Introducción a la Teoría de Códigos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Introducción a la Teoría de Códigos"

Transcripción

1 Introducción a la Teoría de Códigos M.A. García, L. Martínez, T. Ramírez Facultad de Ciencia y Tecnología. UPV/EHU Ejercicios y Problemas resueltos Tema 1: PRELIMINARES SOBRE ÁLGEBRA LINEAL Mayo de 2017

2 Ejercicios Resueltos: Preliminares sobre Álgebra Lineal 1. Sea (K, +, ) un cuerpo. Demostrar que K n = {(k 1,..., k n ) k i K, i {1, 2,..., n}} con la suma definida por: para cualesquiera (x 1,..., x n ), (y 1,..., y n ) K n (x 1,..., x n ) + (y 1,..., y n ) = (x 1 + y 1,..., x n + y n ) y la multiplicación por un escalar: λ K, (x 1,..., x n ) K n, λ(x 1,..., x n ) = (λx 1,..., λx n ) es un K-espacio vectorial. Solución (K n, +,.) es un K-espacio vectorial ya que (a) (K n, +) es un grupo abeliano porque se cumple i. Asociativa: (x 1,..., x n ), (y 1,..., y n ), (z 1,..., z n ) K n, se cumple ((x 1,..., x n ) + (y 1,..., y n )) + (z 1,..., z n ) = (x 1 + y 1,..., x n + y n ) + (z 1,..., z n ) = ((x 1 + y 1 ) + z 1,..., (x n + y n ) + z n ) = (x 1 + (y 1 + z 1 ),..., x n + (y n + z n )) = (x 1,..., x n ) + (y 1 + z 1,..., y n + z n ) = (x 1,..., x n ) + ((y 1,..., y n ) + (z 1,..., z n )) por verificarse la propiedad asociativa en (K, +). ii. Conmutativa: (x 1,..., x n ), (y 1,..., y n ) K n, se cumple (x 1,..., x n ) + (y 1,..., y n ) = (x 1 + y 1,..., x n + y n ) = (y 1 + x 1,..., y n + x n ) = (y 1,..., y n ) + (x 1,..., x n ) por verificarse la propiedad conmutativa en (K, +). 1

3 iii. Existencia de elemento neutro: Si tomamos el elemento (0 K,..., 0 K ) resulta que para todo (x 1,..., x n ) K n se cumple (x 1,..., x n ) + (0 K,..., 0 K ) = (x K,..., x n + 0 K ) = (x 1,..., x n ), por ser 0 K el elemento neutro para (K, +). iv. Existencia de elemento opuesto: Dado (x 1,..., x n ) K n, el elemento ( x 1,..., x n ) está también en K n y cumple (x 1,..., x n )+( x 1,..., x n ) = (x 1 +( x 1 ),..., x n +( x n )) = (0 K,..., 0 K ), por lo que existe elemento opuesto. (b) La multiplicación por un escalar verifica: i. 1 K (x 1,..., x n ) = (1 K x 1,..., 1 K x n ) = (x 1,..., x n ), (x 1,..., x n ) K n, por ser 1 K el elemento identidad del cuerpo K. ii. Para todo λ 1, λ 2 K y (x 1,..., x n ) K n, se cumple (λ 1 + λ 2 )(x 1,..., x n ) = ((λ 1 + λ 2 )x 1,..., (λ 1 + λ 2 )x n ) = (λ 1 x 1 + λ 2 x 1,..., λ 1 x n + λ 2 x n ) = (λ 1 x 1,..., λ 1 x n ) + (λ 2 x 1,..., λ 2 x n ) = λ 1 (x 1,..., x n ) + λ 2 (x 1,..., x n ) por ser (K, +,.) un cuerpo. iii. Para todo λ K y (x 1,..., x n ), (y 1,..., y n ) K n, usando que (K, +,.) es un cuerpo, se tiene λ((x 1,..., x n ) + (y 1,..., y n )) = λ(x 1 + y 1,..., x n + y n ) = (λ(x 1 + y 1 ),..., λ(x n + y n )) = (λx 1 + λy 1,..., λx n + λy n ) = (λx 1,..., λx n ) + (λy 1,..., λy n ) = λ(x 1,..., x n ) + λ(y 1,..., y n ). iv. Para todo λ 1, λ 2 K y (x 1,..., x n ) K n, se tiene (λ 1 λ 2 )(x 1,..., x n ) = ((λ 1 λ 2 )x 1,..., (λ 1 λ 2 )x n ) = (λ 1 (λ 2 x 1 ),..., λ 1 (λ 2 x n )) = λ 1 (λ 2 x 1,..., λ 2 x n ) = λ 1 (λ 2 (x 1,..., x n )), usando que (K, +,.) es un cuerpo. 2. Estudiar si los siguientes conjuntos son F q -subespacios vectoriales de F n q y determinar su dimensión. (a) S 1 = {(a, a,..., a) a F q } F n q. (b) S 2 = {(x 1,..., x n ) F n q x n = n 1 x i}. 2

