SEÑALES Y SISTEMAS Clase 11

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SEÑALES Y SISTEMAS Clase 11"

Transcripción

1 SEÑALES Y SISTEMAS Clase 11 Carlos H. Muravchik 12 de Abril de / 36 Habíamos visto: Sistemas Lineales. Convolución. Y se vienen: Repaso: Convolución - Propiedades. Estabilidad. Representacion de SLIT y SLI: Ecns. diferenciales, en diferencias y de estado (C y ). iagramas en bloque Y más adelante Sistemas lineales con entradas aleatorias. Inicio 3 / 36

2 Repaso - discreto: Operador básico para todos los SL: convolución. SLV: Convolución discreta y[n] = x[k] h[n, k] = y[n] = {x h}[n] k= SLI: h[n, k] = h[n k] y[n] = x[n m]h[m] = h[n m]x[m] m= m= Causalidad: y[n] = x[n m]h[m] = n h[n m]x[m] m= m= x[n] unilateral a derecha: n n y[n] = x[n m]h[m] = h[n m]x[m] m= m= 5 / 36 uración Convolución gráfica: Papeles deslizantes x y h de duración finita; h[ 3 k] x[k] k k y[ 3]= uración de y: duración de x más duración de h menos 1. 6 / 36

3 Repaso - continuo: Operador básico para todo SL: convolución. SLV: Convolución continua y(t) = {x h}(t) = x(σ) h(t, σ)dσ Para SLIT: h(t, σ) h(t σ) luego y(t) = x(σ)h(t σ)dσ = Causalidad: h(t) ; t < luego y(t) = t x(σ)h(t σ)dσ = h(λ)x(t λ)dλ h(λ)x(t λ)dλ Señal de entrada unilateral a derecha ó x(t) ; t < y(t) = t Notar: Papeles deslizantes. x(σ)h(t σ)dσ = t h(λ)x(t λ)dλ 7 / 36 Estabilidad de SLI 1 Teorema: Un SLI es estable en sentido EA/SA sii su respuesta impulsional es absolutamente sumable; es decir existe < K h < tal que h[k] K h k= emostración: 1) ida y 2) vuelta. 1) h abs. sumable es suficiente: Sea una entrada acotada por < K e <, o sea x[n] K e para todo n. El módulo de la salida es y[n] = x[k]h[n k] k= x[k] h[n k] k= K e h[n k] K e K h k= tomando K y = K e K h la salida resulta acotada. 9 / 36

4 Estabilidad de SLI 2 2) h abs. sumable es necesaria: sistema EA/SA h es abs. sumable. h NO es abs. sumable sistema NO es EA/SA. Mostraremos una entrada acotada que, suponiendo que h NO es abs. sumable, dará y[n] no acotada. Sea x[n] h[ n]/ h[ n] luego x[n] K e = 1 para todo n. La salida en n = es y[] = = k= k= x[k]h[ k] = h[ k] k= h[ k] h[ k] h[ k] = que no está acotada por hipótesis. Luego y no está acotada y entonces el sistema no es EA/SA. 1 / 36 Estabilidad de SLIT 1 Paralelo a SLI: Teorema: Un SLIT es estable en sentido EA/SA sii su respuesta impulsional es absolutamente integrable, es decir, existe un < K h < tal que h(τ) dτ K h emostración: similar a la de SLI. Repase las ideas de la demostración para SLI, haciendo ésta para SLIT. esafío: piense si podrían modificarse estos resultados para sistemas VT (no requerido para SyS). 11 / 36

5 Ecuaciones diferenciales 1 SLIT ecns diferenciales ordinarias de coeficientes constantes (EOLCC) Forma general: N i= a i d i y(t) dt i = M j= b j d j x(t) dt j emuestre linealidad e invarianza en el tiempo. Restricciones técnicas N M, vs. diferenciabilidad de x(t). Aún si x(t) es unilateral a derecha de t la EOLCC se integra para t t para causalidad. PERO también se podrían integrar para t t. Condiciones iniciales CI y(t ), dy dt (t ), d 2 y dt 2 (t ),..., d N 1 y dt N 1 (t ) 13 / 36 Ecuaciones diferenciales 2 La solución de las EOLCC es y(t) = y homogénea (t) y particular (t) = y h (t) y p (t) la solución homomgénea y h si las CI son nulas. y p es la solución particular, da el término forzado o sea la convolución de x con la respuesta impulsional h. Note que y p incluye tanto régimen transitorio como régimen permanente. La respuesta impulsional h(t) se obtiene resolviendo N i= a i d i h(t) dt i = M b j δ (j) (t) con condiciones iniciales nulas y t > : SLIT causales. Podrían haber soluciones para t < o aún bilaterales, SLIT no-causales. Usando la transformada L de Laplace: H(s) = L{h}(s). Transferencia H(s) racional, es decir b(s) a(s) con a( ), b( ) polinomios en la variable s. Para causal y no-causal. j= 14 / 36

6 Ecuaciones en diferencias 1 SLI ecns en diferencias lineales de coeficientes constantes (EILCC) Forma general: N a i y[n i] = i= M b j x[n j] j= emuestre linealidad e invarianza al deslizamiento. La EILCC se integra para n n, n Z para causalidad. PERO también se pueden integrar para n n de modo no-causal. Condiciones iniciales CI y[n 1], y[n 2],..., y[n N]. La solución de las EILCC es y[n] = y homogénea [n] y particular [n] = y h [n] y p [n] 15 / 36 Ecuaciones en diferencias 2 y h es la solución homogénea si las CI son nulas. y p es la solución particular, da el término forzado o sea la convolución de x con la respuesta impulsional h. Note que y p incluye tanto régimen transitorio como régimen permanente. La Respuesta Impulsional h[n] se obtiene resolviendo N a i h[n i] = i= M b j δ[n j] j= Resolverla es muy sencillo!! Caso causal h[n] =, n < : h[n] = 1 N a M a i h[n i] b j δ[n j] i=1 j= note las CI nulas h[ 1] =, h[ 2] =,..., h[ N] =. 16 / 36

7 Ecuaciones en diferencias 3 Hagamos a = 1 por simplicidad Fácil, pero laborioso h[n] = N i=1 a ih[n i] M j= b jδ[n j] h[] = b = b h[1] = a 1 b b 1 h[2] = a 1 ( a 1 b b 1 ) b 2 = a 2 1 b a 1 b 1 b 2 y así siguiendo para h[n], n... Veremos la transformada Z y calcularemos H(z) = Z{h}(z). H(z) resultará la transferencia discreta del SLI y resulta racional, es decir b(z) a(z) donde a( ), b( ) son polinomios en la variable z. 17 / 36 Ecuaciones en diferencias 4 La Respuesta Impulsional h[n] caso anticausal h[n] =, n > ; se obtiene, reacomodando la EILCC y calculando h[n] = 1 a N N 1 i= a i h[n N i] M b j δ[n N j] j= note las CI nulas h[1] =, h[2] =,..., h[n] =. H(z) en este caso también resultará la transferencia discreta del SLI y será racional en Z. Igualmente para SLIT no-causales en general. 18 / 36

