10. Series de potencias

Tamaño: px
Comenzar la demostración a partir de la página:

Download "10. Series de potencias"

Transcripción

1 FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 7-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San Martín. Ingeniería Matemática SEMANA 15: SERIES NUMÉRICAS Y SERIES DE POTENCIAS 1. Series de potencias Definición 1.1 (Serie de potencias). Una serie de potencias es una serie en donde el término general es de la forma a (x α). Serie de potencias No es difícil notar que la convergencia de estas series depende fuertemente del valor de x. Nosotros nos concentraremos en el caso de series de potencias centradas en cero, es decir, consideraremos solamente el caso α =. Ejemplo 1.1. Consideremos la serie de potencias x. Esta serie corresponde a una serie geométrica con razón x. Sabemos que si x < 1 esta serie converge absolutamente y que si x 1 diverge. Esto quiere decir que en el intervalo ( 1,1) podemos definir la función g (x) = x. En este caso podemos calcular el valor de la serie de modo que g (x) = 1 1 x para x ( 1,1). Al analizar el ejemplo anterior parece natural que si la serie converge para x lo haga también para x con x x y recíprocamente, que si diverge para x también lo haga para valores de x con x < x. La siguiente proposición nos acerca a la respuesta. Proposición 1.1. Si la serie a x converge, se tiene que para cada a (, x ) y para todo x [ a,a] la serie a x converge absolutamente. Demostración. Para x [ a,a] y r = a x la sucesión ( an x n ) es mayorada ( ) por a n x n a n a n a n x n a n x = an x n r n. El término a n x n es acotado (converge a cero) pues a x es convergente. Entonces, a n x n Mr n. El lado derecho es una constante por el término general de una serie geométrica con razón r < 1. Usando el criterio de mayoración concluimos que la serie a x converge para todo x [ a,a] Radio e intervalo de convergencia Notar que la Proposición 1.1 nos dice que si a x diverge entonces también diverge la serie a x para x > x. Definamos { R = sup x : } a x < +. Este valor es finito si existe algún x para el cual la serie a x diverge y vale + en otro caso. 17

2 Definición 1.2 (Radio de convergencia). Al valor R lo llamaremos el radio de convergencia de la serie de potencias a x. La Proposición 1.1 nos asegura que para todo x ( R,R) la serie converge y para todo x / ( R,R) la serie diverge. Si aplicamos el criterio del la raíz n-ésima a la serie a x obtenemos r = x lím a n 1 n. Entonces, ρ = lím a n 1 n es igual a 1 R cuando R y vale cero cuando R = +, con lo que tenemos una manera de calcular R basada solamente en (a n ). Radio de convergencia Definición 1.3 (Intervalo de convergencia). Llamamos intervalo de convergencia I al conjunto de reales x para los cuales la serie a x converge. Tenemos que ( R,R) I [ R,R]. Intervalo de convergencia Ejemplo 1.2. Dependiendo de la serie se puede tener que I = ( R,R), I = ( R,R], I = [ R,R) o I = [ R,R]. Caso. I = ( R,R). ( 1) x. Para x ( 1,1) podemos aplicar el criterio de Leibnitz y concluir que la serie converge. En x = 1 la serie diverge y lo mismo ocurre para x = 1. Entonces, el radio de convergencia de la serie es R = 1 y su intervalo de convergencia es ( 1,1). Caso I = ( R,R]. ( 1) +1 x. Para x = 1 la serie es 1 que diverge. Para x = 1 la serie es ( 1) +1 1 que converge. Luego el radio de convergencia es R = 1 y el intervalo de convergencia es ( 1,1]. Caso I = [ R,R). x. Hacerlo como ejercicio. R = 1, I = [ 1,1). Caso I = [ R,R]. x. Para x > 1 la serie diverge pues la sucesión xn 2 n 2 diverge a infinito. Para x = 1 la serie converge por lo que su radio de convergencia es R = 1. Además para x = 1 la serie ( 1) 1 converge 2 absolutamente Series de potencias, integración y derivación Dada una serie de potencias a x con intervalo de convergencia I, es posible definir naturalmente la función f : I x f(x) = a x = lím n = a x. (1.1) Mostraremos a continuación que esta función es integrable y derivable, y de manera fácil a partir de la serie de potencias original. 171

3 Veamos primero el siguiente teorema: Ingeniería Matemática Teorema 1.1. Sea a x una serie de potencias con radio de convergencia mayor que cero. Definiendo la función f como en (1.1), se tiene que ella es continua en int(dom f). Demostración. Como Dom f es un intervalo, entonces probar que f es continua en int(domf) es equivalente a probar que q int(dom(f)) +, f es continua en( q,q). Sea entonces q int(dom f) +. Definimos, para n, la función: Luego f n (x) Sean S n = n = a x = = f n (x) = a x. = a x = a q = = a q. = a q y S = = a q. Para n,m tales que n > m y x [ q,q], se tiene f m (x) f n (x) = En resumen, hemos probado que m =n+1 m =n+1 m =n+1 a x a x a q = S m S n. x [ q,q], n, m > n, f m (x) f n (x) S m S n. Haciendo m, se deduce que x [ q,q], n, f(x) f n (x) S S n. (1.2) Usando esto probemos que f es continua en x ( q,q), es decir ε >, δ >, x ( q,q) x x δ f(x) f(x ) ε. 172

