CADENAS DE MARKOV DE PARÁMETRO CONTINUO Rosario Romera Febrero 2009

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CADENAS DE MARKOV DE PARÁMETRO CONTINUO Rosario Romera Febrero 2009"

Transcripción

1 CADENAS DE MARKOV DE PARÁMETRO CONTINUO Rosario Romera Febrero 29. Nociones básicas Para las cadenas de Markov con parámetro de tiempo discreto hemos visto qe la matriz de transición en n etapas pede ser expresada en términos de la matriz de transición en na etapa P. En el caso contino el papel homólogo a la matriz de transición P lo jega, considerando nidades in nitesimales de tiempo entre transiciones, dt, na matriz Q llamada de tasas de transición, to generador in nitesimal de la cadena. De nición El proceso estocástico fx t g t, con conjnto de estados nmerable S Z + es na Cadena de Markov con parámetro de tiempo contino si 8s; t, y 8i; j, tales qe X k 2 Z + se cmple qe: P (X t+s = j=x s = i; X k = x k ; k < s) = P (X t+s = j=x s = i) De nición El proceso estocástico fx t g t es na Cadena de Markov homogénea. Si: P (X t+s = j=x s = i) = P (X t = j=x = i) 8s Observación Si i = variable aleatoria tiempo en el estado i hasta transición al estado j, con j 2 S, y j 6= i, entonces: P ( i > s + t= i > s) P ( i > t) 8s; t esto es, i es Markoviana lo cal implica qe i es Exponencial. Observación: Caracterización de na Cadena de Markov con parámetro contino Toda Cadena de Markov con parámetro contino cada vez qe entra en n estado i 2 S veri ca

2 2. i exp(v i ), esto es, la distribción del tiempo qe permanece antes de transitar a otro estado es exponencial. 2. cando abandona el estado i, si p ij = P (transitar a j/ el proceso está en i), entonces veri ca qe: P j6=i p ij = Para realizar el estdio distribcional de la cadena, vamos a introdcir el concepto de transición instantánea (en n intervalo in nitesimal) y la probabilidad de qe ello sceda. De nición: Tasas de Transición Probabilidad instantánea con la qe el proceso realiza na transición de los estados i! j, dada por: q ij = i p ij 8i 6= j Observación: i = P j q ij 8i De nicion: Un estado i 2 S se llama absorbente si i =, estable si < i <, instantáneo si i =. Si i < y i = P j6=i q ij entonces el estado i se llama estable o reglar. Comentario. La tasa de Permanencia en el estado i viene representada por q ij qe será n valor negativo porqe la probabilidad de permanecer en el mismo estado decrece al amentar t. 2. Se impone i <, esto es, se exclyen estados instantáneos con i =. 3. Se dice qe fx t g t es Cadena Markov reglar si el número de transiciones en tiempo nito es na cantidad nita. Contraejemplo: p i, i + = con i = i 2 Para realizar el estdio distribcional de la cadena, vamos a introdcir el concepto de transición instantánea (en n intervalo in nitesimal) y la probabilidad de qe ello sceda. De nición: Probabilidades de transición en tiempo t Denotaremos la probabilidad de transición del estado i al estado j en n intervalo de longitd t, donde s; t, por Lema p ij (t) = P fx t+s = j=x s = ig; P ij = jjp ij (t)jj matriz de transición. lm t! p ii (t) t = i ( q ii ) 2. lm t! p ij (t) t = q ij ; i 6= j

3 3 3. Ecación de Chapman-Kolmogorov en tiempo contino. Para todos i; j 2 S y para calqier s; t : p ij (t + s) = X k2s p ik (t) p kj (s) Teorema: Ecaciones Diferenciales de Kolmogorov Spongamos qe i < para cada i 2 S entonces las probabilidades de transición p ij (t) son diferenciables para todo t y todos i; j 2 S. Es más:. p ij(t) = P k6=i q ik p kj (t) i p ij (t) (Backward eqation) 2. P ij(t) = P k6=j q kj p ik (t) j p ij (t) (Forward eqation) Demostración A partir del apartado 3 del Lema: p ij (t + ) p ij (t) = X k6=i p ik ()p kj (t) [ p ii ()]:p ij (t) formando el límite del cociente incremental lm p ij (t + ) p ij (t) = :::: = X k6=i p kj (t): lm p ik () p ij (t): i Lema: () ) p ij(t) = X k6=i q ik p kj (t) + q ii p ij (t) = X k q ik p kj (t) ) () BACKWARD Análogamente Lema: (3) ) p ij (t + ) p ij (t) = X k6=j p ik (t)p kj () [ p jj ()]:p ij (t) de donde lm p ij (t + ) p ij (t) = ::: = X k6=j p ik (t) lm p kj () p ij (t) j Lema: () ) p ij(t) = X k6=j p ik (t)q kj + p ij (t)q jj = X k p ik (t)q kj ) (2)FORWARD En términos matriciales P (t) = Q:P (t) (Backward)

4 4 P (t) = P (t):q (Forward) Las condiciones iniciales para ambos conjntos de ecaciones son P () = I Formalmente, la solción de los conjntos de ecaciones diferenciales de Kolmogorov pede ser dada como: X P (t) = e Q:t t i Q i = i! Cando Q es na matriz de dimensión nita, la serie anterior es convergente y es la única solción para los dos sistemas de ecaciones. Si Q es de dimensión in nita no podemos a rmar nada. Spongamos qe Q es n matriz de dimensión nita y diagonalizable. Spongamos además qe ; ; : : : ; n son los valores propios de Q. Entonces existe na matriz A tal qe y en tal caso Probabilidades Límite: B Q = B P (t) = i=... n e t... e n t C A :A C A :A Una Cadena de Markov con tiempo contino es n Proceso Semi-Markoviano con i exponencial ( i ) para todo i. Entonces Si P = jjp ij qe siendo f j g la solción de: jj es irredcible, aperiódica y recrrente positiva ( ergódica) se dedce Proceso de Nacimiento y Merte ) p j = lm p ij (t) = P j= j t! i = i = P j = Es na Cadena de Markov en tiempo contino con S = Z + tal qe q ij =, si ji jj >. Sean: i = q i;i+, con i i = q i;i, con i i

