Preliminares. 1.1 Acciones de Grupo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Preliminares. 1.1 Acciones de Grupo"

Transcripción

1 Capítulo 1 Preliminares En este capítulo se presentan algunas definiciones y hechos fundamentales de la Teoría de Grupos y recordar nociones básicas de Álgebra Lineal. También se presentan algunos resultados referentes a la descomposición que induce un operador lineal de un espacio vectorial en subespacios invariantes con respecto a tal operador; estos hechos son importantes para establecer la descomposición de Cartan en el capítulo 5. El capítulo termina con una breve exposición sobre productos tensoriales de espacios vectoriales. Los conocimientos requeridos en Teoría de anillos y generalidades algebraicas se pueden encontrar en [1] o bien, en [8]. 1.1 Acciones de Grupo Sólo se presentan las definiciones requeridas en este texto. Para el interesado en abundar sobre las acciones de grupo, puede consultar [10] (p. 55). Definición 1.1. Sea X un conjunto no vacío y G un grupo. Una acción de G en X es una función. : G X X que satisface las siguientes dos propiedades: (A1) Si e es el elemento identidad de G, entonces e.x = x para todo x X; (A2) para g,h G tenemos (gh).x = g.(h.x) para todo x X. Decimos que un grupo G actúa en un conjunto X, o bien X es un G- conjunto, si existe una acción de G en X. 1

2 2 Preliminares Si G actúa en X y x X, definimos la órbita de x como el conjunto Gx = {g.x : g G} y el conjunto de órbitas de X es el conjunto {Gx : x X} y es claro que X = x X Gx, donde la unión es disjunta. Diremos que la acción es transitiva si sólo existe una órbita. Proposición 1.1. Supongamos que G actúa en X. La acción es transitiva si y sólo si para cualesquiera dos elementos x,y X existe un elemento g = g(x,y) G tal que g.x = y. Suponga que G actúa en un conjunto X. Diremos que un elemento g G fija a un punto x X si g.x = x; la acción se llama simple si el único elemento de G que fija a algún punto de X es el elemento identidad. Suponga que un grupo G actúa en un espacio vectorial V. Diremos que la acción es irreducible si para cualquier subespacio W 0 de V que satisfaga G.W W se tiene que W = V. 1.2 Algunas nociones de Álgebra Lineal En esta sección, se intenta hacer sólo un pequeño recordatorio de los conceptos y resultados que necesitaremos en el desarrollo de los capítulos posteriores, en especial, en los capítulos 3 y 5. Para el interesado en introducirce ampliamente en el álgebra lineal, se recomienda [9]. Traza de operadores Denotemos el espacio de matrices cuadradas de orden n con entradas en el campo F por el símbolo M n (F). Recuerde que M n (F) posee una estructura natural de espacio vectorial sobre el campo F y su dimensión es n 2. La traza de una matriz cuadrada de orden n es la suma de los elementos de su diagonal. Algunas de las propiedades para la traza de una matriz se enuncian en el siguiente resultado, cuya demostración se puede encontrar en [8] (p. 383):

3 1.2 Algunas nociones de Álgebra Lineal 3 Proposición 1.2. Si A,B,C M n (F) y a F, entonces 1. tr(a + B) = tra + trb; 2. tr(aa) = a tra; 3. tr(abc) = tr(bca) = tr(cab), en particular, tr(ab) = tr(ba). Las propiedades 1 y 2 nos dicen que la traza es un funcional lineal en el espacio de matrices cuadradas de orden n. Si B y B son bases de V y T es la matriz asociada a T con respecto a la base B, entonces la matriz de T con respecto a la base B es Q 1 TQ, donde Q es la matriz de transición entre las bases B y B. Por la propiedad 3 de la Propoosición 1.2, tenemos que tr(q 1 TQ) = trt. Definición 1.2. Sea T : V V un operador lineal y T la matriz de T con respecto a una base B de V. La traza de T se define como trt def = trt. Con las propiedades 1 y 2, podemos definir una forma bilineal en el espacio End(V) = { operadores lineales en V} de la siguiente manera: dados dos operadores lineales en V, digamos T : V V y S : V V, definimos T,S tr = tr(ts), y llamamos a, tr una forma de traza. Además, por la propiedad 3 de la Proposición 1.2, la forma de traza es simétrica, es decir, T,S tr = S,T tr para cualesquiera dos operadores S y T en V. Familias conmutativas de operadores diagonalizables Si T : V V es un operador lineal en V y F es un campo algebráicamente cerrado, entonces el espacio V se descompone como una suma de subespacios V = λ F V λ(t), donde V λ (T) def ={a V : T(a) = λa}, para λ F. Aquí y en el resto del texto, el símbolo indica suma directa de espacios vectoriales. Es claro que sólo existe un número finito de λ F para los que V λ 0. A tales elementos del campo se les llaman valores propios de T y a cualquier vector no nulo de V λ se llama vector propio de T asociado al valor propio λ. Si λ es un valor propio de T, el subespacio V λ se llama subespacio propio (ver [8], p. 470).