4 Veamos que para cualquier n, Ingeniería Matemática f(x) f(x ) = f(x) f n (x) + f n (x) f n (x ) + f n (x ) f(x ) Sea entonces n f(x) f n (x) + f n (x) f n (x ) + f n (x ) f(x ) S S n + f n (x) f n (x ) + S S n 2 S S n + f n (x) f n (x ) tal que S S n ε 3, luego f(x) f(x ) 2ε 3 + f n (x) f n (x ). Ahora, como f n (x) es un polinomio de grado n, entonces f n (x) es continua en x, por lo tanto δ >, x, x x δ f n (x) f n (x ) ε 3. Con este δ >, se tiene lo buscado, es decir x ( q,q), x x δ f(x) f(x ) ε. Gracias a este teorema, tenemos que la función definida por la serie de potencias es integrable en int(i). Para ver que además es fácil integrarla, debemos probar el siguiente resultado: Proposición 1.2. Sea a x una serie de potencias de radio de convergencia R >. Entonces para todo p, la serie p a x tiene radio de convergencia R. Demostración. Sea q (,R), luego a q converge absolutamente. Gracias al Teorema 9.1, la sucesión (a q ) está acotada, digamos a q C. Luego para cualquier x ( q,q), p a x = p a q x q x Cp q. Consideremos entonces la serie p z, llamando z = x. Usando el criterio de la raíz n-ésima, tenemos ( ) p p z = z z. Es decir, si z < 1 entonces p z converge. Por lo tanto, p a x converge absolutamente si x ( q, q). Como la serie p a x converge para todo x (,R), luego si el radio de convergencia de esta serie es R, entonces R R. Aplicando el mismo razonamiento, a la serie de potencias p p a x = pã x (con ã = p a ), obtenemos que R R. De donde se concluye el q resultado. 173

5 Observación: Gracias a este último resultado, si a x tiene radio de convergencia R >, entonces a x tiene también radio de convergencia R >. Lo mismo sucede para la serie de potencias 1 a x

6 Probemos entonces que para integrar la función definida por una serie de potencias, basta integrar el término general de la serie. Teorema 1.2. Sea a x una serie de potencias, con radio de convergencia R >. Entonces la función f definida como en (1.1), es integrable en ( R,R) y x ( R,R), f(t)dt = ( a t )dt = a x Demostración. Gracias al Teorema 1.1, f es integrable. Definimos, para n, como en el Teorema 1.1: Se tiene que f n (t)dt = f n (x) = a x. = ( n a t ) dt = = = a x n Esto gracias a la observación de la Proposición 1.2. Sea entonces x ( R,R) y veamos x f(t)dt f n (t)dt (f(t) f n (t))dt f(t) f n (t) dt Y usando (1.2) en la demostración del Teorema 1.1, Luego, a x S S n dt x S S n. f n (t)dt y por unicidad del límite, f(t)dt y f n (t)dt a x , f(t)dt = a x

7 Además, gracias a este último teorema, se tiene la misma propiedad para el caso de la derivada. Teorema 1.3. Sea a x una serie de potencias, con radio de convergencia R >. Entonces la función f definida como en (1.1), es derivable en ( R,R) y x ( R,R), f (x) = 1a x 1. Demostración. Gracias al Teorema 1.2, la serie de potencias 1 a x 1 es integrable en ( R,R) y x ( R,R). Luego ( 1a t 1) dt = 1 f (x) = 1 a x = a x = f(x) a. 1 ( a t 1) dt = 1a x 1. Los resultados anteriores nos dicen que el radio de convergencia de una serie y el de la serie derivada son iguales. Más aún, lo mismo es cierto para la serie derivada por lo que también será cierto para las derivadas de cualquier orden. Entonces la función f (x) que se obtiene de la serie de potencias es infinitamente derivable y todas sus derivadas tienen el mismo radio de convergencia. Además se tiene que f (j) (x) = j ( 1) ( j) a x j, es decir, la serie que se obtiene al derivar término a término la serie de la función f representa la derivada de orden j de f. De aquí que, f (j) () = a j j!, y entonces el término a j de la serie que representa a f debe ser f(j) () j!, es decir, aquel de la serie de Taylor para f en torno a cero. Ejemplo Consideremos f (x) = e x. Sabemos que f (j) () = e = 1 para todo j. Entonces la serie candidata es = x!. Dado cualquier x se tiene que x x =! existe pues +1! = x (+1)!x +1. Esto dice que el radio de convergencia es infinito y entonces la serie converge para todo x. Utilizando las fórmulas del residuo para el desarrollo de Taylor es posible probar que para todo x, e x = x!. De modo que no es novedoso que la serie derivada x 1! sea igual a x!. 176