4 Solución (a) Observamos que S 1 es no vacío. Usando la Proposición 2.1 del Tema 1, el subconjunto S 1 = {(a, a,..., a) a F q } F n q es un F q -subespacio vectorial si para cualesquiera α, β F q y (a, a,..., a), (b, b,..., b) S 1, la combinación lineal α(a, a,..., a) + β(b, b,..., b) es otro elemento de S 1. Ahora, α(a, a,..., a) + β(b, b,..., b) = (αa + βb, αa + βb,..., αa + βb), y como α, β, a, b F q y F q es un cuerpo, sabemos que αa + βb es otro elemento de F q, por lo que (αa+βb, αa+βb,..., αa+βb) es un elemento de S 1. Consecuentemente, S 1 es un F q -subespacio vectorial de F n q. Además, (a, a,..., a) = a(1 K, 1 K,..., 1 K ), y al se (1 K, 1 K,..., 1 K ) un vector no nulo, el conjunto {(1 K, 1 K,..., 1 K )} es libre, por lo que una base de S 1 es {(1 K, 1 K,..., 1 K )} y es S 1 un subespacio de dimensión 1. (b) De nuevo, observamos que observamos que S 2 es no vacío. Usando la Proposición 2.1 del Tema 1, el subconjunto S 2 = {(x 1,..., x n ) F n q x n = x i } es un F q -subespacio vectorial si se verifican las dos condiciones siguientes: i. Para todo (x 1,..., x n ), (y 1,..., y n ) S 2, se tiene (x 1,..., x n ) + (y 1,..., y n ) S 2. ii. Para todo α F q y (x 1,..., x n ) S 2, se cumple α(x 1,..., x n ) S 2. En efecto, i. Como (x 1,..., x n ), (y 1,..., y n ) S 2, sabemos que Por otro lado, y x n = x i y n = y i. (x 1,..., x n ) + (y 1,..., y n ) = (x 1 + y 1,..., x n + y n ) x n + y n = x i + y i = (x i + y i ) por lo que (x 1,..., x n ) + (y 1,..., y n ) es otro elemento de S 1. 3

5 ii. Como (x 1,..., x n ) S 2, se cumple x n = n 1 x i. Por otro lado, si α F q, α(x 1,..., x n ) = (αx 1,..., αx n ) y luego α(x 1,..., x n ) S 2. αx n = α x i = αx i, Además, es fácil ver que el conjunto {(1 K, 0 K, 0 K,..., 0 K, 1 K ), (0 K, 1 K, 0 K,..., 0 K, 1 K ),..., (0 K, 0 K, 0 K,..., 0 K, 1 K, 1 K )} es una base de S 2, luego S 2 es de dimensión n Demostrar que el conjunto B = {(1 K, 0 K,..., 0 K ), (0 K, 1 K, 0 K,..., 0 K ),..., (0 K,..., 0 K, 1 K )} es una base de K n. Cuál es la dimensión de K n? Solución El conjunto B será una base de K n si es un sistema generador de K n y es libre. Ahora, B es un sistema generador ya que dado un elemento (x 1,..., x n ) F n q se cumple Además, (x 1,..., x n ) = x 1 (1 K, 0 K,..., 0 K ) + x 2 (0 K, 1 K, 0 K,..., 0 K ) + + x n (0 K,..., 0 K, 1 K ). (0 K,..., 0 K ) = α 1 (1 K, 0 K,..., 0 K )+α 2 (0 K, 1 K, 0 K,..., 0 K )+ +α n (0 K,..., 0 K, 1 K ) implica 0 = α 1 = = α n, por lo que el conjunto B es también libre. En definitiva, B es una base de K n y, por tanto, la dimensión de K n es precisamente n. 4. Sea S el subespacio vectorial de F 7 2 definido por S =< , , , > (a) Halla una base de S y la dimensión de S. (b) Estudia si la palabra x = pertenece a S y, en caso de que esté, calcula las coordenadas de x en la base calculada en el apartado anterior. 4

6 Solución (a) Por la definición de S, sabemos que T = { , , , } es un sistema generador de S. Comprobamos si este conjunto es también libre. Para ello, estudiamos si los únicos escalares de F 2 de una combinación lineal que de el vector son todos 0. Tenemos que implica = α α α α por lo que la única solución es 0 = α 1 0 = α 1 + α 2 0 = α 2 + α 3 0 = α 1 + α 3 + α 4 0 = α 2 + α 4 0 = α 3 0 = α 4 0 = α 1 = α 2 = α 3 = α 4. Por tanto, T es también libre, luego T es una base S y la dimensión de S es 4. (b) La palabra x = pertenece a S si x se puede escribir como una combinación lineal de los vectores de la base. Ahora, implica = α α α α cuya solución es esto es, 1 = α 1 0 = α 1 + α 2 0 = α 2 + α 3 0 = α 1 + α 3 + α 4 1 = α 2 + α 4 1 = α 3 0 = α 4 1 = α 1 = α 2 = α 3 0 = α 4, = y las coordenadas de en la base hallada en el apartado anterior son ( ).,, 5

Ejercicios Resueltos Tema 1

Ejercicios Resueltos Tema 1 Ejercicio 1 Demuestra que P 3 [x] = { 3 i=0 a ix i a i R, i = {0,..., 3}} con la suma usual de polinomios y la multiplicación por un escalar definida por λ 3 i=0 a ix i = 3 i=0 λa ix i es un R-espacio

Más detalles

Introducción a la Teoría de Códigos

Introducción a la Teoría de Códigos Introducción a la Teoría de Códigos M.A. García, L. Martínez, T. Ramírez Facultad de Ciencia y Tecnología. UPV/EHU Ejercicios y Problemas resueltos Tema 3: CÓDIGOS LINEALES Mayo de 2017 Ejercicios Resueltos:

Más detalles

Introducción a la Teoría de Códigos

Introducción a la Teoría de Códigos Introducción a la Teoría de Códigos M.A.García, L. Martínez, T.Ramírez Facultad de Ciencia y Tecnología. UPV/EHU Resumen Teórico Tema 1: PRELIMINARES SOBRE ÁLGEBRA LINEAL Mayo de 2017 Tema 1 Preliminares

Más detalles

( 1 0 BLOQUE DE GEOMETRÍA TEMA 4: ESPACIOS VECTORIALES. ( 5+ 3i )+ ( 2 i )=7+ 2i. La suma de dos números complejos es un número complejo.

( 1 0 BLOQUE DE GEOMETRÍA TEMA 4: ESPACIOS VECTORIALES. ( 5+ 3i )+ ( 2 i )=7+ 2i. La suma de dos números complejos es un número complejo. BLOQUE DE GEOMETRÍA TEMA 4: ESPACIOS VECTORIALES. Operaciones Binarias: Observamos las siguientes operaciones: ( 5+ 3i )+ ( 2 i )=7+ 2i. La suma de dos números complejos es un número complejo. ( 1 0 2

Más detalles

Introducción a la Teoría de Códigos

Introducción a la Teoría de Códigos Introducción a la Teoría de Códigos M.A.García, L. Martínez, T.Ramírez Facultad de Ciencia y Tecnología. UPV/EHU Resumen Teórico Apartado 3 del Tema 1: Base y dimensión de un espacio vectorial Mayo de

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal Básica - Grupo 3 Taller 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal Básica - Grupo 3 Taller 3 Universidad Nacional de Colombia Departamento de Matemáticas 2015555- Álgebra Lineal Básica - Grupo Taller (1) Es el conjunto de los números reales con las operaciones de suma y multiplicación un R-espacio

Más detalles

Tema 1: Nociones básicas del Álgebra Lineal.

Tema 1: Nociones básicas del Álgebra Lineal. Nociones básicas del Álgebra Lineal 1 Tema 1: Nociones básicas del Álgebra Lineal 1 Conceptos fundamentales sobre espacios vectoriales y bases Definición Sea (K + ) un cuerpo y (V +) un grupo abeliano

Más detalles

PROBLEMAS RESUELTOS ÁLGEBRA LINEAL Tema 2. Espacios Vectoriales

PROBLEMAS RESUELTOS ÁLGEBRA LINEAL Tema 2. Espacios Vectoriales SUBTEMA: ESPACIOS VECTORIALES Problema 1: Sea V = {a} el conjunto con el único elemento a. Determinar si V es un Espacio Vectorial sobre los reales con las operaciones de adición y multiplicación por un

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios y subespacios vectoriales Espacios Vectoriales 1. Demuestre que con la suma y multiplicación habituales es un espacio vectorial real.. Considere el conjunto C de los números complejos con la suma

Más detalles

Matemáticas para la Empresa

Matemáticas para la Empresa Matemáticas para la Empresa 1 o L. A. D. E. Curso 2008/09 Relación 1. Espacios Vectoriales 1. a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy)

Más detalles

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1 Espacios Vectoriales 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios Vectoriales... 4 1.1 Definición de espacio vectorial... 4 1.2 Definición de subespacio vectorial...

Más detalles

1. Espacio vectorial. Subespacios vectoriales

1. Espacio vectorial. Subespacios vectoriales Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Sea k un cuerpo. 1. Espacio vectorial. Subespacios vectoriales Definición 1.1. Un k-espacio vectorial o espacio vectorial

Más detalles

Tema 4: Estructura vectorial de R n.

