DE POTENCIA I. Pablo Medina Cofré

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DE POTENCIA I. Pablo Medina Cofré"

Transcripción

1 EL57A SISTEMAS ELÉCTRICOS DE POTENCIA I Pablo Medina Cofré

2 Herramientas matemáticas. En general, en ingeniería podemos separar el estudio de los fenómenos en: Régimen permanente. Transitorios. Un buen conocimiento del régimen permanente es necesario, ya que la mayor parte del tiempo los sistemas operan ahí. Herramientas de cálculo simples, que permitan aprovechar el hecho de que d/dt=0 o que se tienen sistemas harmónicos, son muy necesarias.

3 El root mean square. Para una función f(t) en el intervalo [to,to+t], se define el valor medio cuadrático (RMS) como: f 0 1 t + T t 0 = f t dt T Para una función sinusoidal de amplitud A y período T=1/(πf) 1 π 1 f A cos ft dt f = 1 π = 0 πf A ( u) = + sen( u) 1 1 cos 4 En electricidad, a la amplitud se le llama valor efectivo. Luego: ef RMS =

4 El root mean square. Si se calcula la energía disipada por la resistencia del circuito en un ciclo: ef cos( ωt) i t ( ω ) ( ω ) ef cos t ef cos t = p( t) = v( t) i( t) = R R 1 πf 1 πf 1 1 ef E( t) = p( t) dt= ef cos ( ωt) dt R = = R 0 0 = RMS R El RMS de la fuente alterna es el voltaje de una fuente continua que entrega la misma energía a la resistencia durante un ciclo. RMS ef

5 Transformada fasorial. Motivación: calcular la tensión del condensador: ef cos( ωt) ( ω + ϕ) = ( ω ) ( ϕ) ( ω ) ( ϕ) cos t cos t cos sin t sin / L L s ω s + ω s + ω { cos( ωt+ ϕ) } = cos( ϕ) sin( ϕ) d dt cos( ωt+ ϕ) = RC v ( t) + v ( t) RMS c c ( ϕ) ωsin( ϕ) scos ef 1 0 = + c c s + ω s + ω ( src ) ( s) RCv c ( s) = ( ϕ) 1 ef scos ϕ ωsin vc 0 + RC s+ 1 ( s + ω ) ( s + ω ) RC + RC ( s 1 )

6 Transformada fasorial. c ( s) = ( ϕ) 1 ef scos ϕ ωsin vc 0 + RC s+ 1 ( s + ω ) ( s + ω ) RC + RC ( s 1 ) En sistemas de potencia, interesa mucho saber el comportamiento en régimen permanente sinusoidal. En el caso del condensador, si t es grande, el término en verde (respuesta a entrada cero) desaparece. El término en rojo, en el dominio del tiempo, tiene una componente transiente y otra harmónica. Por lo tanto, sería conveniente contar con una herramienta que permita calcular la respuesta de régimen permanente, despreciando los términos transitorios.

7 Transformada fasorial. = cos( ωt+ ϕ) v t ef { RMS } jωt jϕ { RMSe e } = Re cos( ω + ϕ) + sin( ω + ϕ) v t t j t = Re { } { } efcos( ω ϕ) jϕ jωt jωt F v t F t RMSe e e = + = = & En una ecuación diferencial, si la función forzante es de frecuencia angular ω, las soluciones de estado estable también. La transformada fasorial de una función (o fasor) es única para todo t. También se puede ver que es lineal. El factor e jωt está siempre presente, razón por la cual suele omitirse. Lo mismo ocurre con el factor raíz de dos.

8 Transformada fasorial. Transformada de la derivada: { ef } d F ef cos t F sin t dt π sen( ωt+ ϕ) = cos ωt+ ϕ+ ( ω + ϕ) = ω ( ω + ϕ) t 1 F ef cos( ωt+ ϕ) = & jω 0 π j jϕ jωt jϕ jωt RMSe e e jωrmse e = ω = La derivada giró al fasor en 90 y lo multiplicó por ω. En términos prácticos, el operador derivada se reemplaza por el operador jω. Se propone demostrar que: { } = jωf v t = jω&

9 Transformada fasorial. olviendo a nuestro ejemplo: d dt cos( ωt+ ϕ) = RC v ( t) + v ( t) ef c c & ( ω ) { } { } e = j RC F v t + F v t jϕ RMS c c ( 1 ω ) j c + j RC = RMSe ϕ & c = 1+ 1 ( ωrc) 1 vc( t) = cos tan ef + RC 1+ ( ωrc) e RMS j 1 ( ϕ+ tan ( ωrc) ) 1 ( ϕ ( ω ))

10 Cálculo en p.u. I L Esta materia se estudió en los cursos anteriores. Sin embargo, el trabajo en este curso se hace con esta metodología, razón por la cual se analizará al menos el uso de base trifásica. Motivación: Analizar el circuito de la figura: S b b ff = = 3S 3 b 3φ 1φ b fn S Z 3φ b1φ = 3 I I = b b b b ff L L 3φ 1φ 1φ 3φ S 3 b ff bfn 3 = = = S S S b b b b b ff b ff fn fn fn ff I L Z Z [ ] = [ ] [ ] Z Ohm I A [..] = [..] [..] pu Z pu I pu L

11 Cálculo en p.u. Definiendo dos cantidades bases, se tienen las restantes. En el curso, y S serán las bases principales. El cálculo en p.u. se utiliza porque: Evita complicaciones con las unidades Permite la rápida detección de errores (ej.: en los SEP s, las tensiones son valores cercanos a uno). El trabajo en sistemas con diferentes niveles de tensión se simplifica no es necesario incorporar transformadores ideales a la representación. Para que el método funcione, la base trifásica de potencia debe ser común para todo el sistema.

12 Cálculo en p.u. & = ZI & & ideal & = ZI & & + 1 ideal & ZI & & & Z& I& 1ideal 1ideal 1= ideal ideal & I& Z& Z& & ideal ideal & 1ideal 1ideal 1= I& Z& & = + 3I ideal 3I { b1 tot 1fn 1 1 1ideal fn b b1 b1 b1 b b1 S b3φ 1ideal I & = I & * * 1 1 ideal ideal Z Z 1 Si se eligen los voltajes bases de ambos sectores iguales a la relación de vueltas, todo se simplifica! tot & [ pu] = I& [ pu] Z& [ pu] + & [ pu] b 1ideal 1ff ff.. b1 ideal ideal

13 Potencia activa y reactiva monofásica. La potencia instantánea consumida por una carga es: rms ( ω ) rms ( ω ϕ) ( ω ) ( ω ϕ) ( ϕ) ( ω ϕ) pt () = vt ()() it = cos t I cos t+ = I cos t cos t+ rms rms = rmsirms cos + rmsirms cos t Constante... Conocido? Oscilaaldobledeω Expandiendo el término oscilante: ( ϕ) ( ϕ) ( ω ) ( ϕ) ( ω ) pt () = I cos + I cos cos t I sin sin t rms rms rms rms rms rms P( ( ω )) Q ( ω ) pt () = 1+ cos t sin t Potencia Activa Potencia Reactiva Bautizo!

14 Potencia activa y reactiva monofásica. Al integrar en un periodo la potencia instantánea: El primer término nunca es cero, pero oscila. El segundo término es cero, por lo que no produce trabajo útil. P( ( ω )) Q ( ω ) pt () = 1+ cos t sin t Para probar lo anterior, analizaremos el sistema físico de la derecha. Calcularemos cuál es el trabajo que desarrolla en un ciclo cada componente de la potencia instantánea. I ω

15 Potencia activa y reactiva monofásica. Concepto de potencia compleja: & && { } { rmscos ω ϕ } { } rmscos( ω ) & = F v t = F t = & { } j I = F i t = F I t+ = Irmse ϕ ϕ * S = I = rmsirmscos + jrmsirmssin = P+ jq ϕ rms La forma de la expresión anterior se debe en parte al uso de valores efectivos en la definición de fasores.

16 Potencia activa y reactiva trifásica. La potencia instantánea en un sistema trifásico es: p t = v 3 a t ia t + vb t ib t + vc t ic t φ Si el sistema es equilibrado: p t 3φ ( ωt) ( ωt ϕ) ( ωt ) ( ωt ϕ ) ( ωt+ ) ( ωt ϕ+ ) cos cos + cos 10 cos 10 + = rmsirms cos 10 cos 10 p( t) = 3cos cos( ) cos( 40 ) cos( 40 ) 3 rmsi rms ϕ + ωt+ ϕ + ωt+ ϕ + ωt ϕ+ φ = 3 I cos p t φ rms rms ϕ

17 Potencia activa y reactiva trifásica. La potencia activa es constante y genera trabajo neto no nulo en un ciclo. A diferencia del caso monofásico, no tiene componente reactiva, pero existe componente reactiva en cada una de las fases. Por un asunto de uniformidad, se asume que existe una potencia reactiva trifásica y Q 3f =3Q 1f Qué potencia es esta si no existe la potencia reactiva trifásica? Fuente: ABB

Sistemas Lineales 1 - Práctico 5

Sistemas Lineales 1 - Práctico 5 Sistemas Lineales 1 - Práctico 5 Régimen sinusoidal 1 er semestre 2018 Las principales ideas a tener en cuenta en este práctico son: La impedancia de un elemento se define por la relación V (jω 0 ) = Z(jω

Más detalles

Universidad de la República Facultad de Ingeniería. Electrotécnica 1. Clase 3 - Generalidades de Circuitos AC. Curso 2018

Universidad de la República Facultad de Ingeniería. Electrotécnica 1. Clase 3 - Generalidades de Circuitos AC. Curso 2018 Universidad de la República Facultad de Ingeniería Electrotécnica 1 Clase 3 - Generalidades de Circuitos AC Curso 2018 Contenido de la presentación Bibliografía de referencia Régimen sinusoidal Fasores

Más detalles

es e valor máximo de la fem

es e valor máximo de la fem U Tópicos apítulo de : Electricidad orriente Alterