1 Parametrización de super cies

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1 Parametrización de super cies"

Transcripción

1 Dpto. Matemática Aplicada E.T.S. Arqitectra, U.P.M. Crvas y Sper cies HOJA DE PROBLEMAS: SUPERFICIES 1 Parametrización de sper cies 1. Obtener dos parametrizaciones reglares para cada na de las sigientes cádricas y representar ss respectivas familias de líneas coordenadas: (a) El paraboloide circlar de ecación cartesiana: z = x + y. (b) El paraboloide elíptico de ecación cartesiana: z = 4x + y. (c) El paraboloide hiperbólico de ecación cartesiana: z = x y.. Obtener na parametrización reglar para cada na de las sigientes cádricas y representar ss respectivas familias de líneas coordenadas: (a) Esfera de radio 1 y centro el origen de coordenadas. (b) Esfera de radio 3 y centro el pnto (; 1; 0). (c) Elipsoide de ecación cartesiana: x + (y ) + z = 1. 4 (d) Hiperboloide hiperbólico (o de na hoja) de ecación x + y z = 1. (e) Hiperboloide elíptico (o de dos hojas) de ecación x + y = z 1. (f) La hoja del cilindro hiperbólico de ecación cartesiana: x y = 1, con x > 0. (g) Cono de ecación cartesiana: z = x + y. 3. Señalar las cádricas de los ejercicios 1 y qe son sper cies de revolción y sper cies regladas. 4. Obtener na parametrización reglar para cada na de las sigientes sper cies de revolción y representar ss respectivas familias de líneas coordenadas: (a) El toro es la sper cie de revolción generada por na circnferencia qe gira alrededor de na recta exterior a la circnferencia (esto es, qe no la corta) y coplanaria. (b) Parametrizar la catenoide obtenida al girar la catenaria con parametrización () = ( cosh ; 0; ) alrededor del eje OZ. Representar ss líneas coordenadas en n pnto reglar y hallar el ánglo qe forman, tilizando la primera forma fndamental.

2 Crvas y Sper cies. 5. Obtener na parametrización reglar para cada na de las sigientes sper cies de regladas y representar ss respectivas familias de líneas coordenadas: (a) Sper cie cónica con base la circnferencia de ecaciones cartesianas x + y = 4, z = 0 y vértice el pnto (0; 1; 1). (b) Sper cie helicoidal formada por rectas qe se apoyan en na hélice y en el eje de la misma y qe son ortogonales al eje. (c) La sper cie formada por rectas qe se apoyan en la elipse de ecaciones cartesianas: = 1, z = 0, y son paralelas a la recta de ecaciones: x y +z = 1, x z = 0. x + y Obtener y representar las respectivas familias de líneas coordenadas de las sigientes sper cies (a) Banda de Moëbis (Möbis y Listing, 1858) con parametización: r(; v) = v sen sen(); v sen [0; ), v [ 1; 1]. cos(); v cos (b) Botella de Klein (Felix Klein, 188) (con MAPLE) con parametrización: r(; v) = a(; v)cos(); a(; v)sen(); sen sen(v) + cos a(; v) = + cos sen(v) sen sen (v) [0; ), v [0; 4) ; sen (v) 7. Obtener na parametrización reglar de la sper cie reglada formada por las rectas tangentes a la crva con parametrización: ; r() = (cos(); sen(); ) ; [0; 4]; y hallar la crva intersección de dicha sper cie con el plano z = Obtener na parametrización reglar de la sper cie tblar formada por circnferencias sitadas en el plano normal a la crva con parametrización r() = (cos(); sen(); ) ; y con centro el correspondiente pnto de la crva. coordenadas de dicha sper cie. [0; 4]; Representar las familias de líneas

3 Crvas y Sper cies. Estdio local de sper cies 1. Demostrar qe la primera forma fndamental de na sper cie S en n pnto P depende de la parametrización de la sper cie elegida. (Pista: Dar dos parametrizaciones distintas de na sper cie.). Se considera la esfera de radio R y centro el origen de coordenadas. Se pide: (a) Dar na parametrización de la esfera. (b) Calclar la longitd de la crva imagen de la crva parámetro = k 1 (constante) sobre la esfera. (c) Calclar la longitd de la crva imagen de la crva parámetro v = k (constante) sobre la esfera. 3. Se considera la sper cie con parametrización: r(; v) = (e cos v; e sin v; ). Se pide: (a) Hallar el plano tangente y la recta normal a la sper cie en P = p (b) Hallar las crvas coordenadas en el pnto P. Qé ánglo forman? ; p ; 0. (c) Hallar el ánglo formado por las crvas imagen de v = 4 + y v = 4. (d) Indicar la integral doble qe representa el área de la sper cie imagen mediante la parametrización dada de [ 1; 0] [0; ]. 4. Estdiar si hay pntos en la sper cie con parametrización: r(; v) = ( cos v + sin v; cos v sin v; ); R; v ( ; ); en los qe las crvas coordenadas se corten ortogonalmente. 5. Calclar la matriz de la primera forma fndamental y el área de las sigientes sper cies: (a) r(; v) = ( cos v; sin v; ), (; v) [0; 3] [0; ). (b) z = xy, con (x; y) D = f(x; y) R jx + y 1g. (c) r(; v) = ( cos v; sin v; v), 0 1, 0 v. (d) r(; v) = ( cos v; sin v; + 1), 3, 0 v. 6. Dada la sper cie con parametrización r(; v) = ( + v ; 3 ; v 3 ), con (; v) R, se pide: (a) La ecación del plano tangente a la sper cie, paralelo al plano 3x y z = 0. (b) El vector nitario normal a dicha sper cie en el pnto P = (; 1; 1). (c) Las crvas coordenadas en el pnto P y el ánglo qe forman dichas crvas.

4 Crvas y Sper cies. 7. Consideramos la sper cie generada al girar alrededor del eje OZ la crva z = log x contenida en el plano y = 0. (a) Obtener na parametrización de la sper cie. (b) Determinar el vector normal y el plano tangente en el pnto P = (1; 0; 0). (c) Hallar las crvas paramétricas en el pnto P. Son ortogonales? (d) Se considera la crva contenida en la sper cie dada por (t) = r(t + 1; t) con t [0; ] qe pasa por P. Qé ánglo forma con las crvas paramétricas en P? 8. Sea S la sper cie con parametrización r(; v) = (; +v; 3 v ) y sea (t) = (0; t; t ) contenida en S. Hallar el ánglo qe forma la crva con las crvas coordenadas en el pnto P = (0; 1; 1). 9. Calclar la primera y segnda forma fndamental y clasi car los pntos de las sigientes sper cies: (a) Esfera: r(; v) = (R cos cos v; R cos sin v; R sin ), con (; v) ( =; =) [0; ). (b) Helicoide: r(; v) = ( cos v; sin v; 4v), > 0, v > 0. (c) Toro: r(; v) = ((3 + cos ) cos v; (3 + cos ) sin v; sin ), con (; v) [0; ) [0; ). (d) Paraboloide hiperbólico: z = x 16 (e) Banda de Moebis: r(; v) = v sin sin ; v sin con (; v) [0; ) [ 1; 1]. 10. Hallar las crvas asintóticas del paraboloide hiperbólico z = x y. 11. Determínense los pntos mbílicos del elipsoide x + 4y + z = 4. y 5. cos ; v cos, 1. Determínense las direcciones principales de la sper cie engendrada por la crva x =, y =, z = 3 al trasladarse a lo largo del eje OX. 13. Se considera el pnto P de coordenadas ( ; 0; 1) de la sper cie mínima de Enneper 3 con parametrización: r(; v) = v v ; v v ; v ; (; v) R : Se pide: (a) Hallar las crvatras principales y direcciones principales en el pnto P. (b) Direcciones asintóticas (si las hay) en el pnto P. (c) Clasi car el pnto P. (d) Si la crvatra media de na sper cie en no de ss pntos es nla, pede a rmarse qe las direcciones asintóticas en dicho pnto son perpendiclares? Razonar la respesta.

5 Crvas y Sper cies. 14. Se considera la sper cie obtenida al girar de la crva () = (cosh ; 0; sinh ) alrededor del eje OZ. Se pide: (a) Comprobar qe la crva está contenida en el cilindro hiperbólico de ecación x y = 1 y en el plano de ecación y = 0. (b) Clasi car los pntos de la sper cie precisando, en s caso, las líneas de pntos parabólicos. (c) Obtener las líneas de crvatra principal. Qé tipo de crvas son? (d) Existen direcciones asintóticas en algún pnto de la sper cie? Si las hay, obtener las ecaciones paramétricas de las líneas asintóticas de la sper cie. 15. Se considera la sper cie S con representación paramétrica r(; v) = v; e v ; v ; [1; ]; v [0; ): Se pide: (a) Hallar el ánglo qe forman las dos crvas coordenadas qe contienen al pnto P = (0; 1; ). (b) Direcciones asintóticas en el pnto P. (c) Crvatras principales en el pnto P. 16. Se considera la sper cie con parametrización: Se pide: r(; v) = ( cos v; sin v; + 1): (a) Líneas coordenadas y ánglo qe forman en n pnto genérico de la sper cie. (b) Determinar las crvatras principales y clasi car los pntos reglares de la sper cie. (c) Direcciones principales y asintóticas (como vectores de R 3 ) en el pnto (1; 0; ). 17. Sea S la sper cie qe se obtiene al girar la crva C = fx = 1 + z ; y = 0g alrededor del eje OZ. Se pide: (a) Dar na parametrización de la sper cie S. (b) Hallar la ecación cartesiana del plano tangente en el pnto P = (1; 0; 0). (c) Clasi car el pnto P. (d) Calclar las crvatras y direcciones principales en P, expresando estas últimas como vectores de R 3. (e) Calclar la crvatra de Gass y crvatra media en P. (f) Obtener las direcciones asintóticas en P, expresadas como vectores de R 3. (g) Calclar la crvatra en la dirección qe forma n ánglo =4 con la dirección de crvatra mínima.