4 4 Preliminares Proposición 1.3. Si dos operadores lineales T : V V y S : V V conmutan, entonces existe un vector propio común. La demostración se puede encontrar en [2] (p. 212). Recordemos que un operador T : V V es diagonalizable si existe una base para V conformada por vectores propios de T. Cuando el operador T es diagonalizable y B es una base de vectores propios, entonces la matriz de T con respecto a la base B es diagonal y los elementos de la diagonal son los valores propios de T. Un resultado inmediato de esto es el siguiente. Proposición 1.4. Si dos operdores lineales T : V V y S : V V conmutan y son diagonalizables, existe una base de vectores propios comunes. Como concecuencia se tiene el siguiente corolario que se obtiene al aplicar la Proposición 1.4 e inducción sobre k. Corolario 1.5. Sea T i : V V un operador lineal diagonalizable para cada i {1, 2,...,k} I k. Si T i T j = T j T i para i,j I k, entonces existe una base para V tal que las matrices de cada operador T i es diagonal para cada i I k. Cuando un conjunto de operadores lineales satisface las hipótesis del Corolario 1.5, decimos que tal conjunto de operadores lineales constituye una familia de operadores lineales simultaneamente diagonalizables. Teorema 1.6. Si T i es una familia de operadores lineales simultaneamente diagonalizables, con i I k, entonces el espacio V se descompone en una suma directa de subespacios V α def ={a V : T i (a) = α(t i )a para toda i I k }, donde α es un funcional lineal en el subespacio generado por la familia de operadores lineales T i. Demostración. Cada operador lineal T i induce una descomposición del espacio en suma directa de subespacios V α (T i ); si i j, entonces cada subespacio V α (T i ) es suma directa de sus intersecciones con los subespacios V β (T j ). Iterando este proceso con todos los T i vemos que V se puede expresar como suma directa de subespacios V α (como se define en el enunciado del Teorema) tales que T i (V α ) V α para toda i I k y cada operador lineal T i tiene un único valor propio en cada V α. Se puede demostrar que cada operador lineal T i es representado por una matriz triangular en el espacio de coordenadas de V y así, se tiene que para cada subespacio V α, el único valor propio de T i, visto como función de T i, es lineal.

5 1.2 Algunas nociones de Álgebra Lineal 5 Dualidad y formas bilineales Recordemos que si V es un espacio vectorial sobre el campo F, el espacio dual de V, usualmente denotado por V, es el espacio vectorial cuyos elementos son todos los funcionales lineales en V, es decir, V = {α : V F : α es lineal}. Una forma bilineal en V es una función B : V V F que es lineal en cada componente, es decir, la función v B(v,w) es lineal para todo w V y la función w B(v,w) es lineal para todo v V. Decimos que la forma B es no-degenerada si el único vector a V que satisface la ecuación B(a,b) = 0 para todo vector b V es el vector a = 0. Proposición 1.7. Sea B : V V F una forma bilineal no-degenerada en V y suponga que dimv <, entonces existe un isomorfismo de espacios vectoriales α a α tal que α(b) = B(a α,b) para todo b V. La demostración se puede leer en [9] (p. 162). Otra definición importante que hay que recordar es la siguiente: una forma bilineal B : V V R se dice ser positiva definida si B(v,v) 0 para todo v V y la única posibilidad de que B(v,v) = 0 es que v = 0. A una forma bilineal simétrica también se le conoce con el nombre de producto interior. Cuando un espacio vectorial real V está acompañado de un producto interior B : V V R positivo definido, decimos que la pareja (V,B) es un espacio euclidiano y usualmente B es denotado por, o bien (, )(en ocaciones, la forma es llamada producto euclidiano). En este texto, utilizaremos indistintamente toda esta nomenclatura con la esperanza de que no haya confusión.

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21 Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)

Más detalles

UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA

UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA AL GEBRA III UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA ALGEBRA III DEFINICION : Sea L : V V un operador lineal sobre el espacio vectorial

Más detalles

Sistemas de Raíces Abstractas y Álgebras de Lie. Enrique Rodríguez Castillo Universidad de Sonora

Sistemas de Raíces Abstractas y Álgebras de Lie. Enrique Rodríguez Castillo Universidad de Sonora Sistemas de Raíces Abstractas y Álgebras de Lie Enrique Rodríguez Castillo Universidad de Sonora iii En memoria de Enrique Rodríguez Jimenez. A mi hijo Luis Enrique Rodríguez Chavez. Agradecimientos

Más detalles

23 de noviembre de 2017

23 de noviembre de 2017 Representaciones de grupos finitos Cándido Martín González Universidad de Málaga http://agt2.cie.uma.es/tr.htm 23 de noviembre de 2017 Teorema Sea G un grupo finito. El número de clases de isomorfía de

Más detalles

ALGEBRA LINEAL Segundo Semestre. Parte II

ALGEBRA LINEAL Segundo Semestre. Parte II 1 Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas ALGEBRA LINEAL 2015 Segundo Semestre Parte II 2 1. Valores y Vectores propios. Diagonalización.Forma de Jordan. 1.1. Polinomios

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Espacios vectoriales con producto interno Problemas teóricos En todos los problemas relacionados con el caso complejo se supone que el producto interno es lineal con respecto al segundo argumento. Definición

Más detalles

Álgebra Lineal Capítulo 11. Tópicos Especiales y Aplicaciones Producto tensorial de espacios vectoriales y matrices

Álgebra Lineal Capítulo 11. Tópicos Especiales y Aplicaciones Producto tensorial de espacios vectoriales y matrices Álgebra Lineal Capítulo 11. Tópicos Especiales y Aplicaciones 11.4. Producto tensorial de espacios vectoriales y matrices En esta lección de nimos el producto tensorial de espacios vectoriales, transformaciones

Más detalles

a los anillos no conmutativos

a los anillos no conmutativos Tema 7.- Representaciones de grupos finitos. Introducción a los anillos no conmutativos 7.1 Nociones básicas En lo que sigue, k denotará un cuerpo arbitrario y los espacios vectoriales lo serán sobre k.

Más detalles

Intersección y suma de subespacios

Intersección y suma de subespacios Intersección y suma de subespacios Objetivos Demostrar que la intersección y la suma de dos subespacios de un espacio vectorial también son sus subespaicios Requisitos Espacio vectorial, subespacio vectorial

Más detalles

Material para el examen parcial 1

Material para el examen parcial 1 Algebra Lineal 2, FAMAT-UG, aug-dic, 2009 Material para el examen parcial 1 (17 oct, 2009) Definiciones: Hay que saber las definiciones precisas de todos los siguientes términos, y conocer ejemplos concretos

Más detalles

2. Teorema de las multiplicidades algebraica y geométrica.

2. Teorema de las multiplicidades algebraica y geométrica. Guía. Álgebra III. Examen parcial II. Valores y vectores propios. Forma canónica de Jordan. Teoremas con demostraciones que se pueden incluir en el examen El examen puede incluir una demostración entera

Más detalles

Álgebra Lineal UCR. Sétimo tema, 2013

Álgebra Lineal UCR. Sétimo tema, 2013 Álgebra Lineal UCR Sétimo tema, 2013 Presentaciones basadas principalmente en Arce,C, Castillo,W y González, J. (2004) Álgebra lineal. Tercera edición. UCR. San Pedro. Otras fuentes serán mencionadas cuando

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

Diagonalización de matrices. Kepler C k

Diagonalización de matrices. Kepler C k Kepler C k 24 Índice. Problema de diagonalización 3.. Semejanza de matrices................................. 3.2. Valores propios y vectores propios........................... 3.3. Matrices y valores propios...............................

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Pedro Díaz Navarro * Abril de 26. Vectores en R 2 y R 3 2. Espacios Vectoriales Definición (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo

Más detalles

Capítulo V. T 2 (e, e

Capítulo V. T 2 (e, e Capítulo V Métricas En este capítulo y en los siguientes, el cuerpo base de los espacios vectoriales que se consideren será de característica distinta de 2. Empecemos recordando las nociones básicas que

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Valores y vectores propios

Valores y vectores propios Valores y vectores propios Problemas teóricos El los siguientes problemas se denota por L(V ) conjunto de los operadores lineales en un espacio vectorial V (en otras palabras, de las transformaciones lineales

Más detalles

Triangularización Simultanea

Triangularización Simultanea Triangularización Simultanea Antonio M. Oller 21 de Noviembre de 2005 1. Introducción Sabemos que toda matriz sobre C (y en general sobre un cuerpo algebráicamente cerrado) es semejante a una matriz triangular

Más detalles

ELEMENTOS DE ANÁLISIS FUNCIONAL

ELEMENTOS DE ANÁLISIS FUNCIONAL ELEMENTOS DE ANÁLISIS FUNCIONAL Guillermo Ames Universidad Tecnológica Nacional - Facultad Regional Córdoba 2011 TEMA 3: ESPACIOS CON PRODUCTO INTERNO. ESPACIOS DE HILBERT. Espacios producto interno. Espacios

Más detalles

Algebra lineal II Examen Parcial 2

Algebra lineal II Examen Parcial 2 UNIVERSIDAD DE COSTA RICA ESCUELA DE MATEMATICA Algebra lineal II Examen Parcial 2 II Semestre 2014 Nick Gill Instrucciones: Puede usar cualquiera de las proposiciones o ejercicios vistos en clase. Tenga

Más detalles

Algebra Lineal XIX: Espacio Nulo y Rango de una Matriz y Matriz Inversa.

Algebra Lineal XIX: Espacio Nulo y Rango de una Matriz y Matriz Inversa. Algebra Lineal XIX: Espacio Nulo y Rango de una Matriz y Matriz Inversa José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad

Más detalles

CLASIFICACIÓN AFÍN DE CÓNICAS

CLASIFICACIÓN AFÍN DE CÓNICAS Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS CLASIFICACIÓN AFÍN DE CÓNICAS Sea E un R-espacio vectorial de dimensión. Sean E = e 1, e un plano vectorial de E y e 0 un

Más detalles

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales.

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales. Capítulo V Valores y vectores propios. Diagonalización de operadores lineales. Hemos visto que la aplicaciones lineales de en están definidas a través de una expresión de la forma ; pero esta fórmula puede

Más detalles

Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación

Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 6 Espacios euclídeos 6.1 Producto escalar. Espacio euclídeo Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación

Más detalles

1. Espacio vectorial. Subespacios vectoriales

1. Espacio vectorial. Subespacios vectoriales Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Sea k un cuerpo. 1. Espacio vectorial. Subespacios vectoriales Definición 1.1. Un k-espacio vectorial o espacio vectorial

Más detalles

Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno.

Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno. Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno. Teoremas con demostraciones que se pueden incluir en el examen: 1. Fórmula para f(j m (λ)), donde J m (λ) es el bloque

Más detalles

2. El Teorema del Valor Medio

2. El Teorema del Valor Medio 2.24 45 2. El Teorema del Valor Medio Comenzaremos esta sección recordando dos versiones del teorema del valor medido para funciones de 1-variable y por tanto ya conocidas: 2.22 Sea f : [a, b] R R una

Más detalles

Gabriela Jeronimo, Juan Sabia y Susana Tesauri. Álgebra lineal

Gabriela Jeronimo, Juan Sabia y Susana Tesauri. Álgebra lineal Gabriela Jeronimo, Juan Sabia y Susana Tesauri Álgebra lineal Buenos Aires, agosto de 2008 Prefacio El álgebra lineal es una herramienta básica para casi todas las ramas de la matemática así como para

Más detalles

Tema 2: Diagonalización

Tema 2: Diagonalización TEORÍA DE ÁLGEBRA II: Tema 2. DIPLOMATURA DE ESTADÍSTICA 1 Tema 2: Diagonalización 1 Introducción Sea f : R n R n lineal. Dada una base B de R n podemos asociar a f la matriz A 1 = [f, B] M n. Si C es

Más detalles

ALGEBRA LINEAL Y GEOMETRÍA. REPASO DE ÁLGEBRA LINEAL-2: CAMBIOS DE BASE GRADO DE MATEMÁTICAS. CURSO

ALGEBRA LINEAL Y GEOMETRÍA. REPASO DE ÁLGEBRA LINEAL-2: CAMBIOS DE BASE GRADO DE MATEMÁTICAS. CURSO ALGEBRA LINEAL Y GEOMETRÍA. REPASO DE ÁLGEBRA LINEAL-2: CAMBIOS DE BASE GRADO DE MATEMÁTICAS. CURSO 2012-2013 José García-Cuerva Universidad Autónoma de Madrid 11 de febrero de 2013 JOSÉ GARCÍA-CUERVA

Más detalles

Transformaciones lineales autoadjuntas (hermíticas)

Transformaciones lineales autoadjuntas (hermíticas) Transformaciones lineales autoadjuntas (hermíticas) Objetivos. Estudiar propiedades elementales de transformaciones lineales autoadjuntas. Demostrar que para toda transformación lineal autoadjunta en un

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que

Más detalles

Introducción a la Teoría de Códigos

Introducción a la Teoría de Códigos Introducción a la Teoría de Códigos M.A.García, L. Martínez, T.Ramírez Facultad de Ciencia y Tecnología. UPV/EHU Resumen Teórico Tema 1: PRELIMINARES SOBRE ÁLGEBRA LINEAL Mayo de 2017 Tema 1 Preliminares

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

1. ESPACIO EUCLÍDEO. ISOMETRÍAS

1. ESPACIO EUCLÍDEO. ISOMETRÍAS 1 1. ESPACIO EUCLÍDEO. ISOMETRÍAS Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos conceptos

Más detalles

Matrices y Determinantes.

Matrices y Determinantes. Tema II Capítulo 1 Matrices Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC Tema II Matrices y Determinantes 1 Matrices 1 Definiciones básicas Definición 11 Una matriz A de

Más detalles

El grupo lineal proyectivo. Homologías. Afinidades.