5 5 Observación: Como i = X j q ij ) [ i = i + i ] siendo q ij = i p ij ; i 6= j, entonces: p i;i+ = i i + i = p i;i Distribción límite: Ecaciones de balance ya qe: ) p = p n p n = n p n + n+ p n+ n p n ESTADO TASA ABANDONO TASA INGRESO p p n > ( n + n )p n n+ p n+ + n p n Resolviendo las ecaciones de balance: Ejemplos: si X j. Cola M/M/ p = p : : : = : : : p n = n n 2 : : : n n : : : 2 :p p j = ) = p + p X ) 8 >< >: P p = p n = n Q i= n : : : n : : : ::: n P con < 2 ::: n i = Q n i= i p con n > Es Proceso de Nacimiento y Merte con n =, n = si = < s distribción límite es Geom 2. Cola M/M/s Proceso de Nacimiento y Merte con n = con n > n n s n = s n > s

6 6 3. Cola M/M//N Sean n = con n n = (N n) n N n > N Ejemplo Una máqina pede fallar a casa de dos sitaciones diferentes. La probabilidad de qe la máqina falle en el intervalo de tiempo (t; t + h) a casa de calqiera de las dos sitaciones es en cada caso h + o(h). Lego de la falla la máqina es reparada. El tiempo qe dra la reparación es na variable aleatoria con distribción exponencial con parámetro. Calclar la probabilidad de qe en el tiempo t la máqina se encentre fncionando. Solción X t =. es tado de la máqina en el tiempo t". (X t ) t es na cadena de Markov con conjnto de estados S = f; ; 2g donde estado : "máqina fnciona" estado : "máqina fera de servicio a casa de la primera sitación" estado 2: "máqina fera de servicio a casa de la segnda sitación" En este caso tenemos como generador in nitesimal de la cadena a la matriz: 2 Q A De donde p (t) = + 2e t con = 2 +

Definición. P(X t+s = j X s = i, X sn = i n,..., X s0 = i 0 ) = P(X t+s = j X s = i)

Definición. P(X t+s = j X s = i, X sn = i n,..., X s0 = i 0 ) = P(X t+s = j X s = i) Definición Cadenas de Markov a tiempo continuo Para extender la propiedad de Markov a tiempo continuo se requiere definir la probabilidad condicional dado que conocemos el proceso en un intervalo continuo

Más detalles

Procesos estocásticos Sesión 9. Cadenas de Markov a tiempo continuo

Procesos estocásticos Sesión 9. Cadenas de Markov a tiempo continuo Procesos estocásticos Sesión 9. Cadenas de Markov a tiempo continuo Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos 1. Cadenas

Más detalles

2 CADENAS DE MARKOV HOMOGÉNEAS DE PARÁMETRO DISCRETO

2 CADENAS DE MARKOV HOMOGÉNEAS DE PARÁMETRO DISCRETO 2 CADENAS DE MARKOV HOMOGÉNEAS DE PARÁMETRO DISCRETO Cadenas de Markov 10 En la primera parte del capítulo se estudian las probabilidades condicionales de transición -definidas en (l5) y (16) - e incondicionales

Más detalles

PROCESOS DE MARKOV DE TIEMPO CONTINUO

PROCESOS DE MARKOV DE TIEMPO CONTINUO CHAPTER 3 PROCESOS DE MARKOV DE TIEMPO CONTINUO 3.1 Introducción En este capítulo consideramos el análogo en tiempo continuo de las Cadenas de Markov de tiempo discreto. Como en el caso de tiempo discreto,

Más detalles

Cadenas de Markov Tiempo Continuo. Modelado y Análisis de Redes de Telecomunicaciones

Cadenas de Markov Tiempo Continuo. Modelado y Análisis de Redes de Telecomunicaciones Tiempo Continuo Modelado y Análisis de Redes de Telecomunicaciones 1 Agenda en tiempo continuo Ergodicidad de la cadena Ejemplo: Líneas Telefónicas página 2 CMTC Consideremos ahora los procesos de Markov

Más detalles

1. Encontrar la pendiente de la recta tangente a la curva de intersección de la superficie: z = y con el plano y=2, en el punto (2,1, 6 )

1. Encontrar la pendiente de la recta tangente a la curva de intersección de la superficie: z = y con el plano y=2, en el punto (2,1, 6 ) PROBLEMAS RESUELTOS 1. Encontrar la pendiente de la recta tangente a la cra de intersección de la sperficie: z = 1 con el plano =, en el pnto (,1, 6 Solción La pendiente bscada es: z 1 (,1 1 z (,1 6 (,1.

Más detalles

Procesos estocásticos

Procesos estocásticos Procesos estocásticos Las cadenas de Markov estudian procesos estocásticos Los procesos estocásticos son modelos matemáticos que describen sistemas dinámicos sometidos a procesos aleatorios Parámetros:

Más detalles

Tema 10 Ejercicios resueltos

Tema 10 Ejercicios resueltos Tema 1 Ejercicios reseltos 1.1. Determinar el campo de eistencia de las fnciones sigientes: - 1 f(, ) = log f(, ) = ç è + ø f(, ) + - = ( f (, ) = log - 3 ) + 1.. Calclar los límites de las sigientes fnciones

Más detalles

Estadística Bayesiana

Estadística Bayesiana Procesos Estocásticos Universidad Nacional Agraria La Molina 2016-1 Un proceso estocástico {X (t), t T } es una colección de variables aleatorias. Es decir que para cada t T, X (t) es una variable aleatoria.

Más detalles

Cadenas de Markov.

Cadenas de Markov. Cadenas de Markov http://humberto-r-alvarez-a.webs.com Definición Procesos estocásticos: procesos que evolucionan de forma no determinista a lo largo del tiempo en torno a un conjunto de estado. Cadenas

Más detalles

Introducción a la Teoría de la Información

Introducción a la Teoría de la Información Introducción a la Teoría de la Información Tasa de Entropía de un Proceso Estocástico. Facultad de Ingeniería, UdelaR (Facultad de Ingeniería, UdelaR) Teoría de la Información 1 / 13 Agenda 1 Procesos

Más detalles

Métodos y técnicas de integración

Métodos y técnicas de integración Métodos y técnicas de integración (º) Integración por sstitción o cambio de variable En mchas ocasiones, cando la integración directa no es tan obvia, es posible resolver la integral simplemente con hacer

Más detalles

DERIVADAS. incremento de la variable independiente, x

DERIVADAS. incremento de la variable independiente, x DERIVADAS CPR. JORGE JUAN Xvia-Narón y= f(x): (a,b)r R fnción real definida en el dominio abierto, (a,b)r x 0, x (a,b) x= x -x 0 f(x )= f(x 0 +x) f(x 0 )= f(x 0 ) pntos del dominio de la fnción. incremento

Más detalles

INTRODUCCION A LA TEORIA DE COLAS Y SU SIMULACION. Gerardo Fabian Peraza Siqueiros

INTRODUCCION A LA TEORIA DE COLAS Y SU SIMULACION. Gerardo Fabian Peraza Siqueiros INTRODUCCION A LA TEORIA DE COLAS Y SU SIMULACION Gerardo Fabian Peraza Siqueiros Licenciatura en Matemáticas Director de Tesis: Dr. Jesús Adolfo Minjárez Sosa División de Ciencias Exactas y Naturales

Más detalles

FORMULARIO CADENAS DE MARKOV

FORMULARIO CADENAS DE MARKOV FORMULARIO CADENAS DE MARKOV Fuente: F. Hillier - G. Lieberman: Introducción a la investigación de operaciones. Sexta edición. Ed. Mc-Graw Hill. Proceso estocástico. Un proceso estocástico es una colección

Más detalles

Cadenas de Markov. José Antonio Camarena Ibarrola

Cadenas de Markov. José Antonio Camarena Ibarrola Cadenas de Markov José Antonio Camarena Ibarrola Definiciones elementales El proceso discreto cadena de Markov si se cumple es denominado es la probabilidad de que en el tiempo k, el proceso esté en el

Más detalles

1 Composición de funciones

1 Composición de funciones Composición de fnciones La composición de fnciones o la fnción de fnción es na operación qe aparece natralmente en varias sitaciones. En esta nota, presentaremos (sin demostración) algnos de los resltados

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecaciones Diferenciales de Primer Orden Definición Clasificación de las Ecaciones Diferenciales Una ecación diferencial es aqélla qe contiene las derivadas o diferenciales de na o más variables

Más detalles

Estructura de Computadores. 1. Ejercicios Resueltos 1.1.

Estructura de Computadores. 1. Ejercicios Resueltos 1.1. Estrctra de Comptadores Tema. La nidad de memoria II. La memoria virtal Localidad de referencia. Definición de memoria cache. Estrategias de mapeado: directo, asociativo y asociativo por conjntos. Algoritmos

Más detalles

LÍMITES, CONTINUIDAD Y DERIVADAS

LÍMITES, CONTINUIDAD Y DERIVADAS LÍMITES, CONTINUIDAD Y DERIVADAS ÍNDICE. Concepto de límite. Propiedades de los límites 3. Definición de continidad 4. Tipos de continidad 5. Concepto de derivada 6. Tabla de derivadas 7. Crecimiento y

Más detalles

Criterio de la segunda derivada para funciones de dos variables por Sergio Roberto Arzamendi Pérez

Criterio de la segunda derivada para funciones de dos variables por Sergio Roberto Arzamendi Pérez Criterio de la segnda derivada para fnciones de dos variables por Sergio Roberto Arzamendi Pérez Sea la fnción f de dos variables definida por f (, ) contina de primera segnda derivadas continas en s dominio,

Más detalles

3. Campos escalares diferenciables: gradiente.

3. Campos escalares diferenciables: gradiente. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. 3. Campos escalares diferenciables: gradiente. Plano tangente diferenciabilidad. Consideremos na fnción f :(, ) U f(, ) de dos variables n pnto (, interior al conjnto

Más detalles

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD CONTENIDOS 1. Procesos Estocásticos y de Markov 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD 4. Comportamiento Estacionario de las CMTD 1. Procesos Estocásticos

Más detalles

a) sen(2t) cos(2t). b) 4sent cost. c) Si una función z = f(x, y) tiene plano tangente en un punto ( )

a) sen(2t) cos(2t). b) 4sent cost. c) Si una función z = f(x, y) tiene plano tangente en un punto ( ) Diferenciabilidad de fnciones de dos variables - Sea = f(,) na fnción real de variable real, se verifica qe: a) Si f admite derivada direccional en n pnto P en calqier dirección, entonces f es diferenciable

Más detalles

Los datos del sistema están dados en valores por unidad sobre las mismas bases.

Los datos del sistema están dados en valores por unidad sobre las mismas bases. Ejemplo. Malio Rodrígez. Ejemplo, Malio Rodrígez En el sigiente sistema de potencia ocrre n cortocircito trifásico sólido en el pnto, el cal esta bicado exactamente en la mita de la línea -. Los interrptores

Más detalles

Regla de la cadena. Regla de la cadena y. son diferenciables, entonces: w w u w v y u y v y. y g. donde F, w w u w v x u x v x

Regla de la cadena. Regla de la cadena y. son diferenciables, entonces: w w u w v y u y v y. y g. donde F, w w u w v x u x v x Regla de la cadena Una de las reglas qe en el cálclo de na variable reslta my útil es la regla de la cadena. Dicho grosso modo, esta regla sirve para derivar na composición de fnciones, esto es, na fnción

Más detalles

PROCESO DE BERNOULLI Rosario Romera Febrero 2009

PROCESO DE BERNOULLI Rosario Romera Febrero 2009 PROCESO DE BERNOULLI Rosario Romera Febrero 2009 1. Sumas de Variables Aleatorias Independientes De nición Se considera el experimento aleatorio consistente en la repetición de juegos binarios independientes.

Más detalles

Plan 394 Código Periodo de impartición. Nivel/Ciclo Grado Curso Cuarto Créditos ECTS 6 Lengua en que se imparte Profesor/es responsable/s

Plan 394 Código Periodo de impartición. Nivel/Ciclo Grado Curso Cuarto Créditos ECTS 6 Lengua en que se imparte Profesor/es responsable/s Guía docente de la asignatura Asignatura Materia Curso 2014-2015 Procesos Estocásticos Procesos Estocásticos Plan 394 Código 40028 Periodo de impartición 2º Cuatrimestre Tipo Optativa Nivel/Ciclo Grado

Más detalles

VECTORES EN EL PLANO. el punto B el extremo. Mientras no preste confusión el vector v podemos expresarlo simplemente por v.