Tema 4: Estructura vectorial de R n. TEORÍA DE ÁLGEBRA I: Tema 4. DIPLOMATURA DE ESTADÍSTICA 1 Tema 4: Estructura vectorial de R n. 1 Definiciones y propiedades Definición. 1.1 Denotaremos por R n al conjunto de todas las n-tuplas de números

Más detalles

CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero

CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero Fundamento Científico del Currículum de Matemáticas en Enseñanza Secundaria CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero ESPACIOS VECTORIALES DEFINICIÓN... 1 PROPIEDADES DE

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

Relación 1. Espacios vectoriales

Relación 1. Espacios vectoriales MATEMÁTICAS PARA LA EMPRESA Curso 2007/08 Relación 1. Espacios vectoriales 1. (a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy) Demuestra que IR

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales Natalia Boal Francisco José Gaspar María Luisa Sein-Echaluce Universidad de Zaragoza 1 En IR 2 se definen las siguientes operaciones + : x, y + x, y = x + x, y + y, IR

Más detalles

PROBLEMAS RESUELTOS del espacio vectorial curso

PROBLEMAS RESUELTOS del espacio vectorial curso PROBLEMAS RESUELTOS del espacio vectorial curso - - Consideremos el conjunto R formado por todas las parejas () de números reales Se define en R la operación interna ()( )( ) una de las operaciones eternas

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES ESPACIOS VECTORIALES Un espacio vectorial sobre K es una conjunto V que cumple: 1) Existe una regla que asocia a dos elementos u, v V su suma que se denota por u + v, que es también elemento de V y que

Más detalles

Grado en Ciencias Ambientales. Matemáticas. Curso 11/12

Grado en Ciencias Ambientales. Matemáticas. Curso 11/12 Grado en Ciencias Ambientales. Matemáticas. Curso 11/12 Problemas Tema 1. Espacios Vectoriales. 1 Repaso de Estructuras Algebraicas 1.1. Construye explícitamente el conjunto A B, siendo A = {1, 2, 3},

Más detalles

2 Espacios vectoriales

2 Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 2 Espacios vectoriales 2.1 Espacio vectorial Un espacio vectorial sobre un cuerpo K (en general R o C) es un conjunto V sobre el que hay

Más detalles

Estructura vectorial de R n

Estructura vectorial de R n Estructura vectorial de R n (R n, +, ) con las operaciones vectoriales de suma de vectores + y producto por escalares es un espacio vectorial ya que verifica: (R n, +) es un grupo abeliano. Para todos

Más detalles

Espacios vectoriales.

Espacios vectoriales. Unidad docente de Matemáticas Matemáticas (CC. Químicas) Espacios vectoriales. Si detectas cualquier error o errata por favor, comunicaselo al profesor de la asignatura. El subíndice can significa canónica/o..

Más detalles

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano.

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano. CAPÍTULO 1 El plano vectorial Consideremos P como el plano intuitivo de puntos: A,,C... 1.1. El espacio vectorial de los vectores Definición 1.1 Vectores fijos Dado dos puntos cualesquiera A e del espacio

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 01 Taller 4

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 01 Taller 4 Universidad Nacional de Colombia Departamento de Matemáticas - Álgebra Lineal - Grupo Taller () Es el conjunto de los números reales con las operaciones de suma y multiplicación un R-espacio vectorial?

Más detalles

ESPACIOS VECTORIALES SUBESPACIOS:

ESPACIOS VECTORIALES SUBESPACIOS: SUBESPACIOS: Continuación EJEMPLOS: S 2 = {(x 1, x 2 ) / x 2 =x 12 } R 2 es subespacio del espacio vectorial? Interpretación geométrica: Representa una parábola de eje focal el eje de ordenadas, vértice

Más detalles

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21 Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)

Más detalles

Espacios Vectoriales. Matemáticas. Espacios Vectoriales CARACTERIZACION COMBINACIONES LINEALES REDUCCION DE GAUSS SISTEMA GENERADOR, BASES

Espacios Vectoriales. Matemáticas. Espacios Vectoriales CARACTERIZACION COMBINACIONES LINEALES REDUCCION DE GAUSS SISTEMA GENERADOR, BASES Espacios Vectoriales Matemáticas Espacios Vectoriales CARACTERIZACION COMBINACIONES LINEALES REDUCCION DE GAUSS SISTEMA GENERADOR, BASES 5 ESPACIO VECTORIAL Dados: (E,+) Grupo Abeliano (K,+, ) Cuerpo :

Más detalles

6 Vectores. Dependencia e independencia lineal.

6 Vectores. Dependencia e independencia lineal. 6 Vectores. Dependencia e independencia lineal. Introducción Hay fenómenos reales que se pueden representar adecuadamente mediante un número con su adecuada unidad de medida. Sin embargo para representar