El grupo lineal proyectivo. Homologías. Afinidades. Tema 3- El grupo lineal proyectivo Homologías Afinidades 31 El grupo lineal proyectivo Recordamos que en el tema anterior hemos definido, para una variedad lineal proyectiva L P n no vacía, el grupo lineal

Más detalles

Material para el examen final

Material para el examen final Algebra Lineal 2, FAMAT-UG, ene-jun, 2004 Material para el examen final 31 de mayo, 2004 Definiciones: Hay que saber las definiciones precisas de todos los siguientes términos, y conocer ejemplos concretos

Más detalles

2. Problemas. Espacios Vectoriales. Álgebra Lineal- Propedéutico Mayo de 2012

2. Problemas. Espacios Vectoriales. Álgebra Lineal- Propedéutico Mayo de 2012 2. Problemas. Espacios Vectoriales. Álgebra Lineal- Propedéutico Mayo de 2012 1. En R 2 se define la suma: (a 1, b 1 ) + (a 2, b 2 ) = (a 1 + a 2, b 1 + b 2 ) y el producto por un escalar: λ(a, b) = (0,

Más detalles

XXVII Escuela Venezolana de Matemáticas EMALCA. Códigos (I) Edgar Martínez-Moro Sept. 2014

XXVII Escuela Venezolana de Matemáticas EMALCA. Códigos (I) Edgar Martínez-Moro Sept. 2014 XXVII Escuela Venezolana de Matemáticas EMALCA Códigos (I) Edgar Martínez-Moro Sept. 2014 Códigos correctores Un código corrector de errores es un subconjunto C A n, siendo A un alfabeto finito y n un

Más detalles

Tema 5: Espacios Eucĺıdeos.

Tema 5: Espacios Eucĺıdeos. Espacios Euclídeos 1 Tema 5: Espacios Eucĺıdeos. 1. Producto escalar. Espacios eucĺıdeos. Definición. Sea E un R-espacio vectorial y sea f : E E R una forma bilineal simétrica. Se dice que f es un producto

Más detalles

102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D.

102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. 102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. Tema 1. Espacios Vectoriales. 1. Dar la definición de cuerpo. Dar tres ejemplos de cuerpos. Dar un ejemplo de un cuerpo finito 2. Defina

Más detalles

Valores y vectores propios

Valores y vectores propios Valores y vectores propios Tareas adicionales Algunos de estos problemas compuso Gustavo Antonio Sandoval Angeles (como parte de su servicio social). Estos problemas son más difíciles o más laboriosos

Más detalles

Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa.

Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa. Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:

Más detalles

Espacios Euclídeos. Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza

Espacios Euclídeos. Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Espacios Euclídeos Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza A lo largo de todo el capítulo consideraremos que V un espacio vectorial real de dimensión finita. 1 Producto escalar Definición.

Más detalles

Álgebra Lineal. Maestría en Ciencias Matemáticas. x y + z = 1 x y z = 3 2x y z = 1. x + y + 2z = 1 4x 2ty + 5z = 2 x y + tz = 1

Álgebra Lineal. Maestría en Ciencias Matemáticas. x y + z = 1 x y z = 3 2x y z = 1. x + y + 2z = 1 4x 2ty + 5z = 2 x y + tz = 1 Álgebra Lineal Maestría en Ciencias Matemáticas Resuelva el siguiente sistema usando la factorización LU o P T LU (según sea el caso) x y + z = x y z = 3 2x y z = 2 Calcule A usando el algoritmo de Gauss-Jordan:

Más detalles

Matrices ortogonales y descomposición QR

Matrices ortogonales y descomposición QR Matrices ortogonales y descomposición QR Problemas para examen Agradezco a Aldo Iván Leal García por varias correcciones importantes. Invertibilidad por la izquierda y por la derecha (repaso) 1. Conceptos

Más detalles

ALGEBRA LINEAL Segundo Semestre. Parte II

ALGEBRA LINEAL Segundo Semestre. Parte II 1 Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas ALGEBRA LINEAL 2015 Segundo Semestre Parte II 2 1. Valores y Vectores propios. Diagonalización.Forma de Jordan. 1.1. Polinomios

Más detalles

ÁLGEBRA NO ASOCIATIVA. CURSO 07/08 RELACIÓN 1

ÁLGEBRA NO ASOCIATIVA. CURSO 07/08 RELACIÓN 1 ÁLGEBRA NO ASOCIATIVA. CURSO 07/08 RELACIÓN 1 1.- Prueba que gl(v ) es un álgebra de Lie (recuerda que se ha definido [x, y] =xy yx, cualesquiera que sean x, y gl(v )). 2.- Prueba que t(n, F ), n(n, F

Más detalles

1. Las matrices se denotan con letras mayúsculas. Por ejemplo, A, B, C, X,...

1. Las matrices se denotan con letras mayúsculas. Por ejemplo, A, B, C, X,... CAPÍTULO 1 ALGEBRA MATRICIAL 11 Introducción Definición 111 (Matriz) Definimos una matriz como un arreglo rectangular de elementos, llamados escalares, sobre un álgebra F Más que hacer referencia especifica

Más detalles

Examen Extraordinario de Álgebra III, licenciatura

Examen Extraordinario de Álgebra III, licenciatura Examen Extraordinario de Álgebra III, licenciatura El Examen a Título de Suficiencia de Álgebra III abarca los siguientes temas: 1. Formas bilineales y cuadráticas. 2. Valores y vectores propios. 3. Forma

Más detalles

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R.

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. PROGRAMA ANALÍTICO DE LA ASIGNATURA: ALGEBRA LINEAL Código L2.07.1 PLAN DE ESTUDIOS: 2002 CARRERA: Licenciatura en Matemática DEPARTAMENTO:

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación

Más detalles

8.1. Extensiones algebraicas. Grado.

8.1. Extensiones algebraicas. Grado. 1 Tema 8.-. Extensiones algebraicas. Cuerpos de descomposición. Elemento primitivo. 8.1. Extensiones algebraicas. Grado. Si k es un subcuerpo de K, diremos que K es una extensión de k, que notaremos K

Más detalles

Capitulo I. Variedades algebraicas afines.

Capitulo I. Variedades algebraicas afines. Capitulo I. Variedades algebraicas afines. Al conjunto solución de un sistema de ecuaciones algebraicas lo llamamos variedad algebraica afín. Uno lo considera como objetos de la geometría en espacios afines.

Más detalles

Introducción a la Teoría de Códigos

Introducción a la Teoría de Códigos Introducción a la Teoría de Códigos M.A. García, L. Martínez, T. Ramírez Facultad de Ciencia y Tecnología. UPV/EHU Ejercicios y Problemas resueltos Tema 1: PRELIMINARES SOBRE ÁLGEBRA LINEAL Mayo de 2017

Más detalles

PRÁCTICO 5. Coordenadas y matriz de cambio de bases

PRÁCTICO 5. Coordenadas y matriz de cambio de bases Algebra y Algebra II Segundo Cuatrimestre 2012 PRÁCTICO 5 Coordenadas y matriz de cambio de bases Ejercicio 1. Probar que los vectores α 1 = (1 0 i) α 2 = (1 + i 1 i 1) α 3 = (i i i) forman una base de

Más detalles

TEMA V. Espacios vectoriales

TEMA V. Espacios vectoriales TEMA V. Espacios vectoriales 1 1. Demostrar que cada uno de los siguientes conjuntos tiene estructura de espacio vectorial sobre el cuerpo de los reales: a El conjunto (R 2, +,, R. b El conjunto (R 3,

Más detalles

Matrices y determinantes (Curso )

Matrices y determinantes (Curso ) ÁLGEBRA Práctica 3 Matrices y determinantes (Curso 2008 2009) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz triangular

Más detalles

Preparaduría V. 1.- Sea A una matriz diagonal n n cuyo polinomio característico es

Preparaduría V. 1.- Sea A una matriz diagonal n n cuyo polinomio característico es Preparaduría V 1.- Sea A una matriz diagonal n n cuyo polinomio característico es (x c 1 ) d1 (x c 2 ) d2... (x c k ) d k donde los c 1,..., c k son distintos dos a dos. Sea V el espacio de matrices n

Más detalles

ALGEBRA LINEAL Y GEOMETRÍA I

ALGEBRA LINEAL Y GEOMETRÍA I ALGEBRA LINEAL Y GEOMETRÍA I TEMA 3: Autovalores y Autovectores. Introducción Ya conoces que las aplicaciones lineales entre espacios vectoriales, al elegir bases en ellos, las puedes representar por matrices.

Más detalles

TEMA 7. DIAGONALIZACION Y Y FORMAS CANONICAS 1. ENDOMORFISMOS NILPOTENTES

TEMA 7. DIAGONALIZACION Y Y FORMAS CANONICAS 1. ENDOMORFISMOS NILPOTENTES TEMA 7. DIAGONALIZACION Y Y FORMAS CANONICAS 1. ENDOMORFISMOS NILPOTENTES Definición 1.1. Endomorfismo Nilpotente. Un endomorfismo T End(V ) es nilpotente si existe n N tal que f n 0. Definición 1.. Matriz

Más detalles

Tema 4: Estructura vectorial de R n.

Tema 4: Estructura vectorial de R n. TEORÍA DE ÁLGEBRA I: Tema 4. DIPLOMATURA DE ESTADÍSTICA 1 Tema 4: Estructura vectorial de R n. 1 Definiciones y propiedades Definición. 1.1 Denotaremos por R n al conjunto de todas las n-tuplas de números

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

ALGEBRA LINEAL. x = β k+1 v k β n v n

ALGEBRA LINEAL. x = β k+1 v k β n v n ALGEBRA LINEAL 1. Sea V un espacio vectorial de dimensión finita sobre F y W cualquier subespacio. Demuestre que existe U subespacio de V tal que V = U W. Solución: Sea {w 1,..., w k } una base W, completamos

Más detalles

Espacios vectoriales

Espacios vectoriales CAPíTULO 2 Espacios vectoriales 1. Definición de espacio vectorial Es frecuente representar ciertas magnitudes físicas (velocidad, fuerza,...) mediante segmentos orientados o vectores. Dados dos de tales

Más detalles

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A.

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A. ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; A = A. 2. La inversa de A 1 es A; A 1 1 = A. 3. AB = B A. 4. Las matrices A A y AA son simétricas. 5. AB 1 = B 1 A 1, si A y B son no singulares. 6. Los escalares

Más detalles

Clase de Álgebra Lineal

Clase de Álgebra Lineal Clase de Álgebra Lineal M.Sc. Carlos Mario De Oro Facultad de Ciencias Básicas Departamento de matemáticas 04.2017 Page 1 Espacios vectoriales Definicion. Espacio Vectorial (E.V.) Un V espacio vectorial

Más detalles

APÉNDICE A. Algebra matricial

APÉNDICE A. Algebra matricial APÉNDICE A Algebra matricial El estudio de la econometría requiere cierta familiaridad con el álgebra matricial. La teoría de matrices simplifica la descripción, desarrollo y aplicación de los métodos

Más detalles

Tema 1. 1 Álgebra lineal. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. 1.1 Vectores de R n. 1. Vectores. 2.

Tema 1. 1 Álgebra lineal. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. 1.1 Vectores de R n. 1. Vectores. 2. Aurea Grané. Máster en Estadística. Universidade Pedagógica. 1 Aurea Grané. Máster en Estadística. Universidade Pedagógica. 2 Tema 1 Álgebra lineal 1. Vectores 2. Matrices 1 Álgebra lineal Aurea Grané

Más detalles

ÁLGEBRA LINEAL Problemas, 2006/2007

ÁLGEBRA LINEAL Problemas, 2006/2007 ÁLGEBRA LINEAL Problemas, 2006/2007 Nota: si no se especifíca lo contrario suponemos que las matrices y espacios vectoriales están definidos sobre un cuerpo K arbitrario 1 Una matriz A de orden n n se

Más detalles

Álgebra Lineal I. Espacios Vectoriales. Guillermo Garro y Araceli Guzmán. Facultad de ciencias, UNAM. Febrero, 2018

Álgebra Lineal I. Espacios Vectoriales. Guillermo Garro y Araceli Guzmán. Facultad de ciencias, UNAM. Febrero, 2018 Álgebra Lineal I Espacios Vectoriales Guillermo Garro y Araceli Guzmán Febrero, 2018 Facultad de ciencias, UNAM Índice 1. Espacios Vectoriales 2. Subespacios 3. Subespacios generados 4. Dependencia e independencia

Más detalles

Espacios vectoriales DEFINICIÓN. PRIMERAS PROPIEDADES

Espacios vectoriales DEFINICIÓN. PRIMERAS PROPIEDADES Espacios vectoriales DEFINICIÓN. PRIMERAS PROPIEDADES Definición 47. Se dice que un conjunto E, a cuyos elementos llamaremos vectores, es un espacio vectorial sobre el cuerpo (IK, +, ), cuyos elementos

Más detalles

Tema 1: Nociones básicas del Álgebra Lineal.

Tema 1: Nociones básicas del Álgebra Lineal. Nociones básicas del Álgebra Lineal 1 Tema 1: Nociones básicas del Álgebra Lineal 1 Conceptos fundamentales sobre espacios vectoriales y bases Definición Sea (K + ) un cuerpo y (V +) un grupo abeliano

Más detalles

Lista de problemas de álgebra, 2016

Lista de problemas de álgebra, 2016 Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas Posgrado en Ciencias Físicomatemáticas Línea de Matemáticas Lista de problemas de álgebra 2016 Egor Maximenko: En mi opinión cualquier

Más detalles

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc.

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc. Tema 1 Espacios Vectoriales 1.1 Repaso de Estructuras Algebraicas 1. Producto cartesiano de conjuntos. Dados los conjuntos A y B, se llama producto cartesiano de A y B, y se denota por A B al conjunto

Más detalles

( 1 0 BLOQUE DE GEOMETRÍA TEMA 4: ESPACIOS VECTORIALES. ( 5+ 3i )+ ( 2 i )=7+ 2i. La suma de dos números complejos es un número complejo.

( 1 0 BLOQUE DE GEOMETRÍA TEMA 4: ESPACIOS VECTORIALES. ( 5+ 3i )+ ( 2 i )=7+ 2i. La suma de dos números complejos es un número complejo. BLOQUE DE GEOMETRÍA TEMA 4: ESPACIOS VECTORIALES. Operaciones Binarias: Observamos las siguientes operaciones: ( 5+ 3i )+ ( 2 i )=7+ 2i. La suma de dos números complejos es un número complejo. ( 1 0 2

Más detalles

Geometría afín y proyectiva, 2016 SEMANA 3

Geometría afín y proyectiva, 2016 SEMANA 3 Geometría afín y proyectiva, 2016 SEMANA 3 Sonia L. Rueda ETS Arquitectura. UPM September 20, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra

Más detalles

ÁLGEBRA LINEAL Y GEOMETRÍA

ÁLGEBRA LINEAL Y GEOMETRÍA ÁLGEBRA LINEAL Y GEOMETRÍA Laureano González Vega y Cecilia Valero Revenga Departamento de Matemáticas, Estadística y Computación Universidad de Cantabria Curso 2017 2018 Índice I Lecciones 1 1 Espacios

Más detalles

ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2

ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2 ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2 Abstract Estas notas conciernen al álgebra de matrices y serán actualizadas conforme el material se cubre Las notas no son substituto de la clase pues solo contienen