8 2. Busquemos una serie que represente a la función f (x) = 1 + x. Se tiene que f (x) = 1 2 (1 + 1 x) 2, f (x) = (1 + 3 x) 2 y en general f (j) (x) = ( 1) j (2j 1) 2 (1 + x) 2j+1 2 Luego f (j) j (2j 1) () = ( 1) 2 y el término a j j = j (2j 1) ( 1) 2 j j!. La serie a j x j converge para x < 1 pues 1 3 (2j+1) 2 j+1 (j+1)! 1 3 (2j 1) x = (2j+1) 2(j+1) x x. De modo que el radio de convergencia 2 j j! es R = 1 y el intervalo es I = ( 1,1) pues la sucesión a no converge a cero Álgebra de series de potencias Las series de potencias se pueden sumar y multiplicar y los radios de convergencia de las series resultantes estarán determinados por aquellos de las series originales. Teorema 1.4. Dadas dos series de potencias a x y b x convergentes para x. Entonces la serie (a + b ) x converge para todo x ( x, x ) y se tiene que (a + b ) x = a x + b x. Además, si c = a j b j la serie c x converge para todo x ( x, x ) y se tiene que c x = ( a x ) ( b x ). Demostración. Se deja como ejercicio. Ejercicio Ejemplo 1.4. Calculemos el producto ( ) ( x x 2!. Entonces, c x = (2x)! = e 2x. Natural.!! ). El coeficiente c = 1 1 j! ( j)! = 177

: k }, es decir. 2 k. k=0

: k }, es decir. 2 k. k=0 FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA25 Clase 5: Series de potencias. Operaciones con series de potencias. Series de potencias Elaborado por los profesores Edgar Cabello y Marcos González Cuando estudiamos las series geométricas, demostramos

Más detalles

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II CÁLCULO II Grado M+I Sucesiones y series de funciones Sucesiones y series de funciones 1 / Sucesiones funciones. Convergencia puntual Sucesión de funciones Definición Una sucesión de funciones será cualquier

Más detalles

Series numéricas y de potencias. 24 de Noviembre de 2014

Series numéricas y de potencias. 24 de Noviembre de 2014 Cálculo Series numéricas y de potencias 24 de Noviembre de 2014 Series numéricas y de potencias Series numéricas Sucesiones de números reales Concepto de serie de números reales. Propiedades Criterios

Más detalles

Cálculo Integral Series de potencias. Universidad Nacional de Colombia

Cálculo Integral Series de potencias. Universidad Nacional de Colombia Cálculo Integral Series de potencias Jeanneth Galeano Peñaloza - Claudio Rodríguez Beltrán Universidad Nacional de Colombia Segundo semestre de 2015 Series de potencias Una serie de potencias alrededor

Más detalles

Observación: Aceptaremos que la función f no este definida para un número finito de términos como por ejemplo f(n) = n 5.

Observación: Aceptaremos que la función f no este definida para un número finito de términos como por ejemplo f(n) = n 5. Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 07- Importante: Visita regularmente http://www.dim.uchile.cl/calculo. Ahí encontrarás

Más detalles

1. Continuidad. Universidad de Chile Subsucesiones. Ingeniería Matemática

1. Continuidad. Universidad de Chile Subsucesiones. Ingeniería Matemática 1. Continuidad 1.1. Subsucesiones Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08- Importante: Visita regularmente http://www.dim.uchile.cl/~calculo.

Más detalles

BORRADOR. Series de potencias y de funciones Sucesiones de funciones

BORRADOR. Series de potencias y de funciones Sucesiones de funciones Capítulo 5 Series de potencias y de funciones 5.1. Sucesiones de funciones En los dos últimos capítulos de la asignatura, deseamos estudiar ciertos tipos de series de funciones, es decir, expresiones sumatorias

Más detalles

Un resumen de la asignatura. Junio, 2015

Un resumen de la asignatura. Junio, 2015 Un resumen de la asignatura Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones ETSIT (UPM) Junio, 2015 1 Los Números Reales(R) Los números Irracionales Continuidad

Más detalles

TEMA 4. Series de potencias

TEMA 4. Series de potencias TEMA 4 Series de potencias. Introducción En el tema anterior hemos estudiado la aproximación polinómica local de funciones mediante el polinomio de Taylor correspondiente. En particular, vimos para la

Más detalles

8. Consecuencias de la Teoría de Cauchy.

8. Consecuencias de la Teoría de Cauchy. Funciones de variable compleja. Eleonora Catsigeras. 8 Mayo 2006. 77 8. Consecuencias de la Teoría de Cauchy. 8.1. Principio del módulo máximo. Definición 8.1.1. Sea f una función continua en Ω. Se dice

Más detalles

C alculo Noviembre 2010

C alculo Noviembre 2010 Cálculo Noviembre 2010 Series numéricas. Sucesiones Definición Una sucesión es una aplicación a : IN IR. Denotamos simplificadamente a n en vez de a(n). El límite de la sucesión (a n ) es l R si para

Más detalles

SUCESIONES Y SERIES INFINITAS

SUCESIONES Y SERIES INFINITAS de SUCESIONES Y SERIES INFINITAS Sergio Stive Solano Septiembre de 2012 de SUCESIONES Y SERIES INFINITAS Sergio Stive Solano Septiembre de 2012 de Una serie de potencia es aquella que tiene la forma c

Más detalles

Series de potencias y de Fourier

Series de potencias y de Fourier Capítulo 2. Series de potencias y de Fourier En este capítulo estudiaremos dos casos particulares, pero muy importantes, de series de funciones: las series de potencias y las series de Fourier. Ambas series

Más detalles

Sucesiones y series de funciones

Sucesiones y series de funciones Sucesiones y series de funciones Renato Álvarez Nodarse Departamento de Análisis Matemático Facultad de Matemáticas. Universidad de Sevilla http://euler.us.es/ renato/ 8 de octubre de 2012 Sucesiones y

Más detalles

Apéndice 2: Series de Fourier.