6 Crvas y Sper cies. 18. Se considera la sper cie S con representación paramétrica y el pnto P = (1; 1; 0). Se pide: r(; v) = ( + v + ; ; (v + 1) ); (; v) R (a) Calclar todos los pntos singlares de S. (b) Determinar la ecación del plano tangente a S en P. (c) Determinar na parametrización de la recta normal a S en P. (d) Calclar la matriz de la primera forma fndamental. (e) Determinar na parametrización de las crvas coordenadas de S qe contienen a P. Qé ánglo forman estas líneas coordenadas? (f) Se considera la crva contenida en la sper cie dada por (t) = r(t 1; t ) con t R qe pasa por P. Calclar el ánglo forma con la crva paramétrica = 1. (g) Calclar la matriz de la segnda forma fndamental de S en P. (h) Hallar las direcciones principales expresadas como vectores de R 3 y las crvatras principales de S en P. (i) Calclar la crvatra de Gass y la crvatra media en P. Clasi car el pnto P. (j) Hallar las direcciones asintóticas de S en P, expresadas como vectores de R 3.

1 Super cies regladas

1 Super cies regladas 1 Super cies regladas 1.1 De nición y ejemplos Vamos a estudiar una clase importante de super cies que son aquellas generadoas por una recta que se mueve a lo largo de una curva. Por tanto, son aquellas

Más detalles

INTEGRALES DE SUPERFICIE.

INTEGRALES DE SUPERFICIE. INTEGALE DE UPEFICIE. 31. Encontrar el área de la sperficie definida como intersección del plano x + y + z 1 con el sólido x + y 1. olción La sperficie dada se pede parametrizar por x cos v : y (/ ) sen

Más detalles

Prof. Enrique Mateus Nieves. Doctorando en Educación Matemática. Cálculo multivariado REPASO DE SECCIONES CONICAS

Prof. Enrique Mateus Nieves. Doctorando en Educación Matemática. Cálculo multivariado REPASO DE SECCIONES CONICAS REPASO DE SECCIONES CONICAS SUPERFICIES CUADRICAS Y SUS TRAZAS Elipsoide x z Ecuación canónica: 1 a b c Secciones paralelas al plano x: Elipses; Secciones paralelas al plano xz: Elipses; Secciones paralelas

Más detalles

Superficies paramétricas

Superficies paramétricas SESIÓN 7 7.1 Introducción En este curso ya se han estudiando superficies S que corresponden a gráficos de funciones de dos variables con dos tipos de representaciones: Representación explícita de S, cuando

Más detalles

Ejercicios resueltos.

Ejercicios resueltos. E.T.S. Arquitectura Curvas y super cies. Ejercicios resueltos.. Sea la curva intersección de la super cie z = xy con el cilindro parabólico y = x. Se pide: (a) En el punto P de coordenadas (0; 0; 0), obtener

Más detalles

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 3 Geometría del plano y del espacio José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es

Más detalles

ALGEBRA Y GEOMETRÍA I DPTO. DE MATEMÁTICA ESCUELA DE FORMACIÓN BÁSICA F.C.E.I.A U.N.R

ALGEBRA Y GEOMETRÍA I DPTO. DE MATEMÁTICA ESCUELA DE FORMACIÓN BÁSICA F.C.E.I.A U.N.R ALGEBRA Y GEOMETRÍA I DPTO. DE MATEMÁTICA ESCUELA DE FORMACIÓN BÁSICA F.C.E.I.A U.N.R SUPERFICIES ING. RICARDO F. SAGRISTÁ -2006- SUPERFICIES.- 1.- Ecuaciones de superficies. Ya hemos estudiado la superficie

Más detalles

5.- Superficies Superficies regladas

5.- Superficies Superficies regladas 5.- Superficies 5.1.- Superficies regladas Una de las grandes aportaciones de Gaudí a la arquitectura moderna ha sido el uso constructivo de las superficies regladas. Muchas de ellas contaban con una historia

Más detalles

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa NOMBRE: VECTORES EN EL PLANO Ángel de la Llave Canosa 1 VECTORES EN EL PLANO VECTOR FIJO Un vector fijo AB es n segmento orientado, qe está definido por dos pntos: Un pnto origen y n pnto extremo. Los

Más detalles

Colegio Internacional Torrequebrada. Departamento de Matemáticas

Colegio Internacional Torrequebrada. Departamento de Matemáticas Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene

Más detalles

Se puede considerar una superficie, como una lámina infinitamente delgada, que recubre un cuerpo, separa dos medios o dos regiones del espacio.

Se puede considerar una superficie, como una lámina infinitamente delgada, que recubre un cuerpo, separa dos medios o dos regiones del espacio. SUPERFICIES SUPERFICIES Se puede considerar una superficie, como una lámina infinitamente delgada, que recubre un cuerpo, separa dos medios o dos regiones del espacio. Una Superficie puede estar engendrada

Más detalles

Magnitudes escalares, son aquellas que quedan definidas por una sola cantidad que denominaremos valor del escalar.

