS DE PUNTOS EN EL ESPACIO

EJERCICIOS DE PUNTOS EN EL ESPACIO EJERCICIOS DE PUNTOS EN EL ESPACIO 1.- Las coordenadas de los vértices consecutivos de un paralelogramo son A (1, 0, 0) y B(0, 1, 0). Las coordenadas del centro M son M(0, 0, 1). Hallar las coordenadas

Más detalles

UNIDAD 2: SISTEMAS DE COORDENADAS Y LUGARES GEOMETRICOS

UNIDAD 2: SISTEMAS DE COORDENADAS Y LUGARES GEOMETRICOS UNIDAD 2: : SSI ISSTEEMASS DEE COORDEENADASS Y LLUGAREESS GEEOMEETRI ICOSS UNIDAD 2: SISTEMAS DE COORDENADAS Y LUGARES GEOMETRICOS Propósitos: Mostrar una visión global del método de la Geometría Analítica

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro

Más detalles

MÓDULO Nº 4. Nivelación. Matemática 2005. Módulo Nº4. Contenidos. Circunferencia y Círculo Volúmenes

MÓDULO Nº 4. Nivelación. Matemática 2005. Módulo Nº4. Contenidos. Circunferencia y Círculo Volúmenes MÓDULO Nº 4 Nivelación Matemática 2005 Módulo Nº4 Contenidos Circunferencia y Círculo Volúmenes Nivelación Circunferencia y Círculo Circunferencia. Es una línea curva cerrada, cuyos puntos tienen la propiedad

Más detalles

APU TES Y EJERCICIOS DEL TEMA 9 PROPORC. GEOMÉTRICA. THALES. ESCALA.

APU TES Y EJERCICIOS DEL TEMA 9 PROPORC. GEOMÉTRICA. THALES. ESCALA. APU TES Y DEL TEMA 9 PROPORC. GEOMÉTRICA. THALES. ESCALA. 1-T 9--2ºESO RECORDATORIO INICIAL: Antes de empezar de lleno con este tema, os digo que, ocasionalmente, se van a trabajar ciertos conceptos que

Más detalles

TORNEO DE LAS CUENCAS. 2013 Primera Ronda Soluciones PRIMER NIVEL

TORNEO DE LAS CUENCAS. 2013 Primera Ronda Soluciones PRIMER NIVEL TORNEO DE LAS CUENCAS 2013 Primera Ronda Soluciones PRIMER NIVEL Problema 1- La figura adjunta está formada por un rectángulo y un cuadrado. Trazar una recta que la divida en dos figuras de igual área.

Más detalles

b) 3 c) 1 d) 2 6. Si ( ) ( ) ( 1,3) Cuál es el valor de u v + 2w

b) 3 c) 1 d) 2 6. Si ( ) ( ) ( 1,3) Cuál es el valor de u v + 2w Elaborada por José A. Barreto. Master of Arts The University of Teas at Austin. En el conjunto de los números reales se define la relación Ry ( está relacionado con y si > y + 0. Cuál de los siguientes

Más detalles

TEMA 2. HERRAMIENTAS DE GeoGebra

TEMA 2. HERRAMIENTAS DE GeoGebra TEMA 2. HERRAMIENTAS DE GeoGebra INTRODUCCIÓN Herramientas como Punto, Circunferencia, Segmento, Tangente, entre otras, se han utilizado en las actividades propuestas en el capítulo anterior, para realizar

Más detalles

Vectores: Producto escalar y vectorial

Vectores: Producto escalar y vectorial Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con

Más detalles

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G.

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G. Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Geometría Anaĺıtica: J. Labrin - G.Riquelme 1. Los puntos extremos de un segmento son P 1 (2,4) y P 2 (8, 4).