Más detalles

ÁLGEBRA LINEAL I Práctica 3

ÁLGEBRA LINEAL I Práctica 3 ÁLGEBRA LINEAL I Práctica 3 Matrices y determinantes (Curso 2011 2012) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz

Más detalles

Reflexiones sobre el Punto de Frégier José Araujo - Luis C. Maiarú - Norma Pietrocola

Reflexiones sobre el Punto de Frégier José Araujo - Luis C. Maiarú - Norma Pietrocola Reflexiones sobre el Punto de Frégier José Araujo - Luis C. Maiarú - Norma Pietrocola Resumen En estas notas vamos a referirnos al punto de Frégier de una cónica y a la generalización de este resultado

Más detalles

Proposición Sea V un espacio vectorial sobre K de dimensión n y B una base de V. Gl(n, K) = {A M(n n, K) A = 0}.

Proposición Sea V un espacio vectorial sobre K de dimensión n y B una base de V. Gl(n, K) = {A M(n n, K) A = 0}. Tema 6 Formas canónicas 6.1 Introducción Proposición 6.1.1. Sea V un espacio vectorial sobre K de dimensión n y B una base de V. La aplicación Φ B : End(V ) M(n n, K) definida por Φ B (f) = M B (f), es

Más detalles

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas...

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas... Contents 6 Formas Bilineales y Producto Escalar 3 6.1 Formas bilineales............................... 3 6.1.1 Matriz de una forma bilineal....................... 4 6.1. Formas bilineales simétricas.......................

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

Guía del Examen parcial II de Álgebra II, licenciatura

Guía del Examen parcial II de Álgebra II, licenciatura Guía del Examen parcial II de Álgebra II, licenciatura Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen El estudiante tiene que escribir la demostración de manera breve

Más detalles

UNIVERSIDAD DEL NORTE Departamento de Matemáticas y Estadística Álgebra Lineal Ejercicios resueltos- Mayo de 2018

UNIVERSIDAD DEL NORTE Departamento de Matemáticas y Estadística Álgebra Lineal Ejercicios resueltos- Mayo de 2018 UNIVERSIDAD DEL NORTE Departamento de Matemáticas y Estadística Álgebra Lineal Ejercicios resueltos- Mayo de 2018 I. Sistemas homogéneos, subespacios, dependencia e independencia lineal 1. En cada caso

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

2 Espacios vectoriales

2 Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 2 Espacios vectoriales 2.1 Espacio vectorial Un espacio vectorial sobre un cuerpo K (en general R o C) es un conjunto V sobre el que hay

Más detalles

Introducción a la Probabilidad No-Conmutativa

Introducción a la Probabilidad No-Conmutativa Introducción a la Probabilidad No-Conmutativa Tulio Gaxiola CIMAT 18 de abril de 2016 Sesión de Probabilidad No-Conmutativa, Matrices Aleatorias y Gráficas Tulio Gaxiola (CIMAT) EPNC y Gráficas 18 de abril

Más detalles

Vectores y Valores Propios

Vectores y Valores Propios Capítulo 11 Vectores y Valores Propios Las ideas de vector y valor propio constituyen conceptos centrales del álgebra lineal y resultan una valiosa herramienta en la solución de numerosos problemas de

Más detalles

Notas núm dic, 2010

Notas núm dic, 2010 Mini-curso de introducción a los grupos de Lie, CIMAT, dic 2010 Notas núm. 1 6 dic, 2010 Temario del curso: Lunes, 6 dic: Definición y ejemplos de grupos de Lie y acciones de grupos de Lie. Martes, 7 dic:

Más detalles

2.7 Aplicaciones del Teorema de Jordan

2.7 Aplicaciones del Teorema de Jordan 26 Álgebra lineal 27 Aplicaciones del Teorema de Jordan En esta sección seguimos suponiendo que K C Endomorfismos y matrices nilpotentes Definición Decimos que una matriz A M n (C es nilpotente si existe

Más detalles

Ejemplo 1 Sea V un espacio con producto interno sobre un cuerpo K. A las transformaciones lineales T : V K las llamamos funcionales lineales.

Ejemplo 1 Sea V un espacio con producto interno sobre un cuerpo K. A las transformaciones lineales T : V K las llamamos funcionales lineales. Facultad de Ingeniería - IMERL - Geometría y Álgebra Lineal 2 - Curso 2008. 1 Transformaciones lineales en espacios con producto interno Notas para el curso de Geometría y Algebra Lineal 2 de la Facultad

Más detalles

Tema II. Capítulo 5. Aplicaciones bilineales y formas cuadráticas.

Tema II. Capítulo 5. Aplicaciones bilineales y formas cuadráticas. Tema II Capítulo 5 Aplicaciones bilineales y formas cuadráticas Álgebra Departamento de Métodos Matemáticos y de Representación UDC 5 Aplicaciones bilineales y formas cuadráticas o simplemente f( x, ȳ)

Más detalles