VECTORES EN EL PLANO. el punto B el extremo. Mientras no preste confusión el vector v podemos expresarlo simplemente por v. COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA Asignatra: FÍSICA 10º Profesor: Lic. EDUARDO DUARTE SUESCÚN TALLER DE VECTORES VECTORES EN EL PLANO Vector fijo. Es n segmento orientado. Lo representamos por

Más detalles

Procesos de Control Semi-Markovianos con Costos Descontados

Procesos de Control Semi-Markovianos con Costos Descontados Capítulo 1 Procesos de Control Semi-Markovianos con Costos Descontados 1.1. Introducción En este capítulo se introduce el problema de control óptimo semi-markoviano (PCO) con respecto al índice en costo

Más detalles

Estadística. Soluciones ejercicios: Variables aleatorias. Versión 8. Emilio Letón

Estadística. Soluciones ejercicios: Variables aleatorias. Versión 8. Emilio Letón Estadística Soluciones ejercicios: Variables aleatorias Versión 8 Emilio Letón. Nivel. Enunciar las dos propiedades que debe cumplir p) para ser función de probabilidad. Las dos propiedades para ser función

Más detalles

1. Idea intuitiva del concepto de derivada de una función en un punto.

1. Idea intuitiva del concepto de derivada de una función en un punto. Tema : Derivadas. Idea intitiva del concepto de derivada de na fnción en n pnto. Comencemos pensando en na fnción f () t, donde t represente el tiempo y f la evolción de na cantidad calqiera a lo largo

Más detalles

Redes de Petri Estocásticas (II)

Redes de Petri Estocásticas (II) Redes de Petri Estocásticas (II) Carlos Aguirre Universidad Autonoma de Madrid, Dpto Ingenieria Informatica Redes Estocásticas Formalmente una red de Petri estocástica es por tanto una 7 upla SPN=(P,T,I(),O(),H(),W(),Mo)

Más detalles

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: DENOMINADORES CON FACTORES LINEALES CUADRÁTICOS

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: DENOMINADORES CON FACTORES LINEALES CUADRÁTICOS UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: DENOMINADORES CON FACTORES LINEALES CUADRÁTICOS DENOMINADORES CON FACTORES LINEALES CUADRÁTICOS Cando al smar dos fracciones algebraicas

Más detalles

CADENAS DE MARKOV. Una sucesión de observaciones X1, X2, Se denomina proceso estocástico

CADENAS DE MARKOV. Una sucesión de observaciones X1, X2, Se denomina proceso estocástico PROCESOS ESTOCÁSTICOS CADENAS DE MARKOV Una sucesión de observaciones X1, X2, Se denomina proceso estocástico Si los valores de estas observaciones no se pueden predecir exactamente Pero se pueden especificar

Más detalles

Introducción a Modelos de Recompensas en Sistemas semi-marko. aplicación a las Ciencias Actuariales

Introducción a Modelos de Recompensas en Sistemas semi-marko. aplicación a las Ciencias Actuariales Introducción a Modelos de Recompensas en Sistemas semi-markovianos No Homogéneos, Una aplicación a las Ciencias Actuariales Universidad Autónoma de Chiapas, Facultad de Ciencias en Física y Matemáticas

Más detalles

Tema 5: Ecuaciones diferenciales de primer orden homogéneas

Tema 5: Ecuaciones diferenciales de primer orden homogéneas Tema 5: Ecaciones diferenciales de primer orden homogéneas 5.1 Primer método de solción En la e.d. homogénea d (1) f (, ) d donde, de acerdo con lo visto en (.), f(t, t) f(, ), se sstite () v s correspondiente

Más detalles

Modelos Estocásticos I Tercer Examen Parcial Respuestas

Modelos Estocásticos I Tercer Examen Parcial Respuestas Modelos Estocásticos I Tercer Examen Parcial Respuestas. a Cuál es la diferencia entre un estado recurrente positivo y uno recurrente nulo? Cómo se define el período de un estado? Demuestre que si el estado

Más detalles

Problema 1: (3,25 puntos) TABLA 1 TABLA 2. Investigación Operativa de Sistemas I.T. Informática de Sistemas 7 de Septiembre de 2010

Problema 1: (3,25 puntos) TABLA 1 TABLA 2. Investigación Operativa de Sistemas I.T. Informática de Sistemas 7 de Septiembre de 2010 Investigación Operativa de Sistemas I.T. Informática de Sistemas 7 de Septiembre de 2010 Problema 1: (3,25 puntos) Resolver Mediante el Algoritmo del Simplex el siguiente problema: TABLA 1 Max 3x 1 + x

Más detalles

MMII_L1_c3: Método de Lagrange.

MMII_L1_c3: Método de Lagrange. MMII_L_c3: Método de Lagrange. Gión de la clase: Esta clase está centrada en plantearse la resolción de las ecaciones casi lineales de primer orden mediante el Método de Lagrange. El método eqivale a plantearse

Más detalles

el blog de mate de aida MI: apuntes de vectores y rectas pág. 1 VECTORES

el blog de mate de aida MI: apuntes de vectores y rectas pág. 1 VECTORES el blog de mate de aida MI: apntes de vectores y rectas pág. VECTORES.- LOS EJES CARTESIANOS Y EL ORIGEN El eje horizontal se llama eje de abscisas y el eje vertical se llama eje de ordenadas. El pnto

Más detalles

Cadenas de Markov Tiempo Discreto. Modelado y Análisis de Redes de Telecomunicaciones

Cadenas de Markov Tiempo Discreto. Modelado y Análisis de Redes de Telecomunicaciones Cadenas de Markov Tiempo Discreto Modelado y Análisis de Redes de Telecomunicaciones Motivación Ejemplo 1 Sea un enrutador al que arriban paquetes de otros (varios) routers Cuando más de un paquete llega

Más detalles

1. Introducción a la redes de colas. 2. Redes de colas abiertas. Teorema de Burke Sistemas en tándem

1. Introducción a la redes de colas. 2. Redes de colas abiertas. Teorema de Burke Sistemas en tándem CONTENIDOS 1. Introducción a la redes de colas 2. Redes de colas abiertas. Teorema de Burke 2.1. Sistemas en tándem 2.2. Redes de Jackson abiertas. Teorema de Jackson 2.3. Aplicación: Multiprogramación

Más detalles

> Cadenas de Markov. Horacio Rojo y Miguel Miranda. @ 71.07 Investigación Operativa

> Cadenas de Markov. Horacio Rojo y Miguel Miranda. @ 71.07 Investigación Operativa @ 707 Investigación Operativa > Cadenas de Markov Horacio Rojo y Miguel Miranda c 2009 Facultad de Ingeniería, Universidad de Buenos Aires Digitalizado por Virginia Guala $September 2, 2009 Cadenas de

Más detalles

1 Parametrización de super cies

1 Parametrización de super cies Dpto. Matemática Aplicada E.T.S. Arqitectra, U.P.M. Crvas y Sper cies HOJA DE PROBLEMAS: SUPERFICIES 1 Parametrización de sper cies 1. Obtener dos parametrizaciones reglares para cada na de las sigientes

Más detalles

Desarrollo de un función en serie de potencias. Teorema de Taylor. Aplicaciones al estudio local de funciones

Desarrollo de un función en serie de potencias. Teorema de Taylor. Aplicaciones al estudio local de funciones Tema 7 Desarrollo de un función en serie de potencias. Teorema de Taylor. Aplicaciones al estudio local de funciones 7.1 Forma in nitesimal del resto De nición 1 Sea f : A R! R una función, n N y supongamos

Más detalles

Una invitación al estudio de las cadenas de Markov

Una invitación al estudio de las cadenas de Markov Una invitación al estudio de las cadenas de Markov Víctor RIVERO Centro de Investigación en Matemáticas A. C. Taller de solución de problemas de probabilidad, 21-25 de Enero de 2008. 1/ 1 Potencias de

Más detalles

Unidad 3. La Integral Definida. 08/03/2016 Prof. José G. Rodríguez Ahumada 1 de 20

Unidad 3. La Integral Definida. 08/03/2016 Prof. José G. Rodríguez Ahumada 1 de 20 Unidad La Integral Definida 08/0/06 Prof. José G. Rodrígez Ahmada de 0 Actividades. Referencia del Teto: Sección 4. Área Ver ejemplos 4. Ejercicios de práctica: Impares del 9. Sección 4. La Sma de Riemann

Más detalles

IDENTIFICAR LOS ELEMENTOS DE UN VECTOR

IDENTIFICAR LOS ELEMENTOS DE UN VECTOR 8 REPSO POO OJETIVO IDENTIFICR LOS ELEMENTOS DE UN VECTOR Nombre: Crso: Fecha: Vector: segmento orientado determinado por dos pntos: (a, a ), origen del ector, y (b, b ), extremo del ector. Coordenadas

Más detalles

CAPÍTULO I ÁLGEBRA TENSORIAL

CAPÍTULO I ÁLGEBRA TENSORIAL Sección I.1.a) álgebra ectorial intrínseca 10/09/2011 CAPÍTULO I ÁLGEBRA TENSORIAL 1.1 Repaso de álgebra ectorial intrínseca 1.2 Álgebra ectorial en componentes ortonormales y generales: notación indicial.

Más detalles

TEMA 7: VECTORES. También un vector queda determinado por su módulo, dirección y sentido. Dado el vector u. = AB, se define: Módulo del vector u

TEMA 7: VECTORES. También un vector queda determinado por su módulo, dirección y sentido. Dado el vector u. = AB, se define: Módulo del vector u DPTO DE MATEMÁTICAS T5: VECTORES - 1 1.- VECTORES EN EL PLANO TEMA 7: VECTORES Hay magnitdes como ferza, desplazamiento, elocidad, qe no qedan completamente definidas por n número. Por ejemplo, no es sficiente

Más detalles

1 Autovalores y autovectores asociados a un endomor smo f. Diagonalización.

1 Autovalores y autovectores asociados a un endomor smo f. Diagonalización. utovalores y autovectores asociados a un endomor smo f Diagonalización Dado un endomor smo f de un espacio vectorial real V y jada una base B de V obtenemos una única matriz asociada a f respecto de la

Más detalles

RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS

RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS. Calcla los sigientes límites: sen() (a) cos() sen() (b) cos(). Calcla los sigientes límites a) e b) a) e e sen() e. Calcla los sigientes límites: tg() sen()

Más detalles

Una aplicación de las sucesiones consiste en representar sumas in nitas. Dicho brevemente, si fa n g es una sucesión, entonces

Una aplicación de las sucesiones consiste en representar sumas in nitas. Dicho brevemente, si fa n g es una sucesión, entonces Parte III Series Una aplicación de las sucesiones consiste en representar sumas in nitas. Dicho brevemente, si fa n g es una sucesión, entonces a n = a a a : : : a n : : : es una serie. Los números a ;

Más detalles

Distribuciones Tipo Fase y sus Aplicaciones en la Teoría de la Ruina

Distribuciones Tipo Fase y sus Aplicaciones en la Teoría de la Ruina Tesis para obtener el grado de Magister en Matemática Aplicada Distribuciones Tipo Fase y sus Aplicaciones en la Teoría de la Ruina Leider Salcedo García Sandra Rojas Sevilla Director: Prof. Msc. Francisco

Más detalles

CONFERENCIA TEMA: CADENAS DE MARKOV

CONFERENCIA TEMA: CADENAS DE MARKOV Prof.: MSc. Julio Rito Vargas Avilés CONFERENCIA TEMA: CADENAS DE MARKOV Agenda: Proceso estocástico Concepto de Cadena de Markov Clasificación de estados de una CM y ejemplos Distribución estacionaria

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecaciones Diferenciales Ordinarias Cristian j. P. Castillo U. ÍNDICE GENERAL PRESENTACIÓN CAPÍTULO. INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES 4. Definición de ecación diferencial 5. Clasificación de

Más detalles

Álgebra Manuel Hervás Curso

Álgebra Manuel Hervás Curso Álgebra Manel Herás Crso 0-0 ESPACIO EUCLÍDEO Introdcción El estdio de los espacios ectoriales es na generalización de los ectores geométricos a otros casos qe responden también a la estrctra de espacio

Más detalles

Solución Numérica de Ecuaciones Diferenciales Parciales Parabólicas

Solución Numérica de Ecuaciones Diferenciales Parciales Parabólicas Solción Nmérica de Ecaciones Diferenciales Parciales Parabólicas Diferencias Finitas En la discretización de las EDPs samos fórmlas de diferencias finitas para las derivadas qe se derivan de las fórmlas

Más detalles

Método de identificación de modelos de orden reducido de tres puntos 123c

Método de identificación de modelos de orden reducido de tres puntos 123c Método de identificación de modelos de orden redcido de tres pntos 123c Víctor M. Alfaro, M.Sc. Departamento de Atomática Escela de Ingeniería Eléctrica Universidad de Costa Rica valfaro@eie.cr.ac.cr Rev:

Más detalles

DERIVADA DE LA FUNCIÓN EXPONENCIAL DE CUALQUIER BASE Y DE LA FUNCIÓN LOGARÍTMO NATURAL

DERIVADA DE LA FUNCIÓN EXPONENCIAL DE CUALQUIER BASE Y DE LA FUNCIÓN LOGARÍTMO NATURAL DERIVADA DE LA FUNCIÓN EXPONENCIAL DE CUALQUIER BASE Y DE LA FUNCIÓN LOGARÍTMO NATURAL Sgerencias para qien imparte el crso: Se deberá concebir a la Matemática como na actividad social y cltral, en la

Más detalles

Procesos de ramificación y árboles. aleatorios. Juan Carlos Pardo Millán. CIMAT, Guanajuato 1/ 26

Procesos de ramificación y árboles. aleatorios. Juan Carlos Pardo Millán. CIMAT, Guanajuato 1/ 26 Procesos de ramificación y árboles aleatorios. Juan Carlos Pardo Millán CIMAT, Guanajuato 1/ 26 Progama: Preliminares de probabilidad. Cadenas de Markov. Caminatas aleatorias. Procesos de Bienaymé-Galton-Watson.

Más detalles

Capítulo 8 CADENAS DE MARKOV. por Jorge Yazlle

Capítulo 8 CADENAS DE MARKOV. por Jorge Yazlle Capítulo 8 CADENAS DE MARKOV por Jorge Yazlle Un proceso estocástico es una familia arbitraria de variables aleatorias {X t } t T, en donde cada X t es una función del espacio muestral en algún conjunto

Más detalles

La Regla de la Cadena. Tomado de UNIMET Prof. Antonio Syers

La Regla de la Cadena. Tomado de UNIMET Prof. Antonio Syers La Regla de la Cadena Tomado de UNIMET Po. Anonio Se Inodcción Recodemo qe la egla de la cadena paa na nción = () ; = g(,), amba ncione deiable, enonce e na nción deiable con epeco a e cmple: d d d d d

Más detalles

Análisis y Diseño de Algoritmos. Búsqueda Local

Análisis y Diseño de Algoritmos. Búsqueda Local Búsqeda Local Artro Díaz Pérez Sección de Comptación Departamento de Ingeniería Eléctrica CINVESTAV-IPN A. Institto Politécnico Nacional No. 2508 Col. San Pedro Zacatenco México, D. F. CP 07300 Tel. (5)747

Más detalles

ESTADO DE TENSIONES Y DE DEFORMACIONES

ESTADO DE TENSIONES Y DE DEFORMACIONES ENSAYOS NDUSTRALES Dpto. ngeniería Mecánica y Naval acltad de ngeniería Universidad de Benos Aires ESTADO DE TENSONES Y DE DEORMACONES Lis A. de Vedia Hernán Svoboda Benos Aires 00 - Ensayos ndstriales

Más detalles

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa NOMBRE: VECTORES EN EL PLANO Ángel de la Llave Canosa 1 VECTORES EN EL PLANO VECTOR FIJO Un vector fijo AB es n segmento orientado, qe está definido por dos pntos: Un pnto origen y n pnto extremo. Los

Más detalles

Tema 2: Control de sistemas SISO

Tema 2: Control de sistemas SISO Tema : Control de sistemas SISO Control Atomático º Crso. Ing. Indstrial Escela Técnica Sperior de Ingenieros Universidad de Sevilla Crso Índice. Descripción de sistemas dinámicos. Sistemas SISO. Identificación

Más detalles

MOVIMIENTO BROWNIANO Rosario Romera Febrero 2009

MOVIMIENTO BROWNIANO Rosario Romera Febrero 2009 1 MOVIMIENTO BROWNIANO Rosario Romera Febrero 2009 1. Historia En 1827, el botánico Robert Brown (1773-1858) observó, a través del microscopio que pequeñísimas partículas, originadas a partir de granos

Más detalles

Año Académico 2009 INGENIERÍA INDUSTRIAL E INGENIERÍA DE SISTEMAS

Año Académico 2009 INGENIERÍA INDUSTRIAL E INGENIERÍA DE SISTEMAS Año Académico 2009 INGENIERÍA INDUSTRIAL E INGENIERÍA DE SISTEMAS Investigación de operaciones I UNIDAD Unidad I: Programación lineal Conjuntos convexos, propiedades. Solución gráfica del problema bidimensional

Más detalles

CI 41C HIDROLOGÍA HIDROLOGÍA PROBABILÍSTICA

CI 41C HIDROLOGÍA HIDROLOGÍA PROBABILÍSTICA CI 41C HIDROLOGÍA HIDROLOGÍA PROBABILÍSTICA alcantarilla Puente? Badén http://www.disasternews.net/multimedia/files/drought5_9412.jpg Fenómenos en Ingeniería (según certeza de ocurrencia) determinísticos

Más detalles

Tema 7. El Teorema de Burke y las redes de colas. Eytan Modiano Instituto Tecnológico de Massachusetts. Eytan Modiano Diapositiva 1

Tema 7. El Teorema de Burke y las redes de colas. Eytan Modiano Instituto Tecnológico de Massachusetts. Eytan Modiano Diapositiva 1 Tema 7 El Teorema de Burke y las redes de colas Instituto Tecnológico de Massachusetts Diapositiva 1 El Teorema de Burke Una propiedad interesante de las colas M/M/1 que simplifica enormemente su combinación

Más detalles

Teoría de colas. Modelado y Análisis de Redes de Telecomunicaciones. IIE - Facultad de Ingeniería

Teoría de colas. Modelado y Análisis de Redes de Telecomunicaciones. IIE - Facultad de Ingeniería Teoría de colas Modelado y Análisis de Redes de Telecomunicaciones IIE - Facultad de Ingeniería Contenido 1 Proceso de Poisson 2 Teoría de colas 3 El proceso M/M/1 4 Los procesos M/M/* 5 El proceso M/G/1

Más detalles

Espacios, Funciones y Multifunciones

Espacios, Funciones y Multifunciones Apéndice A Espacios, Funciones y Multifunciones Denotaremos por B () a la -álgebra de Borel de un espacio topológico ; es decir, la mínima -álgebra de subconjuntos de que contiene a todos los abiertos.

