Transformada de Laplace

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Transformada de Laplace"

Transcripción

1 Transformada de Laplace Definición: La Transformada de Laplace Dada una función f (t) definida para toda t 0, la transformada de Laplace de f es la función F definida como sigue: { f } 0 st F () s = L f () t = e f () tdt (1) para todos los valores de s para los que la integral impropia converja. Ejemplo 1 Si f ( t) = 1 para t 0, la definición de la transformada de Laplace (1) implica 1 L { 1} = para s 0. s Ejemplo 2 Si at ( t) e para t 0 f =, obtenemos at 1 L { e } = para s > a. s a

2 Ejemplo 3 Si f ( t) = t para t 0, obtenemos 1 L { t } = para s > a. 2 s Ejemplo 4 Si f ( t) = sin at para t 0, obtenemos a L { sin at} = para s > s + a Ejemplo 5 Si f ( t ) = cos at para t 0, obtenemos s L { cos at} = para s > s + a

3 Teorema1. Linealidad de la transformada de Laplace Si a y b son constantes, entonces { af () t + bgt () } = a { f () t } + b { gt () } L L L Ejemplo 6 n /2 1 El cálculo de L { t } se basa en el conocido valor de Γ = π 2 fórmula gamma. Por ejemplo, tenemos que de la Γ = Γ = Γ = π, mediante la fórmula Γ ( x + 1) = x Γ ( x ). Aplicando la linealidad y los ejemplos precedentes, obtenemos 5 2 3/2 2! 4 Γ( 2) 6 π L { 3t + 4t } = 3 + = /2 3 5 s s s s

4 Ejemplo L sin kt. 1 =, k > 0, 2 kt kt kt kt Considerando que cosh kt = ( e + e ) y que sinh kt ( e e ) determine { cos kt} Ejemplo 8 L y { } Determine la transformada de Laplace de la función = +, t 0. 2t 2 f () t 5e 4sin 3t Funciones continuas por partes La función f() t es continua por partes en el intervalo acotado a t b si [ ab, ] se puede subdividir en una cantidad finita de subintervalos adyacentes de modo que: 1. f sea continua en el interior de cada uno de estos subintervalos; y 2. f() t tenga un límite finito cuando t tienda a cada extremo de cada subintervalo desde el interior de éste.

5 Decimos que f es continua por partes para t 0 si es continua por partes en cada subintervalo acotado de [ ) 0, +. Así, una función continua por partes sólo tiene discontinuidades simples (si las hay) y sólo en esos puntos aislados. En tales puntos, el valor de la función sufre un salto finito, como de indica en la figura. El salto en f () t en el punto c se define como + f ( c ) f ( c ), donde + f ( c ) = lim f ( c + ε ) y ε 0 + f ( c ) = lim f ( c ε ). ε 0 +

6 Ejemplo 9 Determinar { ut ()} L, donde ut () 1, t 0 = 0, t < 0, es la función escalón unitario. Ejemplo 10 Determinar { u t } L () a si a > 0.

7 Ejemplo 11 Determinar { f () t } L si f está definida, mediante el gráfico siguiente. Propiedades generales de las transformadas Def: La función f es de orden exponencial cuando t + si existen constantes no negativas M, c y T tales que f () t ct Me para t T

8 Teorema2. Existencia de transformadas de Laplace Si la función f es continua por partes para t 0 y es de orden exponencial cuando t +, entonces su transformada de Laplace F() s { f() t } = L existe. Más precisamente, si f es continua por partes y de orden exponencial cuando t +, entonces F () s existe para toda s> c. Corolario: F () s para s grande Si f satisface las hipótesis del teorema 2, entonces lim Fs ( ) = 0. s Teorema3. Unicidad de las transformadas de Laplace Suponga que las funciones f() t y gt () satisfacen las hipótesis del teorema 2, de modo que sus transformadas de Laplace F () s y Gs () existan. Si F() s = G() s para toda s> c (para alguna c ), entonces f() t = g() t en todos los puntos de [ 0, + ) donde f y g sean continuas.

9 Ejercicios Aplique la definición (1) para determinar directamente las transformadas de Laplace de las funciones siguientes: 1. f() t 1, 1< t 2 =, 2. 0, etoc. Determine la transformada de Laplace de la función: 3 3/2 10t 1. f () t = sin3cos3 t t, 2. f () t = (1 + t ), 3. f () t = t e. Halle la función () 1. 5/2 f t, si { f t } 1 2 Fs () = s s, 2. 3s + 1 Fs () = s L () = F() s está dada por: 3s 2e, 3. Fs () =. s

10 Sea f() t = 1 si a t b, f() t = 0 si t < a o t > b (donde 0 < a< b). Exprese a f en términos defunciones escalón unitario para mostrar que as bs e e L { f() t } =. s (a) La gráfica de la función f se muestra en la figura siguiente. Muestre que f se puede escribir de la forma (b) Muestre que L { f () t } n f() t = ( 1) u( t n). n= 0 1 L f t =. s s(1 + e )

11 Determine, usando la calculadora classpad 300, la transformada de la función tsin t, luego, verifique su resultado aplicando la transformada inversa. Resuelva el problema, usando Maple. Solución: Usando ClassPad300: Usando Maple (ingrese los comandos siguientes), verifique el resultado anterior. > with(inttrans): > f:=t*sin(t); > plot(f,t=0..5); > F:=laplace(f,t,s); > F:=simplify(expand(F)); > g:=invlaplace(f,s,t); > plot(g,t=0..5); t

12 Transformación de Problemas con Valores Iniciales Teorema1. Transformadas de derivadas Suponga que la función f () t es continua y suave por partes para t 0 y que es de orden exponencial cuando t, de modo que existen constantes no negativas M, c y T tales que f () t. ct Me para t T L f () t = sl f () t f (0). Entonces { } { } Corolario 1. Derivadas de orden superior ( n 1) Suponga que las funciones f, f, f,..., f son continuas y suaves por partes para t 0, y que cada una de estas funciones satisface las condiciones del teorema anterior, con los mismos valores de M y c. ( L f n) () t existe cuando s > c, y Entonces { } { } { } f () t s f() t s f(0) s f (0)... f (0) ( n) n n 1 n 2 ( n 1) L = L.

13 Ejemplo 1 Resuelva el problema con valores iniciales Ejemplo 2 x x 6x= 0; x (0) = 2, x (0) = 1. Resuelva el problema con valores iniciales Ejemplo 3 x + 4x= sin3t; x(0) = x (0) = 0. Resuelva el sistema 2 x = 6 x + 2 y y = 2x 2y+ 40sin3t sujeto a las condiciones iniciales, x(0) = x (0) = y(0) = y (0) = 0.

14 Teorema 2. Transformada de Laplace de tf () t df () s Si L { f () t } = F () s entonces L { tf () t } =. ds Ejemplo 4 at 1 L te =. ( s a) Muestre que { } 2 Ejemplo 5 2ks L tsin kt =. ( s + k ) Muestre que { } Teorema 3. Transformadas de integrales Si f() t es una función continua por partes para t 0 y satisface la condición de orden exponencial f () t ct Me para t T t 1 F( s) L f( z) dz = L{ f(t) } = s s 0 para s> c. En forma equivalente, t 1 Fs () L = f( z) dz. s 0, entonces

15 Ejemplo 6 1 Determine la transformada inversa de Laplace de G () s =. 2 s ( s a) Ejercicios Utilice la transformada de Laplace para resolver los problemas con valores iniciales siguientes: 1. x + x= sin 2t ; x(0) = x (0) = x + 3x + 2x= t ; x (0) = 0, x (0) = x = x+ 2y t y = x + e, x(0) = y(0) = x + x + y + 2x y = 0 ; x(0) = y(0) = 1, x (0) = y (0) = 0. y + x + y + 4x 2y = 0 5. (a) Aplique el teorema 1 para mostrar que { } { } (b) Deduzca que { } 1 n n at n 1 L te = L t e at. s a L n at n! te = n para n IN. ( s a) +

16 6. Muestre que L 1 sin coskt ( s + k ) 2 k. 1 kt = 3 f t = en el intervalo [, ] 7. Si () 1 ab y f() t = 0 en caso contrario, entonces as bs e e L { f() t } =. s 8. Si f () t es la función onda cuadrada cuya gráfica se muestra en la figura, 1 s entonces L { f() t } = tanh. s 2 (Use la serie geométrica.)

17 Traslación y Fracciones Parciales Teorema 1. Traslación en el eje s Si Fs () { ft ()} at y { } = L existe para s c L e f() t = F( s a). at >, entonces { e f () t } L existe para s> a+ c, Ejemplo 1 Resuelva el problema con valores iniciales x + 6x + 34x= 0; x (0) = 3, x (0) = 1. Ejemplo 2 2 s +1 1 Determine la transformada inversa de Laplace de Rs () = 3 2 s 2s 8s Ejemplo 3. Resuelva el problema con valores iniciales y y y t = ; (0) (0) 0 y = y =.

18 Derivadas, Integrales y Productos de Transformadas Definición i ió 1: La convolución de dos funciones La convolución f g de las funciones continuas por partes f y g se define para t 0 como sigue: Ejemplo 1 t ( f g)( t) = f( τ ) g( t τ) dτ. Determine la convolución de f () t = sint y gt () = cost. Teorema 1: La propiedad de convolución 0 Suponga que f() t y gt () son continuas para t 0 y que f() t y gt () están ct acotadas por Me cuando t +. Entonces, la transformada de Laplace de la convolución f() t g() t existe para s> c; además, y { f() t g() t } = { f() t } { g() t } L L L 1 { } L Fs () Gs () = ft () gt ().

19 Ejemplo 2 Determine, usando convolución, la función ht () tal que 1 2 L ht () 2 =. ( s 1)( s + 4) Derivación ió de transformadas Teorema 2: Derivación de transformadas ct Si f () t es continua por partes para t 0 y f () t Me cuandot +, L tf () t = F () s para s > c. En forma equivalente, entonces { } f () t = L { F ( s ) } = L { F () s }. t Al aplicar varias veces el teorema obtenemos para n IN. Ejemplo 3 L t 2 sin kt. Determine { } Ejemplo 4 L 1 1 tan ( ). Determine { s } L ( ) { n } = n n t f () t ( 1) F ( s )

20 Integración de transformadas Teorema 3: Integración de transformadas Si f() t es continua por partes para t 0, que f() t satisface la condición f () t ct lim exista y sea finito, y que f() t Me cuando t +. Entonces + t 0 t Para s f () t L = F( σ ) dσ t s > c. En forma equivalente, -1-1 f () t = L { F() s } = tl F( σ ) dσ. s Ejemplo 5 sinh t Determine L. t Ejemplo 6-1 2s Determine L 2 2. ( s 1)

21 Funciones de entrada continuas y continuas por partes Teorema 1: Traslación sobre el eje t Si L{ f () t } existe para s > c, entonces as L ut ( a) f( t a) = e Fs ( ) y para s > c+ a. -1 L { } as { } e F() s = u( t a) f ( t a) Ejemplo Si f () t = t, el teorema1 implica que 2 L Ejemplo 2 L gt () si Determine { } -1 as e 1 ( ) ( ) 3 = ut a t a = s 2 0 si t < 0 1 ( ) t a si t 0 Ejemplo 3 Determine { f () t } 2 t t < si 3 gt () = 0 si t 3 L si cos 2 t si 0 t < 2π f() t = 0 si t 2 π

22 Impulsos y funciones delta Considere la función 1 si d a, ε a t < a+ ε () t = ε 0 en caso contrario cuyo gráfico se muestra en la figura A partir de esta función definimos la función delta de Dirac + si t = a δa() t = lim da, ε () t = ε 0 0 si t a y la transformada de Laplace Si escribimos entonces { δ ()} as L = ( 0 a t e 0 a ). δ () t = δ () t y δ ( t a) = δ ( t) L { δ () t } = 1 y { δ ( )} as L t a = e. a

23 Ejemplo 1 Resuelva el problema con valores iniciales x + 2x + 2x = 2 δ ( t π ); x(0) = x (0) = 0. Ejemplo 2 Este problema trata de una masa m unida a un resorte (con constante k ), que recibe un impulso p0 = mv0 en el instante t = 0. Muestre que los problemas con valores iniciales y mx + kx = 0; x (0) = 0, x (0) = v0 mx + kx = p0 δ () t ; x (0) = 0, x (0) = 0 tienen la misma solución. Así, el efecto de p0 δ () t consiste en proporcionar a la partícula un momento inicial p 0.

24 Aplicaciones a solución de problemas de Física Ejemplo 1 Considere el circuito RLC de la figura, con R = 100 Ω, L = 1 H, C = F y una batería que proporciona E0 = 90 V. Inicialmente, no hay corriente en el circuito y no hay carga en el condensador. En el instante t = 0, el interruptor se cierra y se mantiene así durante 1 segundo. En el instante t = 1 se abre y se mantiene así de ahí en adelante. Determine la corriente resultante en el circuito. Ejemplo 2 Una masa m = 1 está unida a un resorte con constante k = 4 ; no hay amortiguador. La masa se libera desde el reposo, con x (0) = 3. En el instante t = 2π golpeamos la masa con un martillo, proporcionando un impulso p = 8. Determine el movimiento de la masa.

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Transformada de Laplace) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Verano 2010, Resumen clases Julio López EDO 1/30 Introducción

Más detalles

Algunas Aplicaciones de la Transformada de Laplace

Algunas Aplicaciones de la Transformada de Laplace Algunas Aplicaciones de la Transformada de Laplace Dr. Andrés Pérez Escuela de Matemática Facultad de Ciencias Universidad Central de Venezuela 11 de marzo de 2016 A. Pérez Algunas Aplicaciones de la Contenido

Más detalles

TRANSFORMADA DE LAPLACE. Definición: Transformada de Laplace. Sea f(t) una función definida para t 0; a la expresión

TRANSFORMADA DE LAPLACE. Definición: Transformada de Laplace. Sea f(t) una función definida para t 0; a la expresión TRANSFORMADA DE LAPLACE Definición: Transformada de Laplace. Sea f(t) una función definida para t 0; a la expresión L= = Se le llama Transformada de Laplace de la función f(t), si la integral existe. Notación:

Más detalles

Transformadas de Laplace

Transformadas de Laplace Semana 7 - Clase 9 9// Tema 3: E D O de orden > Algunas definiciones previas Transformadas de Laplace En general vamos a definir una transformación integral, F (s), de una función, f(t) como F (s) = b

Más detalles

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) =

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) = Transformada de Laplace - Conceptos Básicos Definición: Sea f (t) una función de t definida para t > 0. La Transformada de Laplace de f(t) se define como: L { f (t) } = F(s) = 0 e -st f(t)dt Algunas Propiedades

Más detalles

La función, definida para toda, es periódica si existe un número positivo tal que

La función, definida para toda, es periódica si existe un número positivo tal que Métodos con series de Fourier Definición: Función periódica La función, definida para toda, es periódica si existe un número positivo tal que para toda. El número en un periodo de la función. Si existe

Más detalles

Transformada de Laplace: Aplicación a vibraciones mecánicas

Transformada de Laplace: Aplicación a vibraciones mecánicas Transformada de Laplace: Aplicación a vibraciones mecánicas Santiago Gómez Jorge Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina thegrimreaper7@gmail.com

Más detalles

Contenidos. Importancia del tema. Conocimientos previos para este tema?