Apéndice 2: Series de Fourier. Apéndice 2: Series de Fourier. 19 de noviembre de 2014 1. Conjuntos ortonormales y proyecciones. Sea V un espacio vectorial con un producto interno . Sea {e 1,..., e n } un conjunto ortonormal, V

Más detalles

13. Series de Laurent.

13. Series de Laurent. Funciones de variable compleja. Eleonora Catsigeras. 3 Mayo 2006. 33 3. Series de Laurent. 3.. Definición de serie de Laurent y corona de convergencia. Definición 3... Serie de Laurent. Se llama serie

Más detalles

Sucesiones y Series Sucesiones

Sucesiones y Series Sucesiones Capítulo 6 Sucesiones y Series 6.. Sucesiones En particular estudiaremos las sucesiones de números reales, es decir, las que verifican la siguiente definición. Definición 6... Llamaremos sucesión a la

Más detalles

Tema 2: Series numéricas

Tema 2: Series numéricas Tema 2: Series numéricas Una serie infinita (o simplemente serie) es una suma formal de infinitos términos a + a 2 + a 3 + + + Al número se le denomin-ésimo término de la serie Se llama sucesión de sumas

Más detalles

c n sucesiones numéricas. Si n a n. } k=1 dos subsucesiones de la sucesión { } k=1 = an. Entonces, si lím = L se tiene que lím a n = L.

c n sucesiones numéricas. Si n a n. } k=1 dos subsucesiones de la sucesión { } k=1 = an. Entonces, si lím = L se tiene que lím a n = L. 147 Matemáticas 1 : Cálculo diferencial en IR Anexo 4: Demostraciones Sucesiones de números Series numéricas Demostración de: Proposición 241 de la página 138 Proposición 241- Sean { }, { } y { } c n sucesiones

Más detalles

Variable Compleja I ( ) Ejercicios resueltos. Las convergencias puntual y uniforme de sucesiones y series de funciones

Variable Compleja I ( ) Ejercicios resueltos. Las convergencias puntual y uniforme de sucesiones y series de funciones Variable Compleja I (205-6) Ejercicios resueltos Las convergencias puntual y uniforme de sucesiones y series de funciones Recordemos la definición de la convergencia uniforme: f n (z) f (z) en un conjunto

Más detalles

Desarrollos en Serie.Series Funcionales Teorema de Rolle Enunciado

Desarrollos en Serie.Series Funcionales Teorema de Rolle Enunciado Desarrollos en Serie.Series Funcionales Teorema de Rolle Enunciado Sea y=f(x) Contínua en [a,b] Derivable en (a,b) Cumpliendo f(a) = f(b) Se cumple que: Demostración Por el teorema de Weirstrasse, f(x)

Más detalles

Series y sucesiones de números complejos

Series y sucesiones de números complejos 1 Universidad Simón Bolívar. Preparaduría nº 8. christianlaya@hotmail.com ; @ChristianLaya. Series y sucesiones de números complejos Definición: una sucesión de números complejos tiene un límite si para

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

+ i,... es una sucesión. Otra forma de denotar la misma sucesión es {z n } n N

+ i,... es una sucesión. Otra forma de denotar la misma sucesión es {z n } n N Capítulo 6 Sucesiones y series en C Todo el trabajo de este capítulo esta destinada a mostrar que tiene sentido sumar infinitas funciones de variable compleja. En gran medida es un copy/paste de la versión

Más detalles

Sucesiones y Series de Funciones

Sucesiones y Series de Funciones Sucesiones y Series de Funciones Consideremos una sucesión {f n }, donde f n : I R R, entonces decimos que {f n } es una sucesión de funciones. Ejemplos: i) {f n }, donde f n : R R está dada por Tenemos

Más detalles

Definición. 1. Se define la función logaritmo (neperiano ) por. ln x =

Definición. 1. Se define la función logaritmo (neperiano ) por. ln x = ANÁLISIS MATEMÁTICO BÁSICO. LAS FUNCIONES LOGARITMO Y EXPONENCIAL. A partir de la integral y el Teorema Fundamental del Cálculo podemos definir y demostrar las propiedades de las funciones logaritmo y

Más detalles

Espacios métricos completos

Espacios métricos completos 5 Espacios métricos completos Comenzamos introduciendo las sucesiones de Cauchy, que relacionamos con las sucesiones convergentes. En el caso de que coincidan, se trata de un espacio métrico completo.