Más detalles

TEMA V. Espacios vectoriales

TEMA V. Espacios vectoriales TEMA V. Espacios vectoriales 1 1. Demostrar que cada uno de los siguientes conjuntos tiene estructura de espacio vectorial sobre el cuerpo de los reales: a El conjunto (R 2, +,, R. b El conjunto (R 3,

Más detalles

MMAF: Espacios normados y espacios de Banach

MMAF: Espacios normados y espacios de Banach MMAF: Espacios normados y espacios de Banach Licenciatura en Estadística R. Álvarez-Nodarse Universidad de Sevilla Curso 2011/2012 Espacios vectoriales Definición Sea V un conjunto de elementos sobre el

Más detalles

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales (1) Sea n N. Mostrar que el conjunto de polinomios sobre R de grado menor que n es un subespacio vectorial de R[x]. Este

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES

Trabajo Práctico N 5: ESPACIOS VECTORIALES Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

2.10 Ejercicios propuestos

2.10 Ejercicios propuestos Ejercicios propuestos 99 1 0 0 0 x 1 0 1 0 0 x 2 0 0 1 0 x 3 x 2 0 0 0 1 x 4 + x 1 +4x 2 + x 3 x 2 0 0 0 1 x 5 x 2 1 0 0 0 x 1 0 1 0 0 x 2 0 0 1 0 x 3 x 2 0 0 0 1 x 4 + x 1 +4x 2 + x 3 x 2 0 0 0 0 x 5

Más detalles

Espacios vectoriales DEFINICIÓN. PRIMERAS PROPIEDADES

Espacios vectoriales DEFINICIÓN. PRIMERAS PROPIEDADES Espacios vectoriales DEFINICIÓN. PRIMERAS PROPIEDADES Definición 47. Se dice que un conjunto E, a cuyos elementos llamaremos vectores, es un espacio vectorial sobre el cuerpo (IK, +, ), cuyos elementos

Más detalles

TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA

TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA ESCUELA ESTUDIOS DE TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA DEPARTAMENTO DE INGENIERÍA INFORMÁTICA MATEMÁTICA APLICADA I ÁLGERA LINEAL OLETINES DE PROLEMAS Curso 8-9 Sistemas de ecuaciones lineales.

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES

Trabajo Práctico N 5: ESPACIOS VECTORIALES Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

Soluciones Hoja Problemas Espacio Vectorial 05-06

Soluciones Hoja Problemas Espacio Vectorial 05-06 Soluciones Hoja Problemas Espacio Vectorial -6.- Se considera R con la suma habitual y con el producto por un escalar que se indica en los casos siguientes. Prueba que en ninguno de ellos, (R,, ) es espacio

Más detalles

Álgebra y Álgebra II - Primer Cuatrimestre 2018 Práctico 4 - Espacios Vectoriales

Álgebra y Álgebra II - Primer Cuatrimestre 2018 Práctico 4 - Espacios Vectoriales Álgebra y Álgebra II - Primer Cuatrimestre 2018 Práctico 4 - Espacios Vectoriales (1) Decidir si los siguientes conjuntos son R-espacios vectoriales con las operaciones abajo denidas. (a) R n con v w =

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación

Más detalles

La noción de ley de composición

La noción de ley de composición La noción de ley de composición Una operación o ley de composición, es una regla mediante la cual, de dos elementos obtenemos otro. Definición Dados tres conjuntos A, B y C definimos una operación o ley

Más detalles

a b = a 2 b 2 a 3 b 3 1 n = [ 1 ] n

a b = a 2 b 2 a 3 b 3 1 n = [ 1 ] n Álgebra compleja C n Objetivos. En el espacio vectorial C n introducir la multiplicación por componentes y mostrar que C n con esta operación es una álgebra compleja asociativa y conmutativa con identidad.

Más detalles

Álgebra Lineal. Ejercicios de evaluación. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Ejercicios de evaluación. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Ejercicios de evaluación Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR Problema

Más detalles

El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos

El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos c Jana Rodriguez Hertz p. 1/1 Suma de matrices - definición Si dos matrices A,B M m n K tienen el mismo

Más detalles

Problemas de Álgebra Ingeniería Técnica en Informática de Sistemas. Curso 2009/10

Problemas de Álgebra Ingeniería Técnica en Informática de Sistemas. Curso 2009/10 Problemas de Álgebra Ingeniería Técnica en Informática de Sistemas Curso 2009/10 Hoja 1 Preliminares 1 Resuelve los siguientes sistemas de ecuaciones de números complejos: { z 1 + iz 2 = 1 i 3z 1 + (1

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 3.- Espacios Vectoriales 1 Espacio Vectorial Un espacio vectorial sobre K es una conjunto V que cumple:

Más detalles

Tema 7. El espacio vectorial R n Conceptos generales

Tema 7. El espacio vectorial R n Conceptos generales Tema 7 El espacio vectorial R n. 7.1. Conceptos generales Un vector es un segmento orientado que queda determinado por su longitud, dirección y sentido. Sin embargo, desde el punto de vista del Álgebra,

Más detalles

1. Lección 1 - Espacio Vectorial

1. Lección 1 - Espacio Vectorial 1. Lección 1 - Espacio Vectorial Definiremos espacio vectorial como la estructura algebraica consistente en: 1. Grupo abeliano {V, +, } cuyos elementos se denominan vectores. Para que los elementos de

Más detalles

ALGEBRA Y GEOMETRIA ANALITICA

ALGEBRA Y GEOMETRIA ANALITICA Diplomatura en Ciencia y Tecnología ALGEBRA Y GEOMETRIA ANALITICA SEGUNDO CUATRIMESTRE DE 009 Profesora Mariana Suarez PRACTICA N 8: RECTA EN EL ESPACIO PLANO ALGEBRA Y GEOMETRIA ANALITICA - Segundo cuatrimestre

Más detalles

Primer Examen, Invierno 2017.

Primer Examen, Invierno 2017. Primer Examen, Invierno 2017. Problema 1. Encuentre la ecuación del plano que pasa por 3 puntos cuyas coordenadas son A = (3, 1,2), B = (2,4,3), C = (4,7,1). (1 punto) Problema 2. Encuentre el valor de

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES Capítulo 1 CONCEPTOS TEÓRICOS ESPACIO VECTORIAL Un conjunto E = {a, b, c, } de elementos (llamados vectores) se dice que constituyen un espacio vectorial sobre un cuerpo conmutativo K (que generalmente

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales Juan Medina Molina 21 de septiembre de 2005 Introducción En este tema introducimos la estructura de espacio vectorial y analizamos sus propiedades. Lo hemos dividido en los siguientes

Más detalles

Gabriela Jeronimo, Juan Sabia y Susana Tesauri. Álgebra lineal

Gabriela Jeronimo, Juan Sabia y Susana Tesauri. Álgebra lineal Gabriela Jeronimo, Juan Sabia y Susana Tesauri Álgebra lineal Buenos Aires, agosto de 2008 Prefacio El álgebra lineal es una herramienta básica para casi todas las ramas de la matemática así como para

Más detalles

CAPÍTULO 4 ESPACIOS VECTORIALES

CAPÍTULO 4 ESPACIOS VECTORIALES CAPÍTULO 4 ESPACIOS VECTORIALES 4.1.- Concepto y definición de espacio vectorial. 4.2.- Propiedades de los espacios vectoriales. 4.3.- Subespacios vectoriales. 4.4.- Combinación lineal de vectores. 4.5.-

Más detalles

Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 1. Espacios vectoriales

Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 1. Espacios vectoriales Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 1. Espacios vectoriales 1. (a) Compruebe que el conjunto de matrices de orden p q a coeficientes reales R p q es un espacio vectorial real con

Más detalles

Espacios Vectoriales. Tema Introducción. 1.2 Repaso de Estructuras Algebraicas

Espacios Vectoriales. Tema Introducción. 1.2 Repaso de Estructuras Algebraicas Tema 1 Espacios Vectoriales 1.1 Introducción Estas notas se han escrito con el ánimo de facilitar al estudiante una guía para el estudio de la asignatura, y no como un libro de texto o manual de Álgebra

Más detalles

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Ejercicios tipo test de las lecciones 1 y 2. 1. El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1,

Más detalles

Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares).

Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares). Capítulo 6 Espacios Vectoriales 6.1 Definiciones Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares). Definición 6.1.1 Se dice que

Más detalles

Algebra Lineal y Geometría.

Algebra Lineal y Geometría. Algebra Lineal y Geometría. Unidad n 6: Subespacios Vectoriales. Algebra Lineal y Geometría Esp. Liliana Eva Mata 1 Contenidos. Subespacios Vectoriales. Operaciones con Subespacios: Intersección, unión,

Más detalles

Unidad 4 Espacios vectoriales. Aplicaciones lineales

Unidad 4 Espacios vectoriales. Aplicaciones lineales Unidad 4 Espacios vectoriales. Aplicaciones lineales PÁGINA 8 SOLUCIONES. La solución queda: Operando los vectores e igualando los vectores resultantes, obtenemos:. La solución queda: Sean los polinomios

Más detalles

Introducción a los espacios vectoriales

Introducción a los espacios vectoriales 1 / 64 Introducción a los espacios vectoriales Pablo Olaso Redondo Informática Universidad Francisco de Vitoria November 19, 2015 2 / 64 Espacios vectoriales 1 Las 10 propiedades de un espacio vectorial

Más detalles

EL ESPACIO AFÍN. se distinguen, además de su origen A y su extremo B, las siguientes