Contenidos. Importancia del tema. Conocimientos previos para este tema? Transformación conforme Contenidos Unidad I: Funciones de variable compleja. Operaciones. Analiticidad, integrales, singularidades, residuos. Funciones de variable real a valores complejos. Funciones de

Más detalles

Transformada de Laplace (material de apoyo)

Transformada de Laplace (material de apoyo) Transformada de Laplace (material de apoyo) André Luiz Fonseca de Oliveira Michel Hakas Resumen En este artículo se revisará los conceptos básicos para la utilización de la transformada de Laplace en la

Más detalles

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE Por cálculo integral sabemos que cuando vamos a determinar una integral impropia de la forma,su desarrollo se obtiene realizando un cambio de variable en el límite superior de

Más detalles

e st dt = e st TRANSFORMADA DE LAPLACE: DEFINICIÓN, PROPIEDADES Y EJEMPLOS 1. Definición de Transformada de Laplace

e st dt = e st TRANSFORMADA DE LAPLACE: DEFINICIÓN, PROPIEDADES Y EJEMPLOS 1. Definición de Transformada de Laplace TRANSFORMADA DE LAPLACE: DEFINICIÓN, PROPIEDADES Y EJEMPLOS. Definición de Transformada de Laplace Sea E el espacio vectorial de las funciones continuas a trozos y de orden exponencial (esto es, dada una

Más detalles

2.- Tabla de transformadas de Laplace (funciones más usuales) 3.- Propiedades de la transformada de Laplace.

2.- Tabla de transformadas de Laplace (funciones más usuales) 3.- Propiedades de la transformada de Laplace. TEMA 4: INTRODUCCIÓN A LA TRANSFORMADA DE LAPLACE 1.- La transformada de Laplace de una función. Definición. 2.- Tabla de transformadas de Laplace (funciones más usuales) 3.- Propiedades de la transformada

Más detalles

Transformada de Laplace

Transformada de Laplace Matemática 4 Segundo Cuatrimestre 2 Transformada de Laplace M. del C. Calvo Dada f G(R ), definimos la transformada de Laplace de f como L(f)(s) = e st f(t) dt para los s R para los cuales converge esta

Más detalles

5 Estabilidad de soluciones de equilibrio

5 Estabilidad de soluciones de equilibrio Prácticas de Ecuaciones Diferenciales G. Aguilar, N. Boal, C. Clavero, F. Gaspar Estabilidad de soluciones de equilibrio Objetivos: Clasificar y analizar los puntos de equilibrio que aparecen en los sistemas

Más detalles

Práctico 9 (resultados) Reportar al foro cualquier error que crea que exista en éstos resultados.

Práctico 9 (resultados) Reportar al foro cualquier error que crea que exista en éstos resultados. Práctico 9 (resultados) Reportar al foro cualquier error que crea que exista en éstos resultados. Ejercicio 1 Ver ejemplo 7.1 del capítulo 7 de las notas del curso (página 158). El resultado final de dicha

Más detalles

Espacios conexos. Capítulo Conexidad

Espacios conexos. Capítulo Conexidad Capítulo 5 Espacios conexos 1. Conexidad En este capítulo exploraremos el concepto de conexidad en un espacio métrico, y estudiaremos algunas de sus aplicaciones. Definición 5.1. Decimos que el espacio

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

MAT08-13-CALCULA - La calculadora ClassPad 300 como recurso didáctico en la enseñanza de las matemáticas

MAT08-13-CALCULA - La calculadora ClassPad 300 como recurso didáctico en la enseñanza de las matemáticas ENUNCIADO Para completar el curso te proponemos la siguiente actividad: Selecciona cualquier contenido o contenidos del área de Matemáticas (o de otra especialidad si esta no es tu área de trabajo) de

Más detalles

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas 1. Sea u : C R una función armónica positiva. Pruebe que u es constante. Solución:

Más detalles

Introducción a la Teoría Analítica de Números

Introducción a la Teoría Analítica de Números Introducción a la Teoría Analítica de Números Pablo De Nápoli clase 3. Ejemplos de funciones generatrices El teorema que vimos la clase anterior sobre el producto de series de Dirichlet permite determinar

Más detalles

Determinación de la trasformada inversa mediante el uso de las fracciones parciales

Determinación de la trasformada inversa mediante el uso de las fracciones parciales 3.6. Determinación de la trasformada inversa mediante el uso de las fracciones parciales 95 3.6. Determinación de la trasformada inversa mediante el uso de las fracciones parciales Transformadas de Ecuaciones

Más detalles

UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4

UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4 UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4 APLICACIONES DE LAS MATEMATICAS A LOS CIRCUITOS ELECTRICOS (RC, RL, RLC) Profesor: Cristian Castillo

Más detalles

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 00-00) HOJA Ejercicio. Determina en qué recintos es holomorfa la siguiente función: f(x + iy) x + ay + i(bx + cy) En este caso consideramos: u(x, y) x + ay

Más detalles

Tema 2 Resolución de EcuacionesNo Lineales

Tema 2 Resolución de EcuacionesNo Lineales Tema 2 Resolución de Ecuaciones No Lineales E.T.S.I. Informática Indice Introducción 1 Introducción 2 Algoritmo del método de Bisección Análisis del 3 4 5 6 Algoritmo de los métodos iterativos Interpretación

Más detalles

Definición de la integral de Riemann (Esto forma parte del Tema 1)

Definición de la integral de Riemann (Esto forma parte del Tema 1) de de de Riemann (Esto forma parte del Tema 1) Departmento de Análise Matemática Facultade de Matemáticas Universidade de Santiago de Compostela Santiago, 2011 Esquema de Objetivos del tema: Esquema de

Más detalles

Cálculo Integral Enero 2015

Cálculo Integral Enero 2015 Cálculo Integral Enero 015 Laboratorio # 1 Antiderivadas I.- Halle las siguientes integrales indefinidas. 10) ) 6) 1 1 1 1 16) 1 8) 9) 18) II.- Calcule 1.. 1 Cálculo Integral Enero 015 Laboratorio # Aplicaciones

Más detalles

Transformada de Laplace

Transformada de Laplace Capíulo 7 Tranformada de Laplace En ea ección inroduciremo y eudiaremo la ranformada de Laplace, dearrollaremo alguna de u propiedade ma báica y úile. Depué veremo alguna aplicacione. 7. Definicione y

Más detalles

Tema II: Análisis de circuitos mediante la transformada de Laplace

Tema II: Análisis de circuitos mediante la transformada de Laplace Tema II: Análisis de circuitos mediante la transformada de Laplace La transformada de Laplace... 29 Concepto e interés práctico... 29 Definición... 30 Observaciones... 30 Transformadas de Laplace funcionales...

Más detalles

TRANSFORMADA DE LAPLACE

TRANSFORMADA DE LAPLACE TRANSFORMADA DE LAPLACE DEFINICION La transformada de Laplace es una ecuación integral que involucra para el caso específico del desarrollo de circuitos, las señales en el dominio del tiempo y de la frecuencia,

Más detalles

Límites y continuidad de funciones reales de variable real

Límites y continuidad de funciones reales de variable real Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones

Más detalles

Problemario de la asignatura de Ecuaciones Diferenciales

Problemario de la asignatura de Ecuaciones Diferenciales Problemario de la asignatura de Ecuaciones Diferenciales Alejandro Hernández Madrigal Maxvell Jiménez Escamilla Academia de Matemáticas y Física Unidad Profesional Interdisciplinaria de Biotecnología,

Más detalles

4.3 Problemas de aplicación 349

4.3 Problemas de aplicación 349 4. Problemas de aplicación 49 4. Problemas de aplicación Ejemplo 4.. Circuito Eléctrico. En la figura 4.., se muestra un circuito Eléctrico de mallas en el cual se manejan corrientes, una en cada malla.

Más detalles

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz ECUACIÓN DE OSCILACIONES Tomado del texto de Ecuaciones Diferenciales de los Profesores Norman Mercado Luis Ignacio Ordoñéz Muchos de los sistemas de ingeniería están regidos por una ecuación diferencial

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

T0. TRANSFORMADAS DE LAPLACE

T0. TRANSFORMADAS DE LAPLACE ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA MATEMATICAS T0. TRANSFORMADAS DE LAPLACE Mediante transformadas de Laplace (por Pierre-Simon

Más detalles

DERIVABILIDAD. 1+x 2. para x [1, 3]

DERIVABILIDAD. 1+x 2. para x [1, 3] 1 DERIVABILIDAD 1. Definir derivada y derivadas laterales de una función en un punto. Probar que la función f es derivable en =1 y que la derivada lateral por la derecha en =0 es infinito. para [0, 1)

Más detalles

Definición. 1. Se define la función logaritmo (neperiano ) por. ln x =

Definición. 1. Se define la función logaritmo (neperiano ) por. ln x = ANÁLISIS MATEMÁTICO BÁSICO. LAS FUNCIONES LOGARITMO Y EXPONENCIAL. A partir de la integral y el Teorema Fundamental del Cálculo podemos definir y demostrar las propiedades de las funciones logaritmo y

Más detalles

Respuesta transitoria

Respuesta transitoria Capítulo 4 Respuesta transitoria Una ves que los diagramas a bloques son desarrollados, el siguiente paso es llevar a cabo el análisis de los sistemas. Existen dos tipos de análisis: cuantitativo y cualitativo.