8 Ecuaciones de estado 1. Para SLIT { ṡ(t) = As(t) Bx(t) y(t) = Cs(t) x(t) con CI s(t) = s. s R N y A es de N N, B de N 1 y C de 1 N. 2. Para SLI { s[n 1] = Fs[n] Gx[n] y[n] = Hs[n] x[n] con CI s[] = s. con p = máx{n, M}, s R p y F es de p p, G de p 1 y H de 1 p. Se usará muchísimo en Control Moderno y en Comunicaciones -posgrado-. 19 / 36 iagramas en bloque - SLI Elementos x[n] x 1 [n] a bloque ganancia x 2 [n] bloque sumador ax[n] x 1 [n] x 2 [n] x[n] y[n] = x[n 1] : delay o retardo 2 / 36

9 iagramas en bloque - SLI Ejemplo 1 Respuesta impulsional finita (en inglés FIR, por finite impulse response): y[n] = b x[n] b 1 x[n 1] Respuesta impulsional: h[] = b ; h[1] = b 1 ; h[2] = y h[n] = ; n 2. iagrama en bloque: x[n] b y[n] x[n 1] b 1 Generalización: SLI con N = y M >, se denota MA o de promedios móviles (en inglés) 21 / 36 iagramas en bloque - SLI Ejemplo 2 Respuesta impulsional infinita (en inglés IIR, por infinite impulse response): y[n] ay[n 1] = b x[n] Respuesta impulsional: h[] = b ; h[1] = ab ; h[2] = a 2 b y h[n] = a n b ; n. iagrama en bloque: x[n] b y[n] a y[n 1] Generalización: SLI con N > y M =, se denota AR o auto-regresivo 22 / 36

10 iagramas en bloque - SLI Ejemplo 3 Respuesta impulsional infinita (IIR): a y[n] a 1 y[n 1] = b x[n] b 1 x[n 1] y[n] = 1 { a 1 y[n 1] b x[n] b 1 x[n 1]} a Resp. impulsional: h[] = b a ; h[1] = a 1b a 2 iagrama en bloque: b 1 a ; h[2] =... x[n] b 1/a y[n] x[n 1] b 1 a 1 y[n 1] Generalización: SLI con N > y M >, se denota ARMA o autorregresivo promedios móviles (en inglés). 23 / 36 iagramas en bloque - SLI General 1 Respuesta impulsional infinita: ( y[n] = 1 M ) a i y[n i] w[n] a i=1 M w[n] = b i x[n i] i= iagrama en bloque: Realización tipo I x[n] b w[n] 1/a y[n] b 1 a 1 b 2 a 2 b N 1 a N 1 b N a N 24 / 36

11 iagramas en bloque - SLI General 2 Usando conmutatividad x[n] - 1/a a 1 v[n] v[n 1] b b 1 y[n] a 2 b 2 a N 1 b N 1 a N b N Los bloques correspondientes de cada columna llevan la misma señal: juntémoslos!. 25 / 36 iagramas en bloque - SLI General 3 Realización tipo II x[n] 1/a b y[n] a 1 b 1 a 2 b 2 a N 1 b N 1 a N b N Menor número de retardos (estados). Es el mínimo? (a Control Moderno o postgrado). 26 / 36

12 iagramas en bloque - SLIT e manera totalmente similar con sumas y multiplicadores por constantes. En lugar de retardos irían diferenciadores pero son ruidosos. Se usan integradores x(t) y(t) = t x(λ) dλ o sea ẏ(t) = dy dt (t) = x(t) 27 / 36 iagramas en bloque - SLIT General x(t) b N 1/a N y(t) b N 1 a N 1 b N 2 a N 2 b 1 a 1 b a (a) Realización directa tipo I. x(t) 1/a N b N y(t) a N 1 b N 1 a N 2 b N 2 a 1 b 1 a b (b) Realización directa tipo II. 28 / 36

13 SL y entradas aleatorias Clave: SL convolución continuo o discreto variante o invariante Entra un proceso estocástico... qué es la salida? X(t) h( ) Y (t) Y (t) = {X h}(t) Y (t, ζ) }{{} proceso de salida = X(τ, ζ) }{{} proceso de entrada h(t, τ) dτ Nota: Cada realización del proceso de entrada da una realización del proceso de salida 3 / 36 Media estadística Queremos calcular E {Y (t)} = Y (t, ζ) = X(τ, ζ) h(t, τ) dτ β f Y (β; t) }{{} Cuál es? dónde se consigue? dβ = µ Y (t) Y ahora? No hace falta f Y (β; t) si usamos linealidad de la E { } { } E X(τ, ζ) h(t, τ) dτ = E {X(τ)} h(t, τ) dτ = }{{} bajo ciertas hipótesis: E = E = E {Y (t)} = µ Y (t) = {µ X h}(t) µ X (τ) h(t, τ) dτ = µ Y (t) 31 / 36

14 Media estadística continuación El mismo razonamiento vale para sistemas discretos E {Y [n]} = µ Y [n] = {µ X h}[n] 32 / 36 Media estadística continuación SLI: µ Y [n] = m= h[n m]µ X [m] SLI y entrada con media constante µ X [n] = µ X : µ Y [n] = µ X m= h[n m] = µ X h[k] = µ Y cte k= }{{} sumabilidad de h si el SLI es estable EA/SA, h es sumable SLIT: µ Y (t) = h(t τ)µ X (τ)dτ SLIT y entrada con media constante µ X (t) = µ X : µ Y (t) = µ X h(t τ)dτ = µx h(λ)dλ = µ Y cte }{{} integrabilidad de h si el SLIT es estable EA/SA, h es integrable 33 / 36