Más detalles

SUCESIONES Y SERIES INFINITAS

SUCESIONES Y SERIES INFINITAS SUCESIONES Y SERIES INFINITAS Sergio Stive Solano Agosto de 202 SUCESIONES Y SERIES INFINITAS Sergio Stive Solano Agosto de 202 Si intentamos sumar los términos de una sucesión infinita {a n } obtenemos

Más detalles

Series numéricas (I) 1 Convergencia y divergencia. 2 Series importantes. 3 Propiedades generales. 4 Series de términos positivos

Series numéricas (I) 1 Convergencia y divergencia. 2 Series importantes. 3 Propiedades generales. 4 Series de términos positivos Convergencia y divergencia Series numéricas (I Definición Sea { } una sucesión de reales y sea la sucesión asociada {S n } de sumas parciales, S n = a + a 2 + a 3 + +. LLamaremos serie a la pareja formada

Más detalles

1. Convergencia en medida

1. Convergencia en medida FACULTAD CS. FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA3801 Teoría de la Medida. Semestre 2009-02 Profesor: Jaime San Martín Auxiliares: Andrés Fielbaum y Cristóbal Guzmán Clase auxiliar 7 21 de Septiembre

Más detalles

Teoremas de convergencia y derivación bajo el signo integral

Teoremas de convergencia y derivación bajo el signo integral Capítulo 8 Teoremas de convergencia y derivación bajo el signo integral En este capítulo estudiaremos sucintamente bajo qué circunstancias puede intercambiarse el orden de la integral con las operaciones

Más detalles

Sucesiones. Convergencia

Sucesiones. Convergencia Sucesiones. Convergencia Sucesión: Es una aplicación de IN en IR: f : IN IR n = f (n) En vez de f (n) se escribe a n, que se denomina término general de la sucesión. A la sucesión se le representa por:

Más detalles

Series de números complejos

Series de números complejos Análisis III B - Turno mañana - Series 1 Series de números complejos 1 Definiciones y propiedades Consideremos una sucesión cualquiera de números complejos (z n ) n1. Para cada n N, sabemos lo que quiere

Más detalles

Enumerar suficientes términos de la sucesión como para que quede claro como seguir. a n 0 : 1; 2; 4; 8; 16;

Enumerar suficientes términos de la sucesión como para que quede claro como seguir. a n 0 : 1; 2; 4; 8; 16; Clase 3 Series de potencias 3.. Introducción Al hojear casi cualquier libro de matemática universitaria, habitualmente nos encontramos con el símbolo de sumatoria. Lo mismo sucede con muchos libros específicos

Más detalles

1. El Teorema de Rolle Generalizado.

1. El Teorema de Rolle Generalizado. Proyecto III: Los Teoremas de Rolle y del valor Medio Objetivos: Profundizar el estudio de algunos teoremas del cálculo diferencial 1 El Teorema de Rolle Generalizado La formulación más común del Teorema

Más detalles

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones:

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones: FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 7 1. Usando sólo la definición de derivada,

Más detalles

1. La topología inducida.

1. La topología inducida. PRACTICO 4. ESPACIOS METRICOS. 1. La topología inducida. Sea (M, d) un espacio métrico. La bola abierta de centro x y radio r es el conjunto B(x; r) = {y M : d(x, y) < r}. La bola cerrada de centro x y

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile 5. Principio de inducción Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Introducción al Álgebra 08-1 5.1. Principio de inducción: Primera forma Importante: Visita

Más detalles

Cálculo Integral Criterios de convergencia. Universidad Nacional de Colombia

Cálculo Integral Criterios de convergencia. Universidad Nacional de Colombia Cálculo Integral Criterios de convergencia Jeanneth Galeano Peñaloza - Claudio Rodríguez Beltrán Universidad Nacional de Colombia Segundo semestre de 205 Criterios de convergencia Cuando estudiamos las

Más detalles

SERIES DE POTENCIAS. Curso

SERIES DE POTENCIAS. Curso Ampliación de Matemáticas (Ingeniería de Telecomunicación) Curso 200/ Curso 2 o. Ingeniero de Telecomunicación. Ampliación de Matemáticas. Lección 9. SERIES DE POTENCIAS. Curso 200- Las series de potencias

Más detalles

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará

Más detalles

Tema 5. Series de Potencias

Tema 5. Series de Potencias Tema 5. Series de Potencias Prof. William La Cruz Bastidas 21 de noviembre de 2002 Tema 5 Series de Potencias Definición 5.1 La sucesión de números complejos {z n } tiene un límite o converge a un número

Más detalles

Fórmula integral de Cauchy

Fórmula integral de Cauchy Fórmula integral de Cauchy Comentario: de acuerdo con esta fórmula, uno puede conocer el valor de f dentro del entorno, conociendo únicamente los valores que toma f en el contorno C! Fórmula integral de

Más detalles

Apuntes sobre la integral de Lebesgue

Apuntes sobre la integral de Lebesgue Apuntes sobre la integral de Lebesgue Miguel Lacruz Martín Universidad de Sevilla 1. Medida de Lebesgue 1.1. Introducción La longitud l(i) de un intervalo I R se define habitualmente como la distancia

Más detalles

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Estos apuntes están redactados por Maria de los Angeles Isidro Pérez y Egor Maximenko.