EL ESPACIO AFÍN. se distinguen, además de su origen A y su extremo B, las siguientes VECTOR FIJO Y VECTOR LIBRE. Sea E el espacio ordinario. EL ESPACIO AFÍN Llamaremos vector fijo a cualquier segmento orientado dado por dos puntos A y B del espacio E. Al punto A lo llamamos origen del

Más detalles

Ejercicio 3.1 Estudiar si son subespacios vectoriales los siguientes subconjuntos de los espacios R n indicados:

Ejercicio 3.1 Estudiar si son subespacios vectoriales los siguientes subconjuntos de los espacios R n indicados: 10 Departamento de Álgebra. Universidad de Sevilla Tema 3. Sección 1. Variedades lineales. Definición. Ejercicio 3.1 Estudiar si son subespacios vectoriales los siguientes subconjuntos de los espacios

Más detalles

GEOMETRÍA AFÍN Y PROYECTIVA Espacios Vectoriales.

GEOMETRÍA AFÍN Y PROYECTIVA Espacios Vectoriales. Sonia L. Rueda ETS Arquitectura. UPM Año 2016-2017. 1 GEOMETRÍA AFÍN Y PROYECTIVA Espacios Vectoriales. 1. Determinar si los siguientes conjuntos de vectores son subespacios vectoriales de R 4. A = {(x,

Más detalles

Introducción a la Teoría de Códigos

Introducción a la Teoría de Códigos Introducción a la Teoría de Códigos M.A. García, L. Martínez, T. Ramírez Facultad de Ciencia y Tecnología. UPV/EHU Ejercicios y Problemas resueltos Tema 4: CÓDIGOS CÍCLICOS Mayo de 2017 Ejercicios Resueltos:

Más detalles

El espacio proyectivo. Sistemas de referencia. Dualidad.

El espacio proyectivo. Sistemas de referencia. Dualidad. Capítulo 1 El espacio proyectivo Sistemas de referencia Dualidad En todo lo que sigue k designará un cuerpo arbitrario 11 Espacio afín como subespacio del proyectivo Definición 111 Sea un entero n 0 El

Más detalles

Álgebra Lineal V: Subespacios Vectoriales.

Álgebra Lineal V: Subespacios Vectoriales. Álgebra Lineal V: Subespacios Vectoriales. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamanca.ugto.mx

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES 1. Introducción: 1.1 Grupo Abeliano 1. Cuerpo. Estructura de espacio vectorial 3. Propiedades 4. Subespacio vectorial 5. Combinación lineal de vectores 5.1 Propiedades 6. Dependencia e independencia lineal

Más detalles

Subspacios Vectoriales

Subspacios Vectoriales Subspacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Subspacios Vectoriales 1 / 25 Objetivos Al finalizar este tema tendrás que: Saber si un subconjunto es

Más detalles

Tema 1: Fundamentos.

Tema 1: Fundamentos. Tema 1: Fundamentos. 1. Nociones básicas de la Teoría de Conjuntos. Definición. Un conjunto es una colección de objetos. A los objetos de un conjunto se les llama elementos del conjunto. Se denominará

Más detalles

4.2 Producto escalar.

4.2 Producto escalar. Producto escalar. 147 Este resultado tiene su recíproco, es decir, cualquier matriz cuadrada A define la forma bilineal b(x, y) =x T Ay Si b es simétrica, la matriz A es simétrica. Si b es definida positiva,

Más detalles

Ejercicio 1: Proponga al menos 3 conjuntos y las operaciones adecuadas de modo que sean espacios vectoriales.

Ejercicio 1: Proponga al menos 3 conjuntos y las operaciones adecuadas de modo que sean espacios vectoriales. Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Proponga al menos 3 conjuntos y las operaciones adecuadas de modo que sean espacios vectoriales. Ejercicio 2: Determine si los siguientes conjuntos

Más detalles

Tema 4: Espacios vectoriales

Tema 4: Espacios vectoriales Tema 4: Espacios vectoriales Curso 2016/2017 Ruzica Jevtic Universidad San Pablo CEU Madrid Referencias Lay D. Linear algebra and its applications (4th ed). Chapter 4,6. 2 Índice de contenidos Espacio

Más detalles

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc.

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc. Tema 1 Espacios Vectoriales 1.1 Introducción Estas notas están elaboradas pensando simplemente en facilitar al estudiante una guía para el estudio de la asignatura, y en consecuencia se caracterizan por

Más detalles

Algebra Lineal X:Sumas y Sumas Directas

Algebra Lineal X:Sumas y Sumas Directas Algebra Lineal X:Sumas y Sumas Directas José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@ugto.mx

Más detalles

VECTORES. A cada clase de vectores equipolentes se denomina vector libre.!