15 Media estadística transitorio Los resultados anteriores presuponen aplicación de la entrada desde t = Pero si se aplica a un SLIT el proceso de entrada en t = es como si X(t) =, t <, µ Y (t) = E {X(τ)} h(t τ)dτ = y aún siendo µ X (t) = µ X t, µ Y (t) = µ X h(t τ)dτ constante µ X (τ)h(t τ)dτ porque con el cambio de variables ρ = t τ dρ = dτ µ Y (t) = µ X t h(ρ)dρ = función de t! Es el efecto de la respuesta transitoria del sistema Cuando se aplica X en t =, para cualquier t finito, el transitorio ya finalizó 34 / 36 Próximas Clases Sistemas lineales: correlaciones. Transformada de Fourier. Introducción y Propiedades. TF de funciones generalizadas, simetrías: par-impar, real-imaginaria, funciones hermíticas, dualidad, algunos pares transformados (cajón, exponencial, signo-escalón, delta-constante, pulso gaussiano), linealidad, translación, similaridad. Translación y similaridad. Más pares: seno, coseno, peine. erivación. Convolución. Area bajo la señal y bajo la convolución. Integración. Correlación determinística: Propiedades auto e inter. Energía. Interpretación como densidad de energía. 36 / 36

Tema 2. Sistemas Lineales e Invariantes en el Tiempo (Sesión 2)

Tema 2. Sistemas Lineales e Invariantes en el Tiempo (Sesión 2) SISTEMAS LINEALES Tema. Sistemas Lineales e Invariantes en el Tiempo (Sesión ) 4 de octubre de 00 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA Contenidos. Representación de señales discretas en términos

Más detalles

Sistemas Lineales e Invariantes en el Tiempo (LTI)

Sistemas Lineales e Invariantes en el Tiempo (LTI) Sistemas Lineales e Invariantes en el Tiempo (LTI) Dr. Ing. Leonardo Rey Vega Señales y Sistemas (66.74 y 86.05) Facultad de Ingeniería Universidad de Buenos Aires Agosto 2013 Señales y Sistemas (66.74

Más detalles

Problemas del tema 3. Sistemas lineales e invariantes en el tiempo

Problemas del tema 3. Sistemas lineales e invariantes en el tiempo Ingeniería Informática Medios de ransmisión (M) Problemas del tema Sistemas lineales e invariantes en el tiempo Curso 8-9 7//8 Enunciados. Considere el sistema de la figura Retardo de segundo ( ) x(t)

Más detalles

Sistemas lineales invariantes en el tiempo

Sistemas lineales invariantes en el tiempo Sistemas lineales invariantes en el tiempo Modulación y Procesamiento de Señales Ernesto López Pablo Zinemanas, Mauricio Ramos {pzinemanas, mramos}@fing.edu.uy Centro Universitario Regional Este Sede Rocha

Más detalles

3.7. Ejercicios: Sistemas discretos

3.7. Ejercicios: Sistemas discretos 3.7. Ejercicios: Sistemas discretos 57 3.7. Ejercicios: Sistemas discretos Ejercicio 1. Calcule la salida y[n] de cada uno de los siguientes sistemas para la entrada x[n] que se muestra en la figura. (1)

Más detalles

Señales y Sistemas II

Señales y Sistemas II 1 Señales y Sistemas II Módulo I: Señales y Sistemas Discretos Contenido de este módulo 2 1.- Tipos de señales y operaciones básicas 2.- Tipos de sistemas y sus propiedades 3.- Respuesta impulsiva y convolución

Más detalles

Procesado con Sistemas Lineales Invariantes en el Tiempo

Procesado con Sistemas Lineales Invariantes en el Tiempo Procesado con Sistemas Lineales Invariantes en el Tiempo March 9, 2009 Sistemas Lineales Invariantes en el Tiempo (LTI). Caracterización de los sistemas LTI discretos Cualquier señal discreta x[n] puede

Más detalles

3. Señales. Introducción y outline

3. Señales. Introducción y outline 3. Señales Introducción y outline Outline Señales y Sistemas Discretos: SLIT, Muestreo, análisis tiempo-frecuencia, autocorrelación, espectro, transformada Z, DTFT, DFT, FFT Filtros y Estimación: Filtros

Más detalles

Señales y Sistemas. Señales y Clasificación Sistemas y Clasificación Respuesta al impulso de los sistemas. 5º Curso-Tratamiento Digital de Señal

Señales y Sistemas. Señales y Clasificación Sistemas y Clasificación Respuesta al impulso de los sistemas. 5º Curso-Tratamiento Digital de Señal Señales y Sistemas Señales y Clasificación Sistemas y Clasificación Respuesta al impulso de los sistemas Señales El procesamiento de señales es el objeto de la asignatura, así que no vendría mal comentar

Más detalles

Propiedades de los Sistemas Lineales e Invariantes en el Tiempo

Propiedades de los Sistemas Lineales e Invariantes en el Tiempo Propiedades de los Sistemas Lineales e Invariantes en el Tiempo La respuesta al impulso de un sistema LTIC (h(t)), representa una descripción completa de las características del sistema. Es decir la caracterización

Más detalles

SEÑALES Y SISTEMAS. PROBLEMAS PROPUESTOS. CAPITULO III

SEÑALES Y SISTEMAS. PROBLEMAS PROPUESTOS. CAPITULO III SEÑALES Y SISTEMAS. PROBLEMAS PROPUESTOS. CAPITULO III Problema 1: Dado el siguiente sistema: a) Determine x1(n) cuando x(n) = u(n) - u(n-4) b) Determine x2(n+1) cuando x(n) = Cos0.5nπ 2º Se define z(n)=

Más detalles

SISTEMAS LINEALES. Tema 3. Análisis y caracterización de sistemas continuos empleando la transformada de Laplace

SISTEMAS LINEALES. Tema 3. Análisis y caracterización de sistemas continuos empleando la transformada de Laplace SISTEMAS LINEALES Tema 3. Análisis y caracterización de sistemas continuos empleando la transformada de Laplace 2 de octubre de 200 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA 3 Contenidos. Autofunciones

Más detalles

Tema 7: Procesos Estoca sticos

Tema 7: Procesos Estoca sticos Tema 7: Procesos Estoca sticos Teorı a de la Comunicacio n Curso 2007-2008 Contenido 1 Definición 2 Caracterización Estadística 3 Estadísticos 4 Estacionariedad 5 Ergodicidad 6 Densidad Espectral de Potencia

Más detalles

Práctica 3. Sistemas Lineales Invariantes con el Tiempo

Práctica 3. Sistemas Lineales Invariantes con el Tiempo Universidad Carlos III de Madrid Departamento de Teoría de la Señal y Comunicaciones LABORATORIO DE SISTEMAS Y CIRCUITOS CURSO 2003/2004 Práctica 3. Sistemas Lineales Invariantes con el Tiempo 12 de diciembre

Más detalles

SISTEMAS LINEALES. Tema 6. Transformada Z

SISTEMAS LINEALES. Tema 6. Transformada Z SISTEMAS LINEALES Tema 6. Transformada Z 6 de diciembre de 200 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA 3 Contenidos. Autofunciones de los sistemas LTI discretos. Transformada Z. Región de convergencia

Más detalles

Integral de Fourier y espectros continuos

Integral de Fourier y espectros continuos 9 2 2 2 Esta expresión se denomina forma de Angulo fase (o forma armónica) de la serie de Fourier. Integral de Fourier y espectros continuos Las series de Fourier son una herramienta útil para representar

Más detalles

Sistemas continuos. Francisco Carlos Calderón PUJ 2010

Sistemas continuos. Francisco Carlos Calderón PUJ 2010 Sistemas continuos Francisco Carlos Calderón PUJ 2010 Objetivos Definir las propiedades básicas de los sistemas continuos Analizar la respuesta en el tiempo de un SLIT continuo Definición y clasificación

Más detalles

Sistemas Lineales. Sistemas

Sistemas Lineales. Sistemas Sistemas Lineales Sistemas Un sistema opera con señales en una ó más entradas para producir señales en una ó más salidas. Los representamos mediante diagrama en bloques Señal de entrada ó excitación Señal

Más detalles

Sistemas Lineales. Examen de Septiembre Soluciones

Sistemas Lineales. Examen de Septiembre Soluciones Sistemas Lineales Examen de Septiembre 25. Soluciones. (2.5 pt.) La señal y(t) [sinc( t)] 4 puede escribirse como y(t) [sinc( t)] 4 [ ] sin(o πt) 4 o πt [ sin(o πt) ] 4 4 πt 4 [y (t)] 4 4 y (t) y (t) y

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Transformada de Laplace) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Verano 2010, Resumen clases Julio López EDO 1/30 Introducción

Más detalles

Concepto y Definición de Convolución

Concepto y Definición de Convolución Convolución Concepto y Definición de Convolución Propiedades Correlación y Autocorrelación Convolución Discreta 1 Concepto y Definición de Convolución Mediante la convolución calcularemos la respuesta

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA ANALISIS DE SISTEMAS Y SEÑALES TAREA. TRANSFORMADAS LAPLACE, FOURIER, Z

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA ANALISIS DE SISTEMAS Y SEÑALES TAREA. TRANSFORMADAS LAPLACE, FOURIER, Z UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA ANALISIS DE SISTEMAS Y SEÑALES TAREA. TRANSFORMADAS LAPLACE, FOURIER, Z ALUMNOS: CRUZ NAVARRO JESUS ALBARRÁN DÍAZ KARLA GRUPO: 4 SEMESTRE:

Más detalles

Muestreo y Procesamiento Digital

Muestreo y Procesamiento Digital Muestreo y Procesamiento Digital Práctico Transformada de Fourier en tiempo discreto Cada ejercicio comienza con un símbolo el cual indica su dificultad de acuerdo a la siguiente escala: básico, medio,

Más detalles

Estabilidad BIBO de Sistemas Lineales

Estabilidad BIBO de Sistemas Lineales Estabilidad BIBO de Sistemas Lineales Notas para el curso del Sistemas Lineales 2 UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE INGENIERÍA INSTITUTO DE INGENIERÍA ELÉCTRICA Montevideo, segundo semestre del 27

Más detalles

Capítulo 2 Análisis espectral de señales

Capítulo 2 Análisis espectral de señales Capítulo 2 Análisis espectral de señales Objetivos 1. Se pretende que el alumno repase las herramientas necesarias para el análisis espectral de señales. 2. Que el alumno comprenda el concepto de espectro

Más detalles

Señales y Sistemas de Tiempo Discreto

Señales y Sistemas de Tiempo Discreto Capítulo Señales y Sistemas de Tiempo Discreto Una señal es cualquier magnitud que sufre variaciones que contienen información de cualquier tipo, matemáticamente se representan por funciones de una o más

Más detalles

1. Sistemas Muestreados

1. Sistemas Muestreados . Sistemas Muestreados. Sistemas Muestreados.. Introducción 2.2. Secuencias 5.3. Sistema Discreto 5.4. Ecuaciones en Diferencias 6.5. Secuencia de Ponderación de un Sistema. 7.6. Estabilidad 9.7. Respuesta

Más detalles

Práctico 2 Análisis de proceso autorregresivo de orden 2 Proceso WSS filtrado

Práctico 2 Análisis de proceso autorregresivo de orden 2 Proceso WSS filtrado Práctico Análisis de proceso autorregresivo de orden Proceso WSS filtrado Tratamiento Estadístico de Señales Pablo Musé, Ernesto López & Luís Di Martino {pmuse, elopez, dimartino}@fing.edu.uy Departamento

Más detalles

Cronograma completo de Análisis III

Cronograma completo de Análisis III Cronograma completo de Análisis III Unidad I Semana I Clase I Transformada de Laplace. Definición. Condiciones de existencia. Cálculo de la transformada de Laplace de las funciones básicas. Propiedades

Más detalles

Asignatura: SISTEMAS LINEALES. Horas/Semana:4 Teoría + 0 Laboratorio. Objetivos

Asignatura: SISTEMAS LINEALES. Horas/Semana:4 Teoría + 0 Laboratorio. Objetivos Asignatura: SISTEMAS LINEALES Curso académico: 2007/2008 Código: 590000804 Créditos: 6 Curso: 2 Horas/Semana:4 Teoría + 0 Laboratorio Departamento: ICS Objetivos 1() Para todas las titulaciones OBJETIVOS

Más detalles

Señales y sistemas Otoño 2003 Clase 22

Señales y sistemas Otoño 2003 Clase 22 Señales y sistemas Otoño 2003 Clase 22 2 de diciembre de 2003 1. Propiedades de la ROC de la transformada z. 2. Transformada inversa z. 3. Ejemplos. 4. Propiedades de la transformada z. 5. Funciones de

Más detalles

2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo,

2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo, 2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO Una señal puede ser definida como una portadora física de información. Por ejemplo, las señales de audio son variaciones en la presión del aire llevando consigo

Más detalles

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Grado en Matemáticas Curso 203-204 . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes

Más detalles

Asignatura: SISTEMAS LINEALES. Horas/Semana:4 Teoría + 0 Laboratorio. Objetivos. Programa

Asignatura: SISTEMAS LINEALES. Horas/Semana:4 Teoría + 0 Laboratorio. Objetivos. Programa Asignatura: SISTEMAS LINEALES Curso académico: 2012/2013 Código: 590000628 Créditos: 6 Curso: 2 Horas/Semana:4 Teoría + 0 Laboratorio Departamento: ICS Objetivos 1() Para todas las titulaciones OBJETIVOS

Más detalles

3.- Herramientas matemáticas para el procesamiento de señales.