Más detalles

TRANSFORMACIONES EN EL PLANO

TRANSFORMACIONES EN EL PLANO TRANSFORMACIONES EN EL PLANO Conceptos teóricos Una transformación del plano es una aplicación del plano en el mismo. Esto significa que es un procedimiento que, a todo punto M del plano, asocia un punto

Más detalles

Matemática Discreta I Tema 4 - Ejercicios resueltos

Matemática Discreta I Tema 4 - Ejercicios resueltos Matemática Discreta I Tema - Ejercicios resueltos Principios básicos Ejercicio 1 Cuántos números naturales existen menores que 10 6, cuyas cifras sean todas distintas? Solución Si n < 10 6, n tiene 6 o

Más detalles

GEOMETRÍA CON LA CLASSPAD 300

GEOMETRÍA CON LA CLASSPAD 300 8. GEOMETRÍA CON LA CLASSPAD 300 LA APLICACIÓN GEOMETRÍA Para acceder a la aplicación para trabajar con distintas construcciones geométricas bastará con pulsar el icono correspondiente a Geometry en el

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

Tarea 4 Soluciones. la parte literal es x3 y 4

Tarea 4 Soluciones. la parte literal es x3 y 4 Tarea 4 Soluciones Extracto del libro Baldor. Definición. Término.-es una expresión algebraica que consta de un solo símbolo o de varios símbolos no separados entre sí por el signo + o -. Así, a, 3b, 2xy,

Más detalles

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado,

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, FICHA 1: Teorema de Pitágoras 1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, cuando proceda): a) Hallar la hipotenusa de un triángulo rectángulo

Más detalles

Cuadernillo de actividades

Cuadernillo de actividades Construyendo con Geogebra II Jornadas sobre Geogebra en Andalucía Abril 2011 Actividades para el Taller: Construyendo con EVA COSTA GAVILÁN Mª TRINIDAD CASTILLO CARA Mª ÁNGELES MARTÍN TAPIAS Cuadernillo

Más detalles

UNIVERSIDAD COMPLUTENSE DE MADRID

UNIVERSIDAD COMPLUTENSE DE MADRID TIEMPO: INSTRUCCIONES GENERALES Y VALORACIÓN 120 minutos INSTRUCCIONES: La prueba consiste en la realización de cinco ejercicios, a elegir entre dos opciones, denominadas A y B. El alumno realizará una

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo 10 La circunferencia y el círculo Objetivos En esta quincena aprenderás a: Identificar los diferentes elementos presentes en la circunferencia y el círculo. Conocer las posiciones relativas de puntos,

Más detalles

VECTORES. son base y. 11) Comprueba si los vectores u

VECTORES. son base y. 11) Comprueba si los vectores u VECTORES 1. Cálculo de un vector conocidos sus extremos. Módulo de un vector 2. Operaciones con vectores 3. Base: combinación lineal, linealmente independientes.coordenadas de un vector en función de una

Más detalles

TRIÁNGULOS. Pascual Jara y Ceferino Ruiz. Granada

TRIÁNGULOS. Pascual Jara y Ceferino Ruiz. Granada ESTALMAT-Andalucía TRIÁNGULOS Pascual Jara y Ceferino Ruiz Granada 1. Definición de triángulo Comenzamos la Geometría viendo como organizar figuras en el plano. Los ejemplos más sencillos de figuras a

Más detalles

Sistemas de representación: Planos Acotados. Ejercicios.

Sistemas de representación: Planos Acotados. Ejercicios. Sistemas de representación: Planos Acotados. Ejercicios. Las proyecciones de los puntos A'(3) y C'(8) son los extremos de uno de los diámetros de una circunferencia de 60 mm. de φ. La pendiente de

Más detalles

Olimpiada Matemática Internacional Formula of Unity / The Third Millennium Curso 2015/2016. Fase 1 Problemas del grado R5

Olimpiada Matemática Internacional Formula of Unity / The Third Millennium Curso 2015/2016. Fase 1 Problemas del grado R5 Problemas del grado R5 1. Pedro, Braulio and Antonio reunieron sus ahorros para comprar un balón. Cada uno de ellos no gastaron más de la mitad del dinero gastado por los otros dos chicos juntos. El balón

Más detalles

Matemáticas 1º ESO. 1. Instrumentos geométricos. 2. Ángulos y tiempo. 3. Triángulos. 4. Cuadriláteros. 5. Polígonos. 6.