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre INDUCCION MATEMATICA

ALGEBRA y ALGEBRA LINEAL. Primer Semestre INDUCCION MATEMATICA ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre INDUCCION MATEMATICA DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 Principio de la buena ordenación

Más detalles

1.3. El teorema de los valores intermedios

1.3. El teorema de los valores intermedios Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 07-2 Importante: Visita regularmente http://www.dim.uchile.cl/calculo. Ahí encontrarás

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase : Series de números reales Definición de Serie Elaborado por los profesores Edgar Cabello y Marcos González Definicion Dada una sucesión de escalares (a n ), definimos su sucesión de sumas parciales

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-2 SEMANA 7: ESPACIOS VECTORIALES 3.5. Generadores de un espacio vectorial Sea V un espacio vectorial

Más detalles

Principio de acotación uniforme

Principio de acotación uniforme Capítulo 4 Principio de acotación uniforme 4.1. Introducción. Teorema de Baire En este último capítulo vamos a establecer una serie de resultados sobre aplicaciones lineales y continuas entre espacios

Más detalles

Práctico Preparación del Examen

Práctico Preparación del Examen Cálculo Diferencial e Integral (Áreas Tecnológicas) Segundo Semestre 4 Universidad de la República Práctico Preparación del Examen Límites, funciones y continuidad Ejercicio Sea log(+x ) f(x) =, si x

Más detalles

Integrales impropias múltiples

Integrales impropias múltiples Integrales impropias múltiples ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Introducción 1 2. Caracterización de la integrabilidad impropia 2 3.

Más detalles

Método de Newton. Cálculo numérico. Notas de clase. 25 de abril, 2011

Método de Newton. Cálculo numérico. Notas de clase. 25 de abril, 2011 Método de Newton Cálculo numérico. Notas de clase. 25 de abril, 2011 La resolución de sistemas de ecuaciones algebraicas no lineales de la forma F(x) = 0, F : R n R n, (1) en donde F es una función continua

Más detalles

Fórmula integral de Cauchy

Fórmula integral de Cauchy Fórmula integral de Cauchy Comentario: de acuerdo con esta fórmula, uno puede conocer el valor de f dentro del entorno, conociendo únicamente los valores que toma f en el contorno C! Fórmula integral de

Más detalles

Sucesiones acotadas. Propiedades de las sucesiones convergentes

Sucesiones acotadas. Propiedades de las sucesiones convergentes Sucesiones acotadas. Propiedades de las sucesiones convergentes En un artículo anterior se ha definido el concepto de sucesión y de sucesión convergente. A continuación demostraremos algunas propiedades

Más detalles

Variable Compleja I ( ) Ejercicios resueltos. Convergencia de series. Series de potencias

Variable Compleja I ( ) Ejercicios resueltos. Convergencia de series. Series de potencias Variable Compleja I (04-5) Ejercicios resueltos Convergencia de series. Series de potencias Ejercicio Calcule el radio de convergencia de la serie de potencias ( ) n z n3. Solución. Observemos primero

Más detalles

6. Teoría de Cauchy local.

6. Teoría de Cauchy local. Funciones de variable compleja. Eleonora Catsigeras. 24 Abril 2006. 59 6. Teoría de Cauchy local. Dado un abierto Ω C, se denota con R Ω a un rectángulo contenido en Ω. R indica el conjunto de puntos que

Más detalles

Métodos Multipaso lineales

Métodos Multipaso lineales Elementos de Cálculo Numérico - Cálculo Numérico Segundo Cuatrimestre de 2008 (FCEN - UBA) Métodos Multipaso lineales Consideramos el problema de valores iniciales (PVI) y = f(x, y) a x b y(a) = α Dado

Más detalles

Funciones en R n Conceptos métricos y topológicos Límites y continuidad en R 2. Funciones en R n : nociones topológicas

Funciones en R n Conceptos métricos y topológicos Límites y continuidad en R 2. Funciones en R n : nociones topológicas Funciones en R n : nociones topológicas 1 Funciones en R n 2 Conceptos métricos y topológicos 3 Límites y continuidad en R 2 Definición Definición Llamaremos función escalar real de n variables reales,

Más detalles

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación).

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación). Espacios Topológicos 1 Punto de Acumulación Definición: Sea A un subconjunto arbitrario de R n, se dice que x R n es un punto de acumulación de A si toda bola abierta con centro x contiene un punto A distinto

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

Series de Fourier Trigonométricas

Series de Fourier Trigonométricas Capítulo 4 Series de Fourier Trigonométricas En el capítulo anterior hemos visto que toda función f L ([, ];R) se puede desarrollar en serie trigonométrica de senos y cosenos del tipo a + X (a n cos nx

Más detalles

Cálculo diferencial e integral I. Eleonora Catsigeras

Cálculo diferencial e integral I. Eleonora Catsigeras Cálculo diferencial e integral I Eleonora Catsigeras Universidad de la República Montevideo, Uruguay 01 de setiembre de 2011. CLASE 14 complementaria. Sobre sucesiones y conjuntos en la recta real. Sucesiones

Más detalles

Tema 2 Resolución de EcuacionesNo Lineales

Tema 2 Resolución de EcuacionesNo Lineales Tema 2 Resolución de Ecuaciones No Lineales E.T.S.I. Informática Indice Introducción 1 Introducción 2 Algoritmo del método de Bisección Análisis del 3 4 5 6 Algoritmo de los métodos iterativos Interpretación

Más detalles

15. Teoría de los residuos.

15. Teoría de los residuos. 162 Funciones de variable compleja. Eleonora Catsigeras. 12 Julio 2006. 15. Teoría de los residuos. 15.1. Residuos. Definición 15.1.1. Residuo de una función en una singularidad aislada. Dada una función