VECTORES. A cada clase de vectores equipolentes se denomina vector libre.! VECTORES Vectores libres del plano Definiciones Sean A y B dos puntos del plano de la geometría elemental. Se llama vector AB al par ordenado A, B. El punto A se denomina origen y al punto B extremo. (

Más detalles

Bloque 3. Geometría y Trigonometría Tema 2 Vectores Ejercicios resueltos

Bloque 3. Geometría y Trigonometría Tema 2 Vectores Ejercicios resueltos Bloque 3. Geometría y Trigonometría Tema Vectores Ejercicios resueltos 3.- Obtener el vector PQ, donde los puntos P y Q son los dados 4 5 b) P00,, Q90, a) P,, Q, 83 83 d) P4,, Q3, 7 c) P,, Q, 4 5 PQ 5,

Más detalles

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc.

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc. Tema 1 Espacios Vectoriales 1.1 Repaso de Estructuras Algebraicas 1. Producto cartesiano de conjuntos. Dados los conjuntos A y B, se llama producto cartesiano de A y B, y se denota por A B al conjunto

Más detalles

Tema 4: ESPACIOS VECTORIALES

Tema 4: ESPACIOS VECTORIALES Álgebra I - Curso 2005/06 - Grupos M1 y M2 Tema 4: ESPACIOS VECTORIALES por Mario López Gómez 1. Definición, propiedades y ejemplos. El concepto de espacio vectorial es sin duda uno de los más importantes

Más detalles

Álgebra Lineal. Maestría en Ciencias Matemáticas. x y + z = 1 x y z = 3 2x y z = 1. x + y + 2z = 1 4x 2ty + 5z = 2 x y + tz = 1

Álgebra Lineal. Maestría en Ciencias Matemáticas. x y + z = 1 x y z = 3 2x y z = 1. x + y + 2z = 1 4x 2ty + 5z = 2 x y + tz = 1 Álgebra Lineal Maestría en Ciencias Matemáticas Resuelva el siguiente sistema usando la factorización LU o P T LU (según sea el caso) x y + z = x y z = 3 2x y z = 2 Calcule A usando el algoritmo de Gauss-Jordan:

Más detalles

Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS

Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS 1 Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS 1.1 Los Números Naturales. Los números naturales aparecen por la necesidad que tiene el hombre (primitivo) tanto de contar como de ordenar

Más detalles

Matrices. Álgebra de matrices.

Matrices. Álgebra de matrices. Matrices. Álgebra de matrices. 1. Definiciones generales Definición 1.1 Si m y n son dos números naturales, se llama matriz de números reales de orden m n a una aplicación A : {1, 2, 3,..., m} {1, 2, 3,...,

Más detalles

Tema 2: Espacios Vectoriales

Tema 2: Espacios Vectoriales Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que

Más detalles

ESPACIOS VECTORIALES Y APLICACIONES LINEALES

ESPACIOS VECTORIALES Y APLICACIONES LINEALES Departamento de Matemática Aplicada II E.E.I. ÁLGEBRA Y ESTADÍSTICA Boletín n o (010-011 ESPACIOS VECTORIALES Y APLICACIONES LINEALES 1. En el espacio vectorial ordinario R 4 estudiar cuáles de los siguientes

Más detalles

58 7. ESPACIOS COCIENTE

58 7. ESPACIOS COCIENTE CAPíULO 7 Espacios cociente En esta sección estudiamos el cociente de un espacio vectorial por un subespacio W. Este cociente se define como el conjunto cociente de por una relación de equivalencia conveniente.

Más detalles

Conjunto R 3 y operaciones lineales en R 3

Conjunto R 3 y operaciones lineales en R 3 Conjunto R 3 y operaciones lineales en R 3 Objetivos. Definir el conjunto R 3 y operaciones lineales en R 3. Requisitos. Conjunto de los números reales R, propiedades de las operaciones aritméticas en

Más detalles

Ejercicios Resueltos Tema 4

Ejercicios Resueltos Tema 4 Ejercicio 1 Estudiar si la aplicación f : R 2 R 2 R definida por f ((x 1, x 2 ), (y 1, y 2 )) = x 1 y 1 3x 1 x 2 es una forma bilineal. Solución. No es forma bilineal ya que y f (α(x 1, x 2 ) + β(x 1,

Más detalles

Tema 2: Espacios vectoriales

Tema 2: Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 Tema 2: Espacios vectoriales Ejercicios 1. En R 2 se definen las siguientes operaciones: (x 1, y 1 ) + (x 2, y 2 ) = (x 1 + x 2, y 1 +

Más detalles

Tema 4: Formas bilineales.

Tema 4: Formas bilineales. Formas bilineales 1 Tema 4: Formas bilineales. 1. Concepto de forma bilineal. Definición. Sea V un K-espacio vectorial y f : V V K una aplicación. Se dice que f es una forma bilineal si f verifica las

Más detalles