Matemáticas 1º ESO. 1. Instrumentos geométricos. 2. Ángulos y tiempo. 3. Triángulos. 4. Cuadriláteros. 5. Polígonos. 6. 6 Figuras planas Matemáticas 1º ESO 1. Instrumentos geométricos 2. Ángulos y tiempo 3. Triángulos 4. Cuadriláteros 5. Polígonos 6. Circunferencia 208 Figuras planas 1. Instrumentos geométricos REGLA Y

Más detalles

Problemas y Soluciones

Problemas y Soluciones Divulgaciones Matemáticas Vol. 8 No. 2 (2000), pp. 177 184 Problemas y Soluciones Problems and Solutions Editor: José Heber Nieto (jhnieto@luz.ve) Departamento de Matemática y Computación Facultad Experimental

Más detalles

Introducción. Esperamos que el presente texto contenga el material básico para el desarrollo de este curso, bienvenido y... A estudiar!

Introducción. Esperamos que el presente texto contenga el material básico para el desarrollo de este curso, bienvenido y... A estudiar! Introducción La Geometría Analítica, es fundamental para el estudio y desarrollo de nuevos materiales que nos facilitan la vida diaria, razón por la cual esta asignatura siempre influye en la vida de todo

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE VACIADO DE TANQUES

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE VACIADO DE TANQUES APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE VACIADO DE TANQUES Mucos problemas físicos dependen de alguna manera de la geometría. Uno de ellos es la salida de

Más detalles

Explica tu respuesta.

Explica tu respuesta. G.MG.6.8.3 Describe y aplica las relaciones de paralelismo, perpendicularidad y simetría en el mundo real. Ejemplo: Si dos calles se intersecan, son perpendiculares? Explica tu respuesta. Rectas paralelas:

Más detalles

EJERCICIOS SIMCE 2 MEDIO 1

EJERCICIOS SIMCE 2 MEDIO 1 EJERCICIOS SIMCE MEDIO EJERCICIOS SIMCE MEDIO. Cuál de las siguientes expresiones NO representa la suma A) B) C) a a a a a a D) a a? 4. Si x + =, entonces x es igual a: 4 A) B) 4 C) 0 D) No está definida

Más detalles

Guía de estudio para presentar exámenes de Recuperación y Acreditación Especial. (Versión preliminar)

Guía de estudio para presentar exámenes de Recuperación y Acreditación Especial. (Versión preliminar) Guía de estudio para presentar eámenes de Recuperación Acreditación Especial (Versión preliminar) Diciembre de 004 ii Matemáticas II ÍNDICE PRESENTACIÓN... PRÓLOGO... vi vii UNIDAD 1. Sistema de ejes coordenados...

Más detalles

PROBLEMAS DE SISTEMAS DE ECUACIONES

PROBLEMAS DE SISTEMAS DE ECUACIONES PROBLEMAS DE SISTEMAS DE ECUACIONES Problema nº 1.- Calcula un número sabiendo que la suma de sus dos cifras es 10; y que, si invertimos el orden de dichas cifras, el número obtenido es 36 unidades mayor

Más detalles

TEMA 8: TRAZADOS GEOMÉTRICOS

TEMA 8: TRAZADOS GEOMÉTRICOS EDUCACIÓN PLÁSTICA Y VISUAL 3º DE LA E.S.O. TEMA 8: TRAZADOS GEOMÉTRICOS En dibujo técnico, es fundamental conocer los trazados geométricos básicos para construir posteriormente formas o figuras de mayor

Más detalles

Aritmética. Problema 4. Tenemos tres balanzas equilibradas, como muestran las figuras. Cuántas tazas se necesitan para equilibrar la jarra?

Aritmética. Problema 4. Tenemos tres balanzas equilibradas, como muestran las figuras. Cuántas tazas se necesitan para equilibrar la jarra? Aritmética Problema. Un pastel se corta quitando cada vez la tercera parte del pastel que hay en el momento de cortar. Qué fracción del pastel original quedó después de cortar tres veces? Problema. Si

Más detalles

LA MATEMÁTICA DEL TELEVISOR

LA MATEMÁTICA DEL TELEVISOR LA MATEMÁTICA DEL TELEVISOR ADRIANA RABINO Y PATRICIA CUELLO 1. Las publicidades, por lo general, describen el tamaño de las pantallas de TV dando la longitud de su diagonal en pulgadas (1 = 2,47 cm).

Más detalles

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones:

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: F. EJERCICIOS PROPUESTOS. 1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: (a) f(x) =x 3 /3+3x 2 /2 10x. Resp.: Crece en (, 5) y en (2, ); decrece en ( 5, 2). (b) f(x) =x 3

Más detalles