Más detalles

4. Espacios Vectoriales

4. Espacios Vectoriales 4. Espacios Vectoriales 4.. Definición de espacio, sbespacio ectorial y ss propiedades n ector es na magnitd qe consta de módlo, dirección y sentido. Algnos sin embargo; más teóricos, explicarían qe n

Más detalles

POSIBLE SOLUCIÓN DEL EXAMEN DE INVESTIGACIÓN OPERATIVA DE SISTEMAS DE SEPTIEMBRE DE 2002.

POSIBLE SOLUCIÓN DEL EXAMEN DE INVESTIGACIÓN OPERATIVA DE SISTEMAS DE SEPTIEMBRE DE 2002. POSIBLE SOLUCIÓN DEL EXAMEN DE INVESTIGACIÓN OPERATIVA DE SISTEMAS DE SEPTIEMBRE DE 2002. Problema 1 (3,5 puntos): Un agricultor tiene posee 100 hectáreas para cultivar trigo y alpiste. El costo de la

Más detalles

Guía de Ejercicios 2 Econometría II

Guía de Ejercicios 2 Econometría II Gía de Ejercicios Economería II.- Para el sigiene proceso : donde es n rido blanco con ariana. a Calcle la media la ariana marginal condicional del proceso. Compare los alores marginales condicionales.

Más detalles

ALGEBRA LINEAL. 1º GRADO DE ECONOMÍA CURSO Prof. Pedro Ortega Pulido

ALGEBRA LINEAL. 1º GRADO DE ECONOMÍA CURSO Prof. Pedro Ortega Pulido ALGEBRA LINEAL. º GRADO DE ECONOMÍA CURSO 0-04 Prof. Pedro Ortega Plido I. ESPACIOS VECTORIALES I.. Vectores. Operaciones con vectores I.. Espacio vectorial. Propiedades I.. Sbespacio vectorial. Operaciones

Más detalles

Método de los Elementos Finitos para determinar las deflexiones en una viga tipo Euler-Bernoulli

Método de los Elementos Finitos para determinar las deflexiones en una viga tipo Euler-Bernoulli Preliminares Formlación del elemento inito para vigas Ejemplo Método de los Elementos Finitos para determinar las deleiones en na viga tipo Eler-Bernolli Lic. Mat. Carlos Felipe Piedra Cáceda. Estdiante

Más detalles

Tratamiento de Señales Laboratorio 1 (2h) Cadenas de Markov

Tratamiento de Señales Laboratorio 1 (2h) Cadenas de Markov Tratamiento de Señales Laboratorio 1 (2h) Cadenas de Markov Curso 2011/2012 Materiales: (a) Ordenadores equipados con Matlab Objetivos: (a) Estudiar las cadenas de Markov como una familia de secuencias

Más detalles

Interrogación (25 Ptos.) Conteste verbalmente las siguientes preguntas :

Interrogación (25 Ptos.) Conteste verbalmente las siguientes preguntas : . Universidad Católica de Chile Dpto. de Ingeniería de Sistemas Modelos Estocásticos rofesor Alvaro Alarcón 6 de Noviembre de 009 Interrogación 3.- (5 tos.) Conteste verbalmente las siguientes preguntas

Más detalles

ALGEBRA Y GEOMETRÍA VECTORIAL EN R 2 Y EN R 3

ALGEBRA Y GEOMETRÍA VECTORIAL EN R 2 Y EN R 3 ALGEBRA Y GEOMETRÍA VECTORIAL EN R Y EN R Los ectores se peden representar mediante segmentos de recta dirigidos, o flechas, en R o en R. Se denotan por letras minúsclas negritas Pnto inicial del ector

Más detalles

INSTITUTO POLITÉCNICO NACIONAL Escuela Superior de Física y Matemáticas. Teorema de Perron-Frobenius Aplicado a las Matrices Estocásticas TESIS

INSTITUTO POLITÉCNICO NACIONAL Escuela Superior de Física y Matemáticas. Teorema de Perron-Frobenius Aplicado a las Matrices Estocásticas TESIS INSTITUTO POLITÉCNICO NACIONAL Escuela Superior de Física y Matemáticas Teorema de Perron-Frobenius Aplicado a las Matrices Estocásticas TESIS QUE PARA OBTENER EL TÍTULO DE LICENCIADO EN FÍSICA Y MATEMÁTICAS

Más detalles

Tema 02. Análisis de prestaciones e introducción al dimensionamiento en redes de conmutación de paquetes. Rafael Estepa Alonso Universidad de Sevilla

Tema 02. Análisis de prestaciones e introducción al dimensionamiento en redes de conmutación de paquetes. Rafael Estepa Alonso Universidad de Sevilla Tema 02 Análisis de prestaciones e introducción al dimensionamiento en redes de conmutación de paquetes Rafael Estepa Alonso Universidad de Sevilla Índice del Tema 02 2.1 Introducción a las Prestaciones

Más detalles

Apéndice I Capa límite

Apéndice I Capa límite Apéndice I Capa límite Capa límite. Aproimadamente hasta antes de 860, el interés de la ingeniería por la mecánica de flidos se limitaba casi eclsivamente al fljo del aga. La complejidad de los fljos viscosos,

Más detalles

DINÁMICA DE FLUIDOS. Flujo Potencial. Potencial de velocidades. Función de corriente. Ejemplos.

DINÁMICA DE FLUIDOS. Flujo Potencial. Potencial de velocidades. Función de corriente. Ejemplos. DINÁMIC DE FLUIDOS Propiedades de los Flidos. Concepto de flido. Flido ideal. Viscosidad Tensión sperficial. Capilaridad Estática. Presión en n pnto. Ecación general de la estática. Teoremas de Pascal

Más detalles

ESTUDIO COMPARATIVO DE LAS MEDIDAS DE FIABILIDAD Y COSTES DE DOS MODELOS APLICADOS A UN MISMO CONJUNTO DE DATOS

ESTUDIO COMPARATIVO DE LAS MEDIDAS DE FIABILIDAD Y COSTES DE DOS MODELOS APLICADOS A UN MISMO CONJUNTO DE DATOS ESTUDIO COMPARATIVO DE LAS MEDIDAS DE FIABILIDAD Y COSTES DE DOS MODELOS APLICADOS A UN MISMO CONJUNTO DE DATOS Rafael Pérez Ocón Catedrático de Universidad Delia Montoro Cazorla Catedrático de Universidad

Más detalles

Traza de una Matriz Cuadrada

Traza de una Matriz Cuadrada Traza de una Matriz Cuadrada Departamento de Matemáticas, CSI/ITESM 10 de septiembre de 2008 Índice 7.1. Definiciones y propiedades básicas.................................. 1 7.2. La traza de un producto........................................

Más detalles

5. TEOREMA FUNDAMENTAL: Formulación y Demostración. Jorge Eduardo Ortiz Triviño

5. TEOREMA FUNDAMENTAL: Formulación y Demostración. Jorge Eduardo Ortiz Triviño 5. TEOREMA FUNDAMENTAL: Formulación y Demostración Jorge Eduardo Ortiz Triviño jeortizt@unal.edu.co http:/www.docentes.unal.edu.co/jeortizt/ 1 CONTENIDO 1. INTRODUCCIÓN 2. VARIABLES ALEATORIAS 3. TEOREMA

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 158 a 169

SOLUCIONES DE LAS ACTIVIDADES Págs. 158 a 169 TEMA. VECTORES SOLUCIONES DE LAS ACTIVIDADES Págs. 58 a 6 Página 58. Obtenemos los sigientes ectores: + Página 6. La representación es la sigiente: x - - Página 5. ( 0) (0 ) x ( ) a + b a / b y ( 6) a

Más detalles

GEOMETRÍA ANALÍTICA AB CD CD AB CD

GEOMETRÍA ANALÍTICA AB CD CD AB CD GEOMETRÍA ANALÍTICA.- Vectores..- Vectores fijos en el plano Llamaremos ector fijo a todo par ordenado de pntos del plano. Si los pntos son A y B conendremos en representar por AB el ector fijo qe determinan;

Más detalles

Análisis Matemático I: Cálculo diferencial

Análisis Matemático I: Cálculo diferencial Contents : Cálculo diferencial Universidad de Murcia Curso 2007-2008 Contents 1 Objetivos Definir, entender y aplicar el concepto de función derivable. Estudiar la relación entre derivabilidad, crecimiento,

Más detalles

VECTORES EN EL PLANO

VECTORES EN EL PLANO VECTORES EN EL PLANO.- PRIMERO DE BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 VECTORES EN EL PLANO Vector fijo. Es n segmento orientado. Lo representamos por AB o por. El pnto A es el origen y el pnto B

Más detalles

REVISIÓN DE ANÁLISIS MATEMÁTICO CONCEPTOS Y EJEMPLOS

REVISIÓN DE ANÁLISIS MATEMÁTICO CONCEPTOS Y EJEMPLOS E.T. Nº 7 - Brig. Gral. Apnte teórico TEORÍA DE LOS IRUITOS II REVISIÓN DE ANÁLISIS MATEMÁTIO ONEPTOS Y EJEMPLOS INDIE Página FUNIONES LÍMITES DERIVADAS oncepto definición Derivadas de las fnciones algeraicas

Más detalles

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A =

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A = Matrices: repaso Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas Una matriz A M m n es de la forma a 11 a 1n A = a m1 a mn Denotaremos A ij = a ij el coeficiente

Más detalles

José Boza Chirino Análsis Múltivariante ( )

José Boza Chirino Análsis Múltivariante ( ) José Boza Chirino Análsis Múltivariante (007-08) TEMA I. INTRODUCCIÓN AL ANÁLISIS MULTIVARIANTE. I.1 Introdcción. En los estdios de economía y empresa cada vez es sal representar los conceptos mediante

Más detalles

REDES ABIERTAS O DE JACKSON

REDES ABIERTAS O DE JACKSON REDES ABIERTAS O DE JACKSON Los clientes pueden entrar y salir por cualquier nodo de la red. Las llegadas a cualquier nodo siguen un proceso de Poisson de tasa γ. El tiempo de servicio en cualquier servidor

Más detalles

Resuelve. Unidad 7. Vectores. BACHILLERATO Matemáticas I. Descomposición de una fuerza. Página 171

Resuelve. Unidad 7. Vectores. BACHILLERATO Matemáticas I. Descomposición de una fuerza. Página 171 Resele Página 171 Descomposición de na ferza I. Una cerda de 10 m de larga celga de dos escarpias, A y B, sitadas a la misma altra y a m de distancia entre sí. De ella se celga na pesa de 0 kg de masa

Más detalles

Distribuciones de probabilidad discretas. Características y tratamiento. La distribución binomial y la de Poisson. Aplicaciones

Distribuciones de probabilidad discretas. Características y tratamiento. La distribución binomial y la de Poisson. Aplicaciones Tema 65 Distribuciones de probabilidad discretas. Características y tratamiento. La distribución binomial y la de oisson. Aplicaciones 65.1 Conceptos básicos en Teoría de la robabilidad Sea un conjunto

Más detalles

INGENIERIA CIVIL EN MECANICA GUIA DE LABORATORIO

INGENIERIA CIVIL EN MECANICA GUIA DE LABORATORIO INGENIERIA CIVIL EN MECANICA GUIA DE LABORATORIO ASIGNATURA MECANICA DE FLUIDOS II CODIGO 9513 NIVEL 3 EXPERIENCIA C9 ESTUDIO DE DESARROLLO DE CAPA LIMITE" OBJETIVO GENERAL UNIVERSIDAD DE SANTIAGO DE CHILE

Más detalles