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA EN SISTEMAS CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. SISTEMAS LINEALES DISCRETOS Y CONTINUOS 1.1. Modelos matemáticos 1.2. Sistemas 1.3. Entrada

Más detalles

Derivada. 1. Pendiente de la recta tangente a una curva

Derivada. 1. Pendiente de la recta tangente a una curva Nivelación de Matemática MTHA UNLP Derivada Pendiente de la recta tangente a una curva Definiciones básicas Dada una curva que es la gráfica de una función y = f() y sea P un punto sobre la curva La pendiente

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

Elementos de Cálculo en Varias Variables

Elementos de Cálculo en Varias Variables Elementos de Cálculo en Varias Variables Departamento de Matemáticas, CSI/ITESM 5 de octubre de 009 Índice Introducción Derivada parcial El Jacobiano de una Función 5 Derivadas Superiores 5 5 Derivada

Más detalles

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua. Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua. 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Contenidos 1 Introducción 2 3 4 5

Más detalles

Generación de variables aleatorias continuas Método de rechazo

Generación de variables aleatorias continuas Método de rechazo Generación de variables aleatorias continuas Método de rechazo Georgina Flesia FaMAF 18 de abril, 2013 Método de Aceptación y Rechazo Repaso Se desea simular una v. a. X discreta, con probabilidad de masa

Más detalles

Señales y sistemas Otoño 2003 Clase 22

Señales y sistemas Otoño 2003 Clase 22 Señales y sistemas Otoño 2003 Clase 22 2 de diciembre de 2003 1. Propiedades de la ROC de la transformada z. 2. Transformada inversa z. 3. Ejemplos. 4. Propiedades de la transformada z. 5. Funciones de

Más detalles

FUNCIONES DE UNA VARIABLE

FUNCIONES DE UNA VARIABLE FUNCIONES DE UNA VARIABLE 1- Definiciones 2- Algunas funciones reales 3- Ecuaciones de curvas planas en coordenadas cartesianas 4- Coordenadas polares 5- Coordenadas paramétricas 6- Funciones hiperbólicas

Más detalles

Práctica 4 Límites, continuidad y derivación

Práctica 4 Límites, continuidad y derivación Práctica 4 Límites, continuidad y derivación En esta práctica utilizaremos el programa Mathematica para estudiar límites, continuidad y derivabilidad de funciones reales de variable real, así como algunas

Más detalles

Unidad 3. Ecuaciones lineales, ecuaciones cuadráticas, desigualdades y fracciones parciales.

Unidad 3. Ecuaciones lineales, ecuaciones cuadráticas, desigualdades y fracciones parciales. Part I Unidad. Ecuaciones lineales, ecuaciones cuadráticas, desigualdades y fracciones parciales. Ecuaciones lineales en una variable Una ecuación lineal en una variable puede de nirse como ax + b = 0

Más detalles

Funciones Inversas. Derivada de funciones inversas

Funciones Inversas. Derivada de funciones inversas Capítulo 15 Funciones Inversas En este capítulo estudiaremos condiciones para la derivación de la inversa de una función de varias variables y, en particular, extenderemos a estas funciones la fórmula

Más detalles

13,20 13,25 13,30 13,35 13,40 13,45 13,50 13,55 14,00 14,05 14,10

13,20 13,25 13,30 13,35 13,40 13,45 13,50 13,55 14,00 14,05 14,10 05 Trabajo Práctico N : LÍMITE DE FUNCIONES Ejercicio : Un dispositivo registra los valores de la frecuencia cardiaca de un paciente internado. El gráfico muestra la frecuencia cardíaca epresada en pulsaciones

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 4

Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,

Más detalles

Funciones convexas Definición de función convexa. Tema 10

Funciones convexas Definición de función convexa. Tema 10 Tema 10 Funciones convexas Los resultados obtenidos en el desarrollo del cálculo diferencial nos permiten estudiar con facilidad una importante familia de funciones reales de variable real definidas en

Más detalles

f y h lim (, ) Derivadas parciales de una función de dos variables INTERPRETACIóN GEOMéTRICA DE LAS DERIVADAS PARCIALES f(x,y)= f x = = D x

f y h lim (, ) Derivadas parciales de una función de dos variables INTERPRETACIóN GEOMéTRICA DE LAS DERIVADAS PARCIALES f(x,y)= f x = = D x DERIVADAS PARCIALES En las aplicaciones de las funciones de varias variables surge una pregunta: Cómo será afectada la función por una variación de una de las variables independientes?. Podemos responder

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1 Transformaciones conformes 1 Determinar donde son conformes las siguientes transformaciones: (a) w() = 2 + 2 (b) w() = 1 + i (c) w() = + 1 (d) w() = En cada

Más detalles

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV 8.4. CRITERIO DE ESTAB.: METODO DE LIAPUNOV 309 8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV Consideremos el sistema autónomo dx = F (x, y) dt (8.32) dt = G(x, y), y supongamos que tiene

Más detalles

Sílabo de Cálculo III

Sílabo de Cálculo III Sílabo de Cálculo III I. Datos Generales Código Carácter UC0067 Obligatorio Créditos 5 Periodo Académico 2017 Prerrequisito Cálculo II Horas Teóricas 4 Prácticas 2 II. Sumilla de la Asignatura La asignatura

Más detalles

Teoría de Circuitos: transformada de Laplace

Teoría de Circuitos: transformada de Laplace Teoría de Circuitos: transformada de Laplace Pablo Monzón Instituto de Ingeniería Eléctrica (IIE) Facultad de Ingeniería-Universidad de la República Uruguay Primer semestre - 2016 Contenido 1 Deniciones

Más detalles

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito OPERACIONES CON INFINITO Sumas con infinito Infinito más un número Infinito más infinito Infinito menos infinito Productos con infinito Infinito por un número Infinito por infinito Infinito por cero Cocientes

Más detalles

Transformada de Laplace.