3.- Herramientas matemáticas para el procesamiento de señales. 3.- Herramientas matemáticas para el procesamiento de señales. La mejor manera de caracterizar un sistema consiste en probar de qué manera responde a señales de entrada, es decir, cómo transforma las señales

Más detalles

Transformada de Laplace (material de apoyo)

Transformada de Laplace (material de apoyo) Transformada de Laplace (material de apoyo) André Luiz Fonseca de Oliveira Michel Hakas Resumen En este artículo se revisará los conceptos básicos para la utilización de la transformada de Laplace en la

Más detalles

Principio de Superposición

Principio de Superposición 1 Sistemas en tiempo continuo discreto Un sistema en tiempo continuo discreto e puede ver como una transformación que se aplica a una señal de entrada en tiempo continuo discreto y produce una señal de

Más detalles

Transformada Z Filtros recursivos. clase 12

Transformada Z Filtros recursivos. clase 12 Transformada Z Filtros recursivos clase 12 Temas Introducción a los filtros digitales Clasificación, Caracterización, Parámetros Filtros FIR (Respuesta al impulso finita) Filtros de media móvil, filtros

Más detalles

Sistemas Lineales e Invariantes PRÁCTICA 2

Sistemas Lineales e Invariantes PRÁCTICA 2 Sistemas Lineales e Invariantes PRÁCTICA 2 (1 sesión) Laboratorio de Señales y Comunicaciones PRÁCTICA 2 Sistemas Lineales e Invariantes 1. Objetivo Los objetivos de esta práctica son: Revisar los sistemas

Más detalles

Si conocemos x(n) y obtenemos la salida del sistema podemos determinar la respuesta al impulso del sistema obteniendo en primer lugar H(z) con: = n(

Si conocemos x(n) y obtenemos la salida del sistema podemos determinar la respuesta al impulso del sistema obteniendo en primer lugar H(z) con: = n( 58 Funciones de transferencia de sistemas LTI Como ya conocemos la salida de un sistema LTI en el tiempo (en reposo) para una secuencia de entrada x(n) se podía obtener como la convolución de esa secuencia

Más detalles

Transformadas de Laplace

Transformadas de Laplace Semana 7 - Clase 9 9// Tema 3: E D O de orden > Algunas definiciones previas Transformadas de Laplace En general vamos a definir una transformación integral, F (s), de una función, f(t) como F (s) = b

Más detalles

apuntes señales SEÑALES Y SISTEMAS 1.- Representar convenientemente a la señal de entrada x 3.- Obtener la salida usando el método mas apropiado

apuntes señales SEÑALES Y SISTEMAS 1.- Representar convenientemente a la señal de entrada x 3.- Obtener la salida usando el método mas apropiado SEÑALES Y SISTEMAS 2.1.-INTRODUCCION: Tal y como se dijo anteriormente, los sistemas de comunicación eléctrica son los que han tenido más éxito debido a que logran la mayor eficiencia al transmitir mas

Más detalles

Introducción al diseño de filtros digitales

Introducción al diseño de filtros digitales Capítulo 6 Introducción al diseño de filtros digitales 6. Causalidad y sus implicaciones Sea hn la respuesta impulsional de un filtro paso bajo ideal con respuesta en frecuencia { ω ωc Hω = 0 ω C < ω

Más detalles

Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo.

Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo. Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo. Introducción. En este documento se describe como el proceso de convolución aparece en forma natural cuando se trata

Más detalles

ÍNDICE Capítulo 2 La transformada de Laplace 1 Capítulo 2 Series de Fourier 49 Capítulo 3 La integral de Fourier y las transformadas de Fourier 103

ÍNDICE Capítulo 2 La transformada de Laplace 1 Capítulo 2 Series de Fourier 49 Capítulo 3 La integral de Fourier y las transformadas de Fourier 103 ÍNDICE Capítulo 2 La transformada de Laplace... 1 1.1 Definición y propiedades básicas... 1 1.2 Solución de problemas con valores iniciales usando la transformada de Laplace... 10 1.3 Teoremas de corrimiento

Más detalles

TEMA: Sistemas Lineales Invariantes en el Tiempo (LTI)

TEMA: Sistemas Lineales Invariantes en el Tiempo (LTI) TEMA: Sistemas Lineales Invariantes en el Tiempo (LTI). Introducción. Sistemas LTI....2 Función de Transferencia y Respuesta Impulsional....2. Respuesta ideal de un sistema sin distorsión (retraso puro)....

Más detalles

2.1 Sistemas discretos en tiempo. 2.1.1 Sistemas lineales. 2.1.2 Sistemas invariantes en tiempo

2.1 Sistemas discretos en tiempo. 2.1.1 Sistemas lineales. 2.1.2 Sistemas invariantes en tiempo 2.1 stemas discretos en tiempo Un sistema discreto en el tiempo se define matemáticamente como la transformación o el operador que traza una secuencia de entrada con valores x[n], en una secuencia de salida

Más detalles

Contenidos. Importancia del tema. Conocimientos previos para este tema?

Contenidos. Importancia del tema. Conocimientos previos para este tema? Transformación conforme Contenidos Unidad I: Funciones de variable compleja. Operaciones. Analiticidad, integrales, singularidades, residuos. Funciones de variable real a valores complejos. Funciones de

Más detalles

TEMA 1. Principios de Teoría de la Señal

TEMA 1. Principios de Teoría de la Señal Tecnología de Comunicaciones Inalámbrica (TCI) 2012-2013 TEMA 1. Principios de Teoría de la Señal Juan Carlos Crespo crespozj@dtf.fi.upm.es 1 INTRODUCCIÓN En este capítulo estudiaremos la naturaleza de

Más detalles

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Modelos ARMA

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Modelos ARMA ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES Modelos ARMA Definición: Ruido blanco. Se dice que el proceso {ɛ t } es ruido blanco ( white noise ) si: E(ɛ t ) = 0 Var(ɛ t ) = E(ɛ 2 t ) = σ 2 Para todo

Más detalles

1. Señales y sistemas Sistemas lineales e invariantes en el tiempo (SLI) 13.5

1. Señales y sistemas Sistemas lineales e invariantes en el tiempo (SLI) 13.5 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO ANÁLISIS DE SISTEMAS Y SEÑALES 1418 4 09 Asignatura Clave Semestre Créditos Ingeniería Eléctrica Ingeniería de Control

Más detalles

Teoría básica de los filtros de ondas.

Teoría básica de los filtros de ondas. Teoría básica de los filtros de ondas Un filtro es simplemente un operador definido entre dos espacios de señales (funciones, distribuciones, etc) que tiene las propiedades de ser lineal, continuo, e invariante

Más detalles

Práctico 9 (resultados) Reportar al foro cualquier error que crea que exista en éstos resultados.

Práctico 9 (resultados) Reportar al foro cualquier error que crea que exista en éstos resultados. Práctico 9 (resultados) Reportar al foro cualquier error que crea que exista en éstos resultados. Ejercicio 1 Ver ejemplo 7.1 del capítulo 7 de las notas del curso (página 158). El resultado final de dicha

Más detalles

Fecha de Elaboración Fecha de Revisión. Circuitos III HTD HTC HTA Asignatura. Básica de Ingeniería

Fecha de Elaboración Fecha de Revisión. Circuitos III HTD HTC HTA Asignatura. Básica de Ingeniería UNIVERSIDAD DISTRITAL Francisco José de Caldas Facultad de Ingeniería Ingeniería Eléctrica Elaboró Revisó Diana S. García M. con el Material de la Coordinación [Escriba aquí el nombre] Fecha de Elaboración

Más detalles

MT227 Sistemas Lineales. Función de transferencia. Elizabeth Villota

MT227 Sistemas Lineales. Función de transferencia. Elizabeth Villota MT227 Sistemas Lineales. Función de transferencia Elizaeth Villota 1 Sistemas Lineales Sistema no lineal, forma espacio de estados: Sea la salida correspondiente a la condición inicial y entrada escrita

Más detalles

ELECTIVA I PROGRAMA DE FISICA Departamento de Física y Geología Universidad de Pamplona Marzo de 2010 NESTOR A. ARIAS HERNANDEZ - UNIPAMPLONA

ELECTIVA I PROGRAMA DE FISICA Departamento de Física y Geología Universidad de Pamplona Marzo de 2010 NESTOR A. ARIAS HERNANDEZ - UNIPAMPLONA ELECTIVA I PROGRAMA DE FISICA Departamento de Física y Geología Universidad de Pamplona Marzo de 2010 PDS Señal Analoga Señal Digital Estabilidad y Repetibilidad condiciones externa) Inmunidad al ruido

Más detalles

Análisis de Sistemas y Señales: Transformadas de Laplace, Z y Fourier. ÍNDICE. Transformadas de Laplace. 3. Transformada de Fourier.

Análisis de Sistemas y Señales: Transformadas de Laplace, Z y Fourier. ÍNDICE. Transformadas de Laplace. 3. Transformada de Fourier. Análisis de Sistemas y Señales Transformadas: Laplace, Z y Fourier. F L Z Alumnos: Anzures Robles Jorge Garcíaa Luciano Laura Quezada Borja Arnulfo Rojas Arteaga I. Karina Román Guadarrama José Roque Grupo:

Más detalles

Procesamiento digital de la señal Señales y sistemas de tiempo discreto

Procesamiento digital de la señal Señales y sistemas de tiempo discreto Procesamiento digital de la señal Señales y sistemas de tiempo discreto Alfonso Zozaya Universidad de Carabobo (UC) Departamento de Electrónica y Comunicaciones Valencia, Venezuela, febrero de 2004 A.

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TACHIRA VICE-RECTORADO ACADEMICO DECANATO DE DOCENCIA

UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TACHIRA VICE-RECTORADO ACADEMICO DECANATO DE DOCENCIA UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TACHIRA VICE-RECTORADO ACADEMICO DECANATO DE DOCENCIA Departamento: INGENIERIA ELECTRONICA Núcleo: INSTRUMENTACION, CONTROL Y SEÑALES Asignatura: SEÑALES Y SISTEMAS

Más detalles

Procesado Lineal Bidimensional

Procesado Lineal Bidimensional Procesado Lineal Bidimensional Santiago Aja-Fernández Universidad de Valladolid S. Aja-Fernández (ETSI Telecomunicación) Introducción al Procesado de Imagen 1 / 36 Contenidos 1 Señales bidimensionales

Más detalles

Transformada de Laplace

Transformada de Laplace Transformada de Laplace Definición: La Transformada de Laplace Dada una función f (t) definida para toda t 0, la transformada de Laplace de f es la función F definida como sigue: { f } 0 st F () s = L

Más detalles

Representación de señales y sistemas en el dominio de la frecuencia

Representación de señales y sistemas en el dominio de la frecuencia Representación de señales y sistemas en el dominio de la frecuencia Modulación y Procesamiento de Señales Ernesto López Pablo Zinemanas, Mauricio Ramos {pzinemanas, mramos}@fing.edu.uy Centro Universitario

Más detalles

INTRODUCCION- FILTRO DE WIENER

INTRODUCCION- FILTRO DE WIENER FILTRO LMS INTRODUCCION- FILTRO DE WIENER Es un sistema al que le llegan dos señales: x(n) y e(n). A los coeficientes del filtro se les llama w(n), que son los que multiplican a la entrada x(n) para obtener

Más detalles

Transformada Discreta de Fourier (II)

Transformada Discreta de Fourier (II) Transformada Discreta de Fourier (II) 1 Más problemas...ahora computacionales La DFT de orden de una señal x(n) viene definida por la siguiente expresión #1 % X(k) = x(n) "e n= 0 # j"2"$ "k"n Para cada

Más detalles

Propiedades de los sistemas (con ecuaciones)

Propiedades de los sistemas (con ecuaciones) Propiedades de los sistemas (con ecuaciones) Linealidad: Para verificar si un sistema es lineal requerimos que le sistema sea homogéneo y aditivo es decir, cumplir con la superposición. Método: Dada una

Más detalles

Transformada de Laplace

Transformada de Laplace Capítulo 4 Transformada de Laplace La Transformada de Laplace es la herramienta de preferencia en el análisis de sistemas lineales e invariantes en el tiempo. Se le atribuye a Pierre-Simon de Laplace (749

Más detalles

INSTITUTO TECNOLÓGICO DE MASSACHUSETTS Departamento de Ingeniería Eléctrica e Informática

INSTITUTO TECNOLÓGICO DE MASSACHUSETTS Departamento de Ingeniería Eléctrica e Informática INSTITUTO TECNOLÓGICO DE MASSACHUSETTS Departamento de Ingeniería Eléctrica e Informática 6.003: Señales y sistemas Otoño 2003 Examen final Martes 16 de diciembre de 2003 Instrucciones: El examen consta

Más detalles

C A P I T U L O V ANALISIS EN FRECUENCIA DE SEÑALES Y SISTEMAS DISCRETOS SERIES DE FOURIER PARA SEÑALES DISCRETAS EN TIEMPO:

C A P I T U L O V ANALISIS EN FRECUENCIA DE SEÑALES Y SISTEMAS DISCRETOS SERIES DE FOURIER PARA SEÑALES DISCRETAS EN TIEMPO: C A P I T U L O V ANALISIS EN FRECUENCIA DE SEÑALES Y SISTEMAS DISCRETOS 51- SERIES DE FOURIER PARA SEÑALES DISCRETAS EN TIEMPO: Las mismas motivaciones que nos condujeron al desarrollo de las series y

Más detalles

SEÑALES ALEATORIAS Y RUIDO. E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid.

SEÑALES ALEATORIAS Y RUIDO. E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid. SEÑALES ALEATORIAS Y RUIDO. Marcos Martín Fernández E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid. CONTENIDOS INDICE. DE FIGURAS VII 1. PROBABILIDAD. 1 2. VARIABLES ALEATORIAS.

Más detalles

Unidad I: Conceptos Introductorios a Señales y Sistemas. Señal

Unidad I: Conceptos Introductorios a Señales y Sistemas. Señal REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NACIONAL NÚCLEO FALCÓN Unidad I: Conceptos Introductorios

Más detalles

Segunda parte (2h 30 ):

Segunda parte (2h 30 ): TRATAMIENTO DIGITAL DE SEÑALES EXAMEN FINAL SEPTIEMBRE 2008 05/09/2008 APELLIDOS NOMBRE DNI NO DE LA VUELTA A ESTA HOJA HASTA QUE SE LO INDIQUE EL PROFESOR MIENTRAS TANTO, LEA ATENTAMENTE LAS INSTRUCCIONES

Más detalles

1. Sistemas Lineales e Invariantes a la Traslación 1.1 Motivación de las imágenes digitales Qué es una imagen digital? Sistema: Suma: Escalamiento:

1. Sistemas Lineales e Invariantes a la Traslación 1.1 Motivación de las imágenes digitales Qué es una imagen digital? Sistema: Suma: Escalamiento: 1. Sistemas Lineales e Invariantes a la Traslación 1.1 Motivación de las imágenes digitales 1.2 Sistemas lineales 1.2.1 Ejemplo de Sistemas Lineales Qué es una imagen digital? a) Sistema: un sistema realiza

Más detalles

INDICE Capitulo 1. Variables y Leyes de Circuitos 1.1. Corriente, Voltaje y Potencia 1.2. Fuentes y Cargas (1.1) 1.3. Ley de Ohm y Resistores (1.

INDICE Capitulo 1. Variables y Leyes de Circuitos 1.1. Corriente, Voltaje y Potencia 1.2. Fuentes y Cargas (1.1) 1.3. Ley de Ohm y Resistores (1. INDICE Capitulo 1. Variables y Leyes de Circuitos 1 1.1. Corriente, Voltaje y Potencia 3 Carga y corriente * Energía y voltaje * Potencia eléctrica * Prefijos de magnitud 1.2. Fuentes y Cargas (1.1) 11

Más detalles

5 Estabilidad de soluciones de equilibrio

5 Estabilidad de soluciones de equilibrio Prácticas de Ecuaciones Diferenciales G. Aguilar, N. Boal, C. Clavero, F. Gaspar Estabilidad de soluciones de equilibrio Objetivos: Clasificar y analizar los puntos de equilibrio que aparecen en los sistemas

Más detalles

Formulario Procesamiento Digital de Señales

Formulario Procesamiento Digital de Señales Formulario Procesamiento Digital de Señales M n=0 n=0 α n = αm+ α ( α n =, a < ( α sen(a ± B = sen(a cos(b ± cos(a sen(b (3 cos(a ± B = cos(a cos(b sen(a sen(b (4 cos (A = ( + cos(a (5 sen (A = ( cos(a

Más detalles

Filtros Digitales 2. Contenidos. Juan-Pablo Cáceres CCRMA Stanford University. Agosto, Un Filtro Lowpass Simple

Filtros Digitales 2. Contenidos. Juan-Pablo Cáceres CCRMA Stanford University. Agosto, Un Filtro Lowpass Simple Filtros Digitales 2 Juan-Pablo Cáceres CCRMA Stanford University Agosto, 2007 Contenidos Un Filtro Lowpass Simple Obtención de la Respuesta en Frecuencia Función de Transferencia Propiedad de Linealidad

Más detalles

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas.

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas. UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 27 Dr. Rodolfo Salinas abril 27 Control Moderno N abril 27 Dr. Rodolfo Salinas Respuesta en el tiempo

Más detalles

Respuesta transitoria

Respuesta transitoria Capítulo 4 Respuesta transitoria Una ves que los diagramas a bloques son desarrollados, el siguiente paso es llevar a cabo el análisis de los sistemas. Existen dos tipos de análisis: cuantitativo y cualitativo.

Más detalles

10. Series de potencias

10. Series de potencias FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 7-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

Un filtro general de respuesta al impulso finita con n etapas, cada una con un retardo independiente d i y ganancia a i.

Un filtro general de respuesta al impulso finita con n etapas, cada una con un retardo independiente d i y ganancia a i. Filtros Digitales Un filtro general de respuesta al impulso finita con n etapas, cada una con un retardo independiente d i y ganancia a i. En electrónica, ciencias computacionales y matemáticas, un filtro

Más detalles

1. Modelos Matemáticos y Experimentales 1

1. Modelos Matemáticos y Experimentales 1 . Modelos Matemáticos y Experimentales. Modelos Matemáticos y Experimentales.. Definición.. Tipos de Procesos.3. Tipos de Modelos 3.4. Transformada de Laplace 4.5. Función de Transferencia 7.6. Función

Más detalles

TRATAMIENTO Y TRANSMISIÓN

TRATAMIENTO Y TRANSMISIÓN TRATAMIENTO Y TRANSMISIÓN DE SEÑALES INGENIEROS ELECTRÓNICOS SOLUCIÓN CUESTIONES DEL EXAMEN JUNIO 2003 1. Si g(t) es una señal de energía, su autocorrelación viene dada por: Propiedades: R g (τ) =< g(t),

Más detalles

Análisis temporal de sistemas

Análisis temporal de sistemas Control de Procesos Industriales 3. Análisis temporal de sistemas por Pascual Campoy Universidad Politécnica Madrid Control de Procesos Industriales 1 Análisis temporal de sistemas Estabilidad y ganancia

Más detalles

Laboratorio de Procesamiento Digital de Información

Laboratorio de Procesamiento Digital de Información Laboratorio de Procesamiento Digital de Información E7Z - Ingeniería en Computación - 2017 Bibliografía: -Señales y Sistemas A. Oppenheim, A. Willsky. - Signals and Systems S. Haykin, Barry Van Veen. -

Más detalles

Teoría de circuitos Segundo Parcial

Teoría de circuitos Segundo Parcial Teoría de circuitos Segundo Parcial CUE 13 de julio de 2015 Indicaciones: La prueba tiene una duración total de 3 horas. Cada hoja entregada debe indicar nombre, número de C.I., y número de hoja. La hoja

Más detalles

Tema II: Análisis de circuitos mediante la transformada de Laplace

Tema II: Análisis de circuitos mediante la transformada de Laplace Tema II: Análisis de circuitos mediante la transformada de Laplace La transformada de Laplace... 29 Concepto e interés práctico... 29 Definición... 30 Observaciones... 30 Transformadas de Laplace funcionales...

Más detalles

Instituto de Matemática Aplicada del Litoral

Instituto de Matemática Aplicada del Litoral PROBLEMAS DE BARRERA EN PROCESOS ESTOCÁSTICOS Ernesto Mordecki http://www.cmat.edu.uy/ mordecki mordecki@cmat.edu.uy Facultad de Ciencias Montevideo, Uruguay. Instituto de Matemática Aplicada del Litoral

Más detalles

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Modelos econométricos dinámicos uniecuacionales

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Modelos econométricos dinámicos uniecuacionales ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES Modelos econométricos dinámicos uniecuacionales Introducción: Hemos estudiado modelos de tipo: y t = φ 0 + p i=1 φ iy t i + q j=0 θ jɛ t j y t = β x t +

Más detalles

Preguntas de 33 Problema 1 de 17 Problema 2 de 18 Problema 3 de 15 Problema 4 de 15

Preguntas de 33 Problema 1 de 17 Problema 2 de 18 Problema 3 de 15 Problema 4 de 15 IE TEC Carné: Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL-47 Modelos de Sistemas Profesor: Dr. Pablo Alvarado Moya II Semestre, 7 Examen Final Total de Puntos: 98 Puntos obtenidos:

Más detalles

Transformadas Básicas. Requerimientos: Integral Impropia TRANSFORMADA DE LAPLACE:

Transformadas Básicas. Requerimientos: Integral Impropia TRANSFORMADA DE LAPLACE: Transformadas Básicas Requerimientos: Integral Impropia si limite TRANSFORMADA DE LAPLACE: La transformada de Laplace de una función está definida por: Para obtener su transformación solo debemos multiplicar

Más detalles

Vibraciones aleatorias en sistemas con un grado de libertad

Vibraciones aleatorias en sistemas con un grado de libertad Vibraciones aleatorias en sistemas con un grado de libertad F. Javier Cara ETSII-UPM Curso 212-213 1 Contenido Señales y sistemas Cálculo de la respuesta mediante la ecuación diferencial Cálculo de la

Más detalles

Transformada Discreta de Fourier.

Transformada Discreta de Fourier. Transformada Discreta de Fourier. Hasta ahora se ha visto Importancia de la respuesta en frecuencia de un sistema Transformada de Fourier de una señal discreta Tenemos otra forma de caracterizar los sistemas

Más detalles

INDICE Prefacio 1. Introducción 2. Conceptos de circuitos 3. Leyes de los circuitos 4. Métodos de análisis

INDICE Prefacio 1. Introducción 2. Conceptos de circuitos 3. Leyes de los circuitos 4. Métodos de análisis INDICE Prefacio XIII 1. Introducción 1.1. magnitudes eléctricas y unidades del S.I. 1 1.2. fuerza, trabajo y potencia 2 1.3. carga y corriente eléctrica 3 1.4. potencial eléctrico 1.5. energía y potencia

Más detalles

INDICE 1 Introducción 2 Circuitos resistivos 3 Fuentes dependientes y amplificadores operacionales (OP AMPS) 4 Métodos de análisis

INDICE 1 Introducción 2 Circuitos resistivos 3 Fuentes dependientes y amplificadores operacionales (OP AMPS) 4 Métodos de análisis INDICE 1 Introducción 1 1.1. Definiciones y unidades 2 1.2. Carga y corriente 5 1.3. Voltaje, energía y potencia 9 1.4. Elementos activos y pasivos 12 1.5. Análisis de circuitos y diseño 15 16 Problemas

Más detalles

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) =

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) = Transformada de Laplace - Conceptos Básicos Definición: Sea f (t) una función de t definida para t > 0. La Transformada de Laplace de f(t) se define como: L { f (t) } = F(s) = 0 e -st f(t)dt Algunas Propiedades

Más detalles

Profesor Francisco R. Villatoro 29 de Mayo de 2000 NO SE PERMITEN APUNTES, FORMULARIOS O CALCULADORA NO OLVIDE RACIONALIZAR TODOS LOS RESULTADOS

Profesor Francisco R. Villatoro 29 de Mayo de 2000 NO SE PERMITEN APUNTES, FORMULARIOS O CALCULADORA NO OLVIDE RACIONALIZAR TODOS LOS RESULTADOS Examen Segundo Parcial Técnicas Numéricas (Técn. Comp.) Profesor Francisco R. Villatoro 9 de Mayo de 000 NO SE PERMITEN APUNTES FORMULARIOS O CALCULADORA NO OLVIDE RACIONALIZAR TODOS LOS RESULTADOS 1.

Más detalles

Ecuaciones diferenciales estocásticas: ejemplos

Ecuaciones diferenciales estocásticas: ejemplos Ecuaciones diferenciales estocásticas: ejemplos Curso Procesos Estocásticos Programa de Doctorado de Sistemas Complejos Juan M.R. Parrondo Dept. Física Atómica, Molecular y Nuclear, Universidad Complutense

Más detalles

1. Sucesiones y redes.

1. Sucesiones y redes. 1. Sucesiones y redes. PRACTICO 7. REDES. Se ha visto que el concepto de sucesión no permite caracterizar algunas nociones topológicas, salvo en espacios métricos. Esto empieza con algunas definiciones

Más detalles

LABORATORIO DE SEÑALES Y SISTEMAS PRACTICA 1

LABORATORIO DE SEÑALES Y SISTEMAS PRACTICA 1 LABORATORIO DE SEÑALES Y SISTEMAS PRACTICA CURSO 005-006 PRÁCTICA SEÑALES Y SISTEMAS CONTINUOS Las presente practica trata distintos aspectos de las señales y los sistemas en tiempo continuo. Los diferentes

Más detalles

El Producto escalar para las comunicaciones (parte 1) Luca Mar9no Apuntes no revisados Cuidado!

El Producto escalar para las comunicaciones (parte 1) Luca Mar9no Apuntes no revisados Cuidado! El Producto escalar para las comunicaciones (parte ) Luca Mar9no Apuntes no revisados Cuidado! Producto Escalar El producto escalar, también conocido como producto interno o producto punto, es una operación

Más detalles