Más detalles

14. Funciones meromorfas y teoremas de aproximación.

14. Funciones meromorfas y teoremas de aproximación. Funciones de variable compleja. Eleonora Catsigeras. 15 Mayo 2006. 145 14. Funciones meromorfas y teoremas de aproximación. 14.1. Funciones meromorfas. Definición 14.1.1. Funciones meromorfas. Una función

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 4

Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,

Más detalles

Desarrollos en serie de potencias - Residuos

Desarrollos en serie de potencias - Residuos apítulo 7 Desarrollos en serie de potencias - Residuos Existen dos tipos particularmente sencillos de funciones analíticas: los polinomios p (z) a 0 + a z + + a n z n, y las funciones racionales r (z)

Más detalles

16. Ejercicios resueltos sobre cálculo de residuos.

16. Ejercicios resueltos sobre cálculo de residuos. 7 Funciones de variable compleja. Eleonora Catsigeras. 3 Junio 26. 6. Ejercicios resueltos sobre cálculo de residuos. En esta sección se dan ejemplos de cálculo de integrales de funciones reales, propias

Más detalles

Integral de Lebesgue

Integral de Lebesgue Integral de Lebesgue Problemas para examen n todos los problemas se supone que (, F, µ) es un espacio de medida. Integración de funciones simples positivas. La representación canónica de una función simple

Más detalles

Ejercicios de Análisis Funcional

Ejercicios de Análisis Funcional Ejercicios de Análisis Funcional Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada ANÁLISIS FUNCIONAL Relación de Ejercicios N o 1 1. Dar un ejemplo de una distancia en un espacio

Más detalles

Integrales paramétricas

Integrales paramétricas 5 Integrales paramétricas Página 1 de 29 1. uchas de las funciones que se manejan en Análisis atemático no se conocen mediante expresiones elementales, sino que vienen dadas a través de series o integrales.

Más detalles

Resumen de Análisis Matemático IV

Resumen de Análisis Matemático IV Resumen de Análisis Matemático IV 1. Funciones inversas e implícitas y extremos condicionados 1.1. Teorema de la función inversa Teorema de la función inversa: Sea A abierto de R n, f : A R n tal que f

Más detalles

1. Serie de potencias.

1. Serie de potencias. Cálculo 2-25 Series de potencias. Serie de potencias. Definición Si ta n u es una sucesión de números C tiene sentido la definición de límite dada en el capítulo anterior, o sea: lím a n L ô @ε ą, Dn P

Más detalles

Nociones de Topología

Nociones de Topología Nociones de Topología I) Espacios Me tricos Sea X un conjunto no vacío Sea la función d: X X R (p, q) d(p, q) (E1) p, q, r X i) p q, d(p, q) > 0 p = q, d(p, q) = 0 ii) Conmutatividad d(p, q) = d(q, p)

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.7: Aproximación de funciones. Desarrollo de Taylor. Aproximación lineal. La aproximación lineal de una función y = f(x) en un punto x = a es la

Más detalles

Las funciones sen 1 x, cos 1 x y otros ejemplos relacionados c

Las funciones sen 1 x, cos 1 x y otros ejemplos relacionados c Las funciones sen 1 x, cos 1 x y otros ejemplos relacionados c Juan Carlos Ponce Campuzano j.ponce@uq.edu.au UQ 13 de abril de 2015 1 Contenido 1. Introducción 5 2. Análisis 7 3. Ejemplos 11 3.1. Ejemplos

Más detalles

La siguiente definición es muy intuitiva. Se dice que una sucesión {x n } es:

La siguiente definición es muy intuitiva. Se dice que una sucesión {x n } es: Tema 6 Sucesiones monótonas Vamos a discutir ahora una importante propiedad de ciertas sucesiones de números reales: la monotonía. Como primer resultado básico, probaremos que toda sucesión monótona y

Más detalles

Problemas tipo examen

Problemas tipo examen Problemas tipo examen La división en temas no es exhaustiva. Las referencias (H n- m) indican el problema m de la hoja n y las referencias (A- cd), con A en números romanos indican un examen del mes A

Más detalles

1. Funciones de varias variables

1. Funciones de varias variables Coordinación de Matemáticas III (MAT 023) 1 er Semestre de 2013 1. Funciones de varias variables 1.1. Definiciones básicas Definición 1.1. Consideremos una función f : U R n R m. Diremos que: 1. f es una

Más detalles

3. Ecuaciones Diferenciales Lineales Homogéneas de Orden Superior con Coeficientes Constantes. Ecuaciones Diferenciales de Segundo Orden

3. Ecuaciones Diferenciales Lineales Homogéneas de Orden Superior con Coeficientes Constantes. Ecuaciones Diferenciales de Segundo Orden 3. Lineales Homogéneas de de Segundo Orden Sabemos que la solución general de una ecuación diferencial lineal homogénea de segundo orden está dada por por lo que se tiene dos soluciones no triviales, en

Más detalles

Ceros de las funciones holomorfas

Ceros de las funciones holomorfas Tema 9 Ceros de las funciones holomorfas A partir de ahora vamos a ir obteniendo una serie de aplicaciones importantes de la teoría local desarrollada anteriormente. El desarrollo en serie de Taylor deja

Más detalles

Sucesiones monótonas Monotonía. Tema 6

Sucesiones monótonas Monotonía. Tema 6 Tema 6 Sucesiones monótonas Vamos a discutir ahora una importante propiedad de ciertas sucesiones de números reales: la monotonía. Como primer resultado básico, probaremos que toda sucesión monótona y

Más detalles

ax + b (x 1)(x 4). c) (2.0 pto.) Sabiendo que f(0) = 2, escriba el desarrollo de Taylor de orden 3 para f en torno a x 0 = 0.

ax + b (x 1)(x 4). c) (2.0 pto.) Sabiendo que f(0) = 2, escriba el desarrollo de Taylor de orden 3 para f en torno a x 0 = 0. Pauta Control 1 MA1002 Cálculo Diferencial e Integral Fecha: 21 de Abril de 2017 Problema 1. Considere la función f : R \ {1, 4} R, tal que su derivada es f (x) = ax + b (x 1)(x 4). a) (1.0 ptos.) Sabiendo

Más detalles

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Existencia y Unicidad de soluciones

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Existencia y Unicidad de soluciones Lección 4 Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Existencia y Unicidad de soluciones 4.1. Introducción Cuando aplicamos técnicas cualitativas para estudiar los problemas

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3 Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, - y -4 (tercera parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro, Kazaros

Más detalles

Semana 14 [1/19] Polinomios. 8 de junio de Polinomios

Semana 14 [1/19] Polinomios. 8 de junio de Polinomios Semana 14 [1/19] 8 de junio de 2007 División Semana 14 [2/19] Teorema de la División Al ser (K[x], +, ) un anillo, ocurre un fenómeno similar al de : Las divisiones deben considerar un posible resto. Teorema

Más detalles

Elementos Básicos de Análisis Funcional en. Dr. Oldemar Rodríguez Rojas

Elementos Básicos de Análisis Funcional en. Dr. Oldemar Rodríguez Rojas Elementos Básicos de Análisis Funcional en Análisis Numérico Dr. Oldemar Rodríguez Rojas Agosto 2008 Contents 1 Elementos Básicos de Análisis Funcional 2 1.1 Espacios normados...........................

Más detalles

7. Teoría de Cauchy global.

7. Teoría de Cauchy global. 68 Funciones de variable compleja. Eleonora Catsigeras. 25 Abril 26. 7. Teoría de Cauchy global. 7.. Teorema de Cauchy global. Sea un abierto no vacío Ω C. Teorema 7... Teorema de Cauchy global. Sea f

Más detalles

F-ESPACIOS. 1.- Introducción

F-ESPACIOS. 1.- Introducción F-ESPACIOS 1.- Introducción Recordemos que un subconjunto A de un espacio topológico X se llama diseminado o raro (nowhere dense en ingés) si A=. Un subconjunto que se pueda escribir como unión numerable

Más detalles

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación Soluciones de los ejercicios del examen de del 29 de junio de 27 Primero de Ingeniería de Telecomunicación Ejercicio a Justifica que la ecuación x 2 = x sen x+ cos x tiene exactamente dos soluciones reales.

Más detalles

La función, definida para toda, es periódica si existe un número positivo tal que

La función, definida para toda, es periódica si existe un número positivo tal que Métodos con series de Fourier Definición: Función periódica La función, definida para toda, es periódica si existe un número positivo tal que para toda. El número en un periodo de la función. Si existe

Más detalles

Transformada de Laplace

Transformada de Laplace Matemática 4 Segundo Cuatrimestre 2 Transformada de Laplace M. del C. Calvo Dada f G(R ), definimos la transformada de Laplace de f como L(f)(s) = e st f(t) dt para los s R para los cuales converge esta

Más detalles

Relaciones de recurrencia

Relaciones de recurrencia MATEMÁTICA DISCRETA I F. Informática. UPM MATEMÁTICA DISCRETA I () Relaciones de recurrencia F. Informática. UPM 1 / 7 Relaciones de recurrencia Relaciones de recurrencia Definición Una relación de recurrencia

Más detalles

CRITERIOS DE CONVERGENCIA

CRITERIOS DE CONVERGENCIA CRITERIOS DE CONVERGENCIA 1.- CRITERIO DE COMPARACIÓN ( MEDIANTE ACOTACIÓN ) Sea una Serie de Términos positivos, y una Serie ( Auxiliar ) de términos positivos. P Si œ n 0 ù y CONVERGE CONVERGE P Si œ

Más detalles

Sobre dependencia lineal y wronskianos

Sobre dependencia lineal y wronskianos Miscelánea Matemática 42 (2006) 51 62 SMM Sobre dependencia lineal y wronskianos Antonio Rivera-Figueroa Departamento de Matemática Educativa Centro de Investigación y de Estudios Avanzados IPN arivera@cinvestav.mx

Más detalles

Sucesiones y series numéricas

Sucesiones y series numéricas Sucesión Se llama sucesión a una función f : N R que a cada natural n asocia un número real a n. Se denota por {a n } o (a n), o {a 1,a 2,...,a n,...}. Ejemplos 1, 4 3, 9 7, 16 15,..., n 2 2 n 1,... {0.3,0.33,0.333,...}

Más detalles

Convergencia Sucesiones convergentes

Convergencia Sucesiones convergentes Lección 6 Convergencia Vamos a estudiar la noción de convergencia de sucesiones en un espacio métrico arbitrario, generalizando la que conocemos en R. La definimos de forma que quede claro que se trata

Más detalles