Transformada de Laplace. Ampliación de Matemáticas (GITI) Curso 213/14 1 Curso 2 o. Grado de Ingeniería en las Tecnologías Industriales. Ampliación de Matemáticas. Lección 2. Transformada de Laplace. Índice 1. Definición y propiedades

Más detalles

1 Ecuaciones diferenciales

1 Ecuaciones diferenciales 1 Ecuaciones diferenciales La solución a una ecuación algebraica es un número, o un conjunto de números que satisfacen la ecuación. Por ejemplo las soluciónes de x 2 4x + 3 = 0 son x 0 = 1 y x 1 = 3. Las

Más detalles

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Clase 10: Extremos condicionados y multiplicadores de Lagrange Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.1. FUNCIONES Y

5. ANÁLISIS MATEMÁTICO // 5.1. FUNCIONES Y 5. ANÁLISIS MATEMÁTICO // 5.1. FUNCIONES Y LÍMITES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.1.1. Las magnitudes variables: funciones. 5.1.1. Las magnitudes variables:

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1 Teoremas de continuidad y derivabilidad Ejercicios resueltos.- Demostrar que la siguiente ecuación tiene una solución en el intervalo, : 4 º. Se considera la función 4 continua en R luego continua en cualquier

Más detalles

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas Semanas 72.0

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas Semanas 72.0 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO Aprobado por el Consejo Técnico de la Facultad de Ingeniería en su sesión ordinaria del 19 de noviembre de 2008 ECUACIONES

Más detalles

CAPÍTULO 2. SOLUCIÓN DE ECUACIONES DE UNA VARIABLE

CAPÍTULO 2. SOLUCIÓN DE ECUACIONES DE UNA VARIABLE En este capítulo analizaremos uno de los problemas básicos del análisis numérico: el problema de búsqueda de raíces. Si una ecuación algebraica o trascendente es relativamente complicada, no resulta posible

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad Diferenciabilidad 1 Función diferenciable 2 Regla de la cadena (2 variables) 3 Regla de la cadena (vectorial) OBJETIVO Generalizar el concepto de diferenciabilidad (conocido ya para funciones de una variable)

Más detalles

TEMA 5: INTERPOLACION NUMERICA

TEMA 5: INTERPOLACION NUMERICA Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 5: INTERPOLACION NUMERICA 1 EL PROBLEMA GENERAL DE INTER- POLACION En ocasiones se plantea el problema de que se conoce una tabla de valores de una

Más detalles

El método de súper y sub soluciones en el espacio de funciones casi periódicas.

El método de súper y sub soluciones en el espacio de funciones casi periódicas. El método de súper y sub soluciones en el espacio de funciones casi periódicas. Universidad de Buenos Aires - IMAS (CONICET) UMA - Bahía Blanca - 2016 Super y sub soluciones Problema periódico asociado

Más detalles

1. Curvas Regulares y Simples

1. Curvas Regulares y Simples 1. Regulares y Simples en R n. Vamos a estudiar algunas aplicaciones del calculo diferencial e integral a funciones que están definidas sobre los puntos de una curva del plano o del espacio, como por ejemplo

Más detalles

3.1.1 Definición de la transformada de Laplace Condiciones suficientes de existencia para la transformada de Laplace

3.1.1 Definición de la transformada de Laplace Condiciones suficientes de existencia para la transformada de Laplace Unidad III: Transformada de Laplace 3.1 Teoría preliminar 3.1.1 Definición de la transformada de Laplace Las transformadas de Laplace fueron formuladas para transformar una ecuación diferencial que contiene

Más detalles

Límites y continuidad. Cálculo 1

Límites y continuidad. Cálculo 1 Límites y continuidad Cálculo 1 Razones de cambio y límites La rapidez promedio de un móvil es la distancia recorrida durante un intervalo de tiempo dividida entre la longitud del intervalo. Ejemplo 1

Más detalles

Introducción a Ecuaciones Diferenciales

Introducción a Ecuaciones Diferenciales Introducción a Ecuaciones Diferenciales Temas Ecuaciones diferenciales que se resuelven directamente aplicando integración. Problemas con condiciones iniciales y soluciones particulares. Problemas aplicados.