Magnitudes escalares, son aquellas que quedan definidas por una sola cantidad que denominaremos valor del escalar. +34 9 76 056 - Fa: +34 9 78 477 Vectores: Vamos a distingir dos tipos de magnitdes: Magnitdes escalares, son aqellas qe qedan definidas por na sola cantidad qe denominaremos valor del escalar. Ej: Si decimos

Más detalles

Superficies cuádricas

Superficies cuádricas Superficies cuádricas Jana Rodriguez Hertz GAL2 IMERL 9 de noviembre de 2010 definición superficie cuádrica definición (forma cuadrática) una superficie cuádrica está dada por la ecuación: definición superficie

Más detalles

1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y

1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 5 1. Hallar la ecuación del plano que

Más detalles

Parcial I Cálculo Vectorial

Parcial I Cálculo Vectorial Parcial I Cálculo Vectorial Febrero 8 de 1 ( Puntos) I. Responda falso o verdadero justificando matematicamente su respuesta. (i) La gráfica de la ecuación cos ϕ = 1, en coordenadas esféricas en R3, es

Más detalles

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje. LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de

Más detalles

2 Intersección de una recta y una cuádrica. 1 Definición y ecuaciones. ( x y z

2 Intersección de una recta y una cuádrica. 1 Definición y ecuaciones. ( x y z 2. Cuádricas. En todo este capítulo trabajaremos en el espacio afín euclídeo E 3 con respecto a una referencia rectangular {O; ē 1, ē 2, ē 3}. Denotaremos por (x, y, las coordenadas cartesianas respecto

Más detalles

13. GEOMETRÍA ANALÍTICA EN R 3

13. GEOMETRÍA ANALÍTICA EN R 3 ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA 13. GEOMETRÍA ANALÍTICA EN R 3 I. Generalidades sobre Geometría analítica en R 3 - II. Ecuaciones

Más detalles

sea paralela al plano

sea paralela al plano x = 1+2t 1. [ANDA] [EXT-A] Considera los puntos A(1,1,2) y B(1,-1,-2) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por

Más detalles

Integral de superficie.

Integral de superficie. Tema 4 Integral de superficie. 4.1 uperficies. Definición 4.1 ean IR 2 un conjunto conexo y κ: IR 3 una función continua. La imagen = κ se llama superficie descrita por κ. También se dice que κ es una

Más detalles

6 La semejanza en el plano

6 La semejanza en el plano TIVIS MPLIIÓN 6 La semejanza en el plano 1. alcla las medidas de los segmentos,, z, t en la sigiente figra, sabiendo qe las medidas de los segmentos conocidos están epresadas en metros. 4 G z t. ibja n

Más detalles

Integración sobre superficies

Integración sobre superficies Problemas propuestos con solución Integración sobre superficies IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Parametrizaciones 1 2. Área de una superficie

Más detalles

a) La ecuación del plano que pasa por el punto ( 1, 1, 0 ). (3 puntos) b) La ecuación del plano que es paralelo a la recta r.

a) La ecuación del plano que pasa por el punto ( 1, 1, 0 ). (3 puntos) b) La ecuación del plano que es paralelo a la recta r. PROBLEMAS DE SELECTIVIDAD. BLOQUE GEOMETRÍA 1. En el espacio se dan las rectas Obtener a) El valor de para el que las rectas r y s están contenidas en un plano. (4 puntos) b) La ecuación del plano que

Más detalles

BLOQUE 2 : GEOMETRÍA

BLOQUE 2 : GEOMETRÍA BLOQUE 2 : GEOMETRÍA EJERCICIO 1 Dado el plano Л : x + 2y z = 2, el punto P( 2,3,2) perteneciente al plano Л y la recta r de ecuación:, a) Determina la posición relativa de r y Л. b) Calcula la ecuación

Más detalles

Ejercicios de Rectas y planos.

Ejercicios de Rectas y planos. Matemáticas 2ºBach CNyT. Ejercicios Rectas, planos. Pág 1/9 Ejercicios de Rectas y planos. 1. Las coordenadas de los vértices consecutivos de un paralelogramo son A(1, 0, 0) y B(0, 1, 0). Las coordenadas

Más detalles

Superficies. Conceptos generales

Superficies. Conceptos generales Repaso Superficies. Conceptos generales Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 2005 2006 REPASO: Superficies. Conceptos generales 1. Conceptos generales Definición

Más detalles

Secciones cónicas. Tema 02: Cónicas, cuádricas, construcción de conos y cilindros. Secciones Cónicas. Aplicaciones de las cónicas

Secciones cónicas. Tema 02: Cónicas, cuádricas, construcción de conos y cilindros. Secciones Cónicas. Aplicaciones de las cónicas Secciones cónicas Tema 02: Cónicas, cuádricas, construcción de conos y cilindros Juan Ignacio Del Valle Gamboa Sede de Guanacaste Universidad de Costa Rica Ciclo I - 2014 Las secciones cónicas toman su

Más detalles

IES EL PILES SELECTIVIDAD OVIEDO DPTO. MATEMÁTICAS Geometría

IES EL PILES SELECTIVIDAD OVIEDO DPTO. MATEMÁTICAS Geometría P.A.U. de. (Oviedo). (junio 994) Dados los puntos A (,0, ), B (,, ), C (,6, a), se pide: i) hallar para qué valores del parámetro a están alineados, ii) hallar si existen valores de a para los cuales A,

Más detalles

Método de identificación de modelos de orden reducido de tres puntos 123c

Método de identificación de modelos de orden reducido de tres puntos 123c Método de identificación de modelos de orden redcido de tres pntos 123c Víctor M. Alfaro, M.Sc. Departamento de Atomática Escela de Ingeniería Eléctrica Universidad de Costa Rica valfaro@eie.cr.ac.cr Rev:

Más detalles

La recta en el plano.

La recta en el plano. 1 CONOCIMIENTOS PREVIOS. 1 La recta en el plano. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas. Representación

Más detalles

GEOMETRÍA ANALÍTICA AB CD CD AB CD

GEOMETRÍA ANALÍTICA AB CD CD AB CD GEOMETRÍA ANALÍTICA.- Vectores..- Vectores fijos en el plano Llamaremos ector fijo a todo par ordenado de pntos del plano. Si los pntos son A y B conendremos en representar por AB el ector fijo qe determinan;

Más detalles

TEMA 5. VECTORES EN EL ESPACIO

TEMA 5. VECTORES EN EL ESPACIO TEMA 5. VECTORES EN EL ESPACIO ÍNDICE 1. INTRODUCCIÓN... 2 2. VECTORES EN EL ESPACIO.... 3 2.1. CONDICIONES INICIALES.... 3 2.2. PRODUCTO DE UN VECTOR POR UN NÚMERO.... 3 2.3. VECTORES UNITARIOS.... 3

Más detalles

( ), está dada por: g ( x) = log 2 ( x),x > 0. # % 3x log 2 ( 5), x 1 & + -, . log 2. log 2 ( x 3

( ), está dada por: g ( x) = log 2 ( x),x > 0. # % 3x log 2 ( 5), x 1 & + -, . log 2. log 2 ( x 3 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 05 S SEGUNDA EVALUACIÓN DE MATEMÁTICAS PARA INGENIERÍAS Y EDUCACIÓN

Más detalles

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES TEMA : CÁLCULO DE FUNCIONES DE AIAS AIABLES. Hallar f,. f, f,. 4 4. Hallar el valor de la función f, en los puntos de la circunferencia.. Calcular los guientes límites: cos lim,, sen lim,, c, lim con,

Más detalles

95 EJERCICIOS de RECTAS

95 EJERCICIOS de RECTAS 9 EJERCICIOS de RECTAS Forma paramétrica: 1. Dado el punto A(,3) y el vector director ur = (1, ), se pide: a) Hallar las ecuaciones paramétricas de la recta r que determinan. b) Obtener otros tres puntos

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2013 2014) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

SUPERFICIES CUÁDRICAS

SUPERFICIES CUÁDRICAS SUPERFICIES CUÁDRICAS Un cuarto tipo de superficie en el espacio tridimensional son las cuádricas. Una superficie cuádrica en el espacio es una ecuación de segundo grado de la forma Ax + By + Cz + Dx +

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

Academia de Matemáticas T.M Geometría Analítica Página 1

Academia de Matemáticas T.M Geometría Analítica Página 1 INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos

Más detalles

Conceptos geométricos II

Conceptos geométricos II Conceptos geométricos II Ángulo Ángulos Consecutivos Ángulos Alternos y Ángulos Correspondientes Polígono Polígono Regular Polígono Irregular Triángulo Cuadrilátero Superficie Círculo Superficie reglada

Más detalles

AMPLIACIÓN DE CÁLCULO

AMPLIACIÓN DE CÁLCULO AMPLIACIÓN DE CÁLCULO Problemas propuestos Departamento de Matemáticas del Área Industrial Programa de Ampliación de Cálculo. Curso 2014/15 1. Cálculo de integrales múltiples Integrales dobles en rectángulos;

Más detalles

Profesor: Fernando Ureña Portero

Profesor: Fernando Ureña Portero Curso 13-14 1.-Los puntos A(1,3,1) y B(2,1,3) son vértices consecutivos de un cuadrado. Los otros dos vértices pertenecen a una recta r que pasa por el punto P(2,7,0). a) (3p) Hallar la ecuación de la

Más detalles

x+2y = 6 z = [C-LE] [JUN-A] Calcúlese la distancia del origen al plano que pasa por A(1,2,0) y contiene a la recta r x+2 2 = y-1

x+2y = 6 z = [C-LE] [JUN-A] Calcúlese la distancia del origen al plano que pasa por A(1,2,0) y contiene a la recta r x+2 2 = y-1 1. [ANDA] [JUN-A] Considera el punto P(2,0,1) y la recta r a) Halla la ecuación del plano que contiene a P y a r. b) Calcula el punto simétrico de P respecto de la recta r. x+2y = 6 z = 2. 2. [ANDA] [SEP-A]

Más detalles

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

B22 Homología. Geometría plana

B22 Homología. Geometría plana Geometría plana B22 Homología Homología y afinidad Homología: es una transformación biunívoca e inequívoca entre los puntos de dos figuras F y F'. A cada punto y recta de la figura F le corresponde un

Más detalles

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica I Contenido 1 Introducción 2 La Circunferencia 3 Parábola 4 Elipse 5 Hiperbola Objetivos Se persigue que el estudiante:

Más detalles

GEOMETRIA 1 + = c) 4. d) e) 1 = 2. f) = 3 = g) 2 1 = h) 1. 6)Consideramos la recta r de ecuación 2

GEOMETRIA 1 + = c) 4. d) e) 1 = 2. f) = 3 = g) 2 1 = h) 1. 6)Consideramos la recta r de ecuación 2 GEOMETRIA )Dados el punto A(l,-,) el vector v(,,-), escribe las ecuaciones paramétricas continua de la recta cua determinación lineal es (A,v). )Escribe las ecuaciones paramétricas continua de la recta

Más detalles

3 Curvas alabeadas. Solución de los ejercicios propuestos.

3 Curvas alabeadas. Solución de los ejercicios propuestos. 3 Curvas alabeadas. Solución de los ejercicios propuestos.. Se considera el conjunto C = {(x, y, z R 3 : x y + z = x 3 y + z = }. Encontrar los puntos singulares de la curva C. Solución: Llamemos f (x,

Más detalles

VECTORES EN EL PLANO

VECTORES EN EL PLANO VECTORES EN EL PLANO.- PRIMERO DE BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 VECTORES EN EL PLANO Vector fijo. Es n segmento orientado. Lo representamos por AB o por. El pnto A es el origen y el pnto B

Más detalles

Aplicaciones físicas

Aplicaciones físicas Problemas propuestos con solución Aplicaciones físicas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ulles Índice 1 Integral doble: valor medio 1 2 Integral doble:

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

Geometría Analítica Agosto 2016

Geometría Analítica Agosto 2016 Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman

Más detalles

ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 5 Recta y Plano Cursada 2014

ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 5 Recta y Plano Cursada 2014 ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº Recta Plano Cursada Desarrollo Temático de la Unidad La recta en el plano: su determinación. Distintas formas de la ecuación de la recta a partir de la

Más detalles

UNPSJB - Facultad Ciencias Naturales - Asignatura: Matemática 1 Ciclo Lectivo: 2014 CONICAS

UNPSJB - Facultad Ciencias Naturales - Asignatura: Matemática 1 Ciclo Lectivo: 2014 CONICAS Asignatura: Matemática 1 Ciclo Lectivo: 014 CONICAS La superficie que se muestra en la figura se llama doble cono circular recto, o simplemente cono. Es la superficie tridimensional generada por una recta

Más detalles

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado:

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: CAPÍTULO. GEOMETRÍA AFÍN.. Problemas. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: a) A(,, ), v = (,, ) ; b) A(0,

Más detalles

ejerciciosyexamenes.com GEOMETRIA

ejerciciosyexamenes.com GEOMETRIA GEOMETRIA 1.- Dado el vector AB= (2,-1,3) y el punto B(3,1,2) halla las coordenadas del punto A. Sol: A =(1,2,-1) 2.- Comprobar si los vectores AB y CD son equipolentes, siendo A(1,2,-1), B(0,3,1), C(1,1,1)

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS

Más detalles

Tema 1.- Cónicas y Cuádricas.

Tema 1.- Cónicas y Cuádricas. Ingenierías: Aeroespacial, Civil y Química. Matemáticas I. 2010-2011. Departamento de Matemática Aplicada II. Escuela Superior de Ingenieros. Universidad de Sevilla. Tema 1.- Cónicas y Cuádricas. 1.1.-

Más detalles

ACLARACIONES SOBRE EL EXAMEN

ACLARACIONES SOBRE EL EXAMEN 1 (1 punto) Desarrolle el siguiente tema de teoría: Teorema de Taylor y aplicación. 2 (1.2 puntos) Considere los números complejos z = 1 + i y w = 3(cos( π) + i sen( π )). Calcule 3 3 a) z + w b) z 4 c)

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto. MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación

Más detalles

Dibujar los siguientes cuerpos, de los que se dan algunos de sus elementos.

Dibujar los siguientes cuerpos, de los que se dan algunos de sus elementos. Cilindro recto de altura mm. Cilindro oblicuo de altura mm. Tronco de cilindro recto. Cono recto de altura mm. Cono oblicuo de vértice V. Tronco de cono recto de Cilindro recto de altura mm. Cilindro oblicuo

Más detalles

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3 Definición LA CIRCUNFERENCIA Se llama circunferencia a la sección cónica generada al cortar un cono recto con un plano perpendicular al eje del cono. La circunferencia es el lugar geométrico de todos los

Más detalles

Apuntes de dibujo de curvas

Apuntes de dibujo de curvas Apuntes de dibujo de curvas El objetivo de estas notas es dar unas nociones básicas sobre dibujo de curvas definidas por medio de ecuaciones cartesianas explícitas o paramétricas y polares: 1. Curvas en

Más detalles

Dibujo Técnico Curvas cónicas-parábola

Dibujo Técnico Curvas cónicas-parábola 22. CURVAS CÓNICAS-PARÁBOLAS 22.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar

Más detalles

INDICE. 88 determinante 36. Familias de líneas rectas Resumen de resultados 96 Capitulo IV

INDICE. 88 determinante 36. Familias de líneas rectas Resumen de resultados 96 Capitulo IV INDICE Geometría Analítica Plana Capitulo Primero Artículo 1. Introducción 1 2. Segmento rectilíneo dirigido 1 3. Sistema coordenado lineal 3 4. Sistema coordenado en el plano 5 5. Carácter de la geografía

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1 TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II º Bach. TEMA 5 VECTORES EN EL ESPACIO 5. LOS VECTORES Y SUS OPERACIONES DEINICIÓN Un ector es n segmento orientado. Un ector extremo B. Elementos de n ector:

Más detalles

Espacio afín. 1. Rectas en el espacio. Piensa y calcula. Aplica la teoría

Espacio afín. 1. Rectas en el espacio. Piensa y calcula. Aplica la teoría 6 Espacio afín 1. Rectas en el espacio Piensa y calcula Calcula las coordenadas de un vector que tenga la dirección de la recta que pasa por los puntos A2, 1, 5 y B3, 1, 4 AB 1, 2, 1 Aplica la teoría 1.

Más detalles

TEMA 7: PROBLEMAS MÉTRICOS EN EL ESPACIO

TEMA 7: PROBLEMAS MÉTRICOS EN EL ESPACIO TEMA 7 Ejercicios / TEMA 7: PROBLEMAS MÉTRICOS EN EL ESPACIO. Calcula el ángulo que forman las rectas x y 4 z 5 y x y 4 z 5 Como los vectores directores u,4,5 y v,4,5 son perpendiculares, las rectas son

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

RECTAS Y PLANOS EN EL ESPACIO. donde OP y OP

RECTAS Y PLANOS EN EL ESPACIO. donde OP y OP RECTAS Y ANOS EN E ESACIO A RECTA EN R Ecacines de la recta En el espaci R se determina na recta si se cnce n pnt de ella dirección representada pr n ectr n nl Figra a Recta en R Cm se bsera en la Figra

Más detalles

Decimos que la superficie esférica es el conjunto de los puntos del espacio tridimensional que equidistan de un punto fijo llamado centro.

Decimos que la superficie esférica es el conjunto de los puntos del espacio tridimensional que equidistan de un punto fijo llamado centro. 8 LAS SUPERFICES COMO LUGARES GEOMÉTRICOS Como hemos dicho en la página del presente capítulo, los planos, la superficie esférica, los cilindros los conos pueden tratarse con relativa facilidad en el espacio

Más detalles

ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia.

ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia. ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de 2012. Circunferencia. Elementos de la circunferencia. El segmento de recta es una cuerda. El segmento de recta es una cuerda que pasa por el centro, por lo tanto

Más detalles

GEOMETRÍA DEL ESPACIO EUCLÍDEO

GEOMETRÍA DEL ESPACIO EUCLÍDEO CAPÍTULO I. GEOMETRÍA DEL ESPACIO EUCLÍDEO SECCIONES 1. Vectores. Operaciones con vectores. 2. Rectas y planos en R 3. 3. Curvas y superficies en R 3. 4. Nociones de topología métrica. 1 1. VECTORES. OPERACIONES

Más detalles

Cónicas y Cuádricas con Surfer

Cónicas y Cuádricas con Surfer Cónicas y Cuádricas con Surfer Daniel Alejandro Grimaldi 29/08/2016-2do Cuatrimestre de 2016 Denición: Se conoce como cuádrica a la supercie en R n que representa los ceros de un polinomio de grado 2 con

Más detalles

Tarea 1 - Vectorial 201420

Tarea 1 - Vectorial 201420 Tarea - Vectorial 040. Part :. - 3... Hacer parametrización de la curva de intersección del cilindro x + y = 6 y el plano x + z = 5. Encontrar las coordenadas de los puntos de la curva donde la curvatura

Más detalles

Superficies Curvas. Guía de clase elaborada por Ing. Guillermo Verger

Superficies Curvas. Guía de clase elaborada por Ing. Guillermo Verger Superficies Curvas Guía de clase elaborada por Ing. Guillermo Verger www.ingverger.com.ar Superficie cilíndrica Es aquella generada por una recta llamada generatriz que se mueve en el espacio manteniendose

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS EJERCICIOS PROPUESTOS ) Se dan los siguientes puntos por sus coordenadas: A(3, 0), B(, 0), C(0, ) y sea P un punto variable sobre el eje. i) Hallar la ecuación de la recta (AC) y de la recta (r) perpendicular

Más detalles

APELLIDOS Y NOMBRE:...

APELLIDOS Y NOMBRE:... 1º BACHILLERATO Fecha: 6-09-011 PRUEBA INICIAL APELLIDOS Y NOMBRE:... NORMAS El eamen se realizará con tinta de un solo color: azul ó negro No se puede usar corrector Se valorará potivamente: ortografía,

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometría del espacio: problemas de ángulos y distancias; simetrías MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Ángulos

Más detalles

Tema 7: Geometría Analítica. Rectas.

Tema 7: Geometría Analítica. Rectas. Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos

Más detalles

CUADERNO XI CÓNICAS Y CUÁDRICAS. Miguel A. Sainz, Joan Serarols, Anna M. Pérez Dep. de Informática y Matemática Aplicada Universidad de Girona

CUADERNO XI CÓNICAS Y CUÁDRICAS. Miguel A. Sainz, Joan Serarols, Anna M. Pérez Dep. de Informática y Matemática Aplicada Universidad de Girona Capítulo XI : Cónicas y cuádricas 1 CUADERNO XI CÓNICAS Y CUÁDRICAS Miguel A. Sainz, Joan Serarols, Anna M. Pérez Dep. de Informática y Matemática Aplicada Universidad de Girona RESUMEN: Se estudian las

Más detalles

TEMA 6. ECUACIONES DE LA RECTA

TEMA 6. ECUACIONES DE LA RECTA TEMA 6. ECUACIONES DE LA RECTA Dados un punto y un vector, vamos a hallar las ecuaciones de la recta r que pasa por el punto A y es paralela al vector. Sea consideramos los vectores un punto cualquiera

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Teoría Tema 9 Ecuaciones del plano

Teoría Tema 9 Ecuaciones del plano página 1/11 Teoría Tema 9 Ecuaciones del plano Índice de contenido Determinación lineal de un plano. Ecuación vectorial y paramétrica...2 Ecuación general o implícita del plano...6 Ecuación segmentaria

Más detalles

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales TEMA 7 Las formas y las medidas que nos rodean 1. Introducción 1.1. Qué es la geometría? Es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras geométricas en el plano

Más detalles

7. Cónicas. Propiedades métricas y ópticas

7. Cónicas. Propiedades métricas y ópticas Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 49 7. Cónicas. Propiedades métricas y ópticas Cónicas Círcunferencias, elipses, parábolas, e hipérbolas son llamadas secciones cónicas

Más detalles

Lección 3. Cálculo vectorial. 4. Integrales de superficie.

Lección 3. Cálculo vectorial. 4. Integrales de superficie. GRAO E INGENIERÍA AEROEPACIAL CURO 0 MATEMÁTICA II PTO E MATEMÁTICA APLICAA II 4 Integrales de sperficie Nestro último paso en la etensión del concepto de integral es el estdio de las integrales de sperficie,

Más detalles

1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2)

1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 2. Halla la ecuación de la recta r, sabiendo que es paralela a y=2x-3 y pasa por el punto (1,3). 3. Halla la ecuación de la recta

Más detalles

1. Sea f una función definida en I = [1, 2] [1, 4] del siguiente modo: (x + y) 2, x y 2x, 0, en el resto.

1. Sea f una función definida en I = [1, 2] [1, 4] del siguiente modo: (x + y) 2, x y 2x, 0, en el resto. La integral múltiple Problemas resueltos. Sea f una función definida en I [, ] [, 4] del siguiente modo: { (x + y), x y x, f(x, y), en el resto. Indique, mediante un dibujo, la porción A del rectángulo

Más detalles

Tema 6. Planos y rectas en el espacio. Problemas métricos (Ángulos, paralelismo y perpendicularidad, simetrías, distancias )

Tema 6. Planos y rectas en el espacio. Problemas métricos (Ángulos, paralelismo y perpendicularidad, simetrías, distancias ) Matemáticas II (Bachillerato de Ciencias) Geometría del espacio: Problemas métricos 7 Tema 6 Planos rectas en el espacio Problemas métricos (Ángulos, paralelismo perpendicularidad, simetrías, distancias

Más detalles

LÍMITES, CONTINUIDAD Y DERIVADAS

LÍMITES, CONTINUIDAD Y DERIVADAS LÍMITES, CONTINUIDAD Y DERIVADAS ÍNDICE. Concepto de límite. Propiedades de los límites 3. Definición de continidad 4. Tipos de continidad 5. Concepto de derivada 6. Tabla de derivadas 7. Crecimiento y

Más detalles

Funciones de varias variables.

Funciones de varias variables. Funciones de varias variables. Definición. Hasta ahora se han estudiado funciones de la forma y = f (x), f :D Estas funciones recibían el nombre de funciones reales de variable real ya que su valor y dependía

Más detalles

CONICAS Y LUGARES GEOMÉTRICOS ( problemas resueltos)

CONICAS Y LUGARES GEOMÉTRICOS ( problemas resueltos) CONICAS Y LUGARES GEOMÉTRICOS ( problemas resueltos) Ejercicio nº 1.- Escribe la ecuación de la circunferencia con centro en el punto (, 3) que es tangente a la recta 3 4 + 5 = 0. El radio, R, de la circunferencia

Más detalles

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos

Más detalles

3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2

3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2 34 CAPÍTULO 3 Vectores en R R 3 ais sqare a=ais; ais([min(a([1,3])),ma(a([,4])),min(a([1,3])),ma(a([,4]))]) % hold off Una ez qe se haa escrito la fnción en n archio con nombre lincomb.m, dé el comando

Más detalles