Más detalles

Capítulo 2 Análisis espectral de señales

Capítulo 2 Análisis espectral de señales Capítulo 2 Análisis espectral de señales Objetivos 1. Se pretende que el alumno repase las herramientas necesarias para el análisis espectral de señales. 2. Que el alumno comprenda el concepto de espectro

Más detalles

INDICE Capitulo 1. Variables del Circuito Eléctrico Capitulo 2. Elementos del Circuito Capitulo 3. Circuitos Resistivos

INDICE Capitulo 1. Variables del Circuito Eléctrico Capitulo 2. Elementos del Circuito Capitulo 3. Circuitos Resistivos INDICE Capitulo 1. Variables del Circuito Eléctrico 1 1.1. Albores de la ciencia eléctrica 2 1.2. Circuitos eléctricos y flujo de corriente 10 1.3. Sistemas de unidades 16 1.4. Voltaje 18 1.5. Potencia

Más detalles

COORDINACIÓN DE CIENCIAS APLICADAS. Ecuaciones diferenciales de primer orden lineales y no lineales 2.

COORDINACIÓN DE CIENCIAS APLICADAS. Ecuaciones diferenciales de primer orden lineales y no lineales 2. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO 1325 ECUACIONES DIFERENCIALES Asignatura CIENCIAS BÁSICAS Clave Optativa Créditos INGENIERÍA INDUSTRIAL Departamento X

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

CIRCUITOS ELÉCTRICOS. Temas:

CIRCUITOS ELÉCTRICOS. Temas: CIRCUITOS ELÉCTRICOS Temas: - Conceptos generales de circuitos eléctricos, ley de Ohm y de Kirchhoff. - Energía almacenada en bobinas y capacitores. - Teoremas de redes: Thevenin, Norton, superposición,

Más detalles

Procesado con Sistemas Lineales Invariantes en el Tiempo

Procesado con Sistemas Lineales Invariantes en el Tiempo Procesado con Sistemas Lineales Invariantes en el Tiempo March 9, 2009 Sistemas Lineales Invariantes en el Tiempo (LTI). Caracterización de los sistemas LTI discretos Cualquier señal discreta x[n] puede

Más detalles

Práctica 5 Cálculo integral y sus aplicaciones

Práctica 5 Cálculo integral y sus aplicaciones Práctica 5 Cálculo integral y sus aplicaciones 5.1.- Integración con Mathematica o Integrales indefinidas e integrales definidas Mathematica nos permite calcular integrales mediante la instrucciones: Integrate[expresión

Más detalles

Tema 4. Proceso de Muestreo

Tema 4. Proceso de Muestreo Ingeniería de Control Tema 4. Proceso de Muestreo Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Contextualización del tema Conocimientos que se adquieren en este tema: Conocer el proceso de muestreo

Más detalles

2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo,

2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo, 2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO Una señal puede ser definida como una portadora física de información. Por ejemplo, las señales de audio son variaciones en la presión del aire llevando consigo

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q. 1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo

Más detalles

x = t 3 (x t) 2 + x t. (1)

x = t 3 (x t) 2 + x t. (1) Problema 1 - Considera la siguiente ecuación de primer orden: x = t 3 (x t + x t (1 (a Comprueba que x(t = t es solución de la ecuación (b Demuestra que si x = x(t es la solución que pasa por el punto

Más detalles

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales

Más detalles

CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR

CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR SEMANA 10 CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR TRANSFORMADA DE LA PLACE I. OBJETIVO Solucionar ecuaciones diferenciales mediante la transformada de la place. III. BIBLIOGRAFIA W.

Más detalles

Derivación. Aproximaciones por polinomios.

Derivación. Aproximaciones por polinomios. Derivación... 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Matemáticas (Grado en Químicas) Contenidos Derivada 1 Derivada 2 3 4 5 6 Outline Derivada 1 Derivada 2 3 4 5 6 Definición

Más detalles

Convergencia y existencia de la serie de Fourier

Convergencia y existencia de la serie de Fourier A Convergencia y existencia de la serie de Fourier A.1. Convergencia de la serie de Fourier* Posiblemente una de las mayores controversias respecto al desarrollo de Fourier fue su afirmación que cualquier

Más detalles

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le

Más detalles

Teoremas de convergencia y derivación bajo el signo integral

Teoremas de convergencia y derivación bajo el signo integral Capítulo 8 Teoremas de convergencia y derivación bajo el signo integral En este capítulo estudiaremos sucintamente bajo qué circunstancias puede intercambiarse el orden de la integral con las operaciones

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia

Más detalles

LA INTEGRAL DEFINIDA

LA INTEGRAL DEFINIDA LA INTEGRAL DEFINIDA Cuando estudiamos el problema del área y el problema de la distancia analizamos que tanto el valor del área debajo de la gráfica de una función como la distancia recorrida por un objeto

Más detalles

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a

Más detalles

Series de Fourier y Transformada de Fourier

Series de Fourier y Transformada de Fourier 2.5.-Series de Fourier.nb 174 Series de Fourier y Transformada de Fourier Series de Fourier Función Escalón Unidad La función escalón unidad, UnitStep[x] se define igual a la unidad cuando x es mayor que

Más detalles

Problemas Tema 1: Señales

Problemas Tema 1: Señales Curso Académico 009 00 Problemas Tema : Señales PROBLEMA. Una señal continua (t) se muestra en siguiente figura. Dibuje y marque cuidadosamente cada una de las siguientes señales [Prob.. del Oppenheim]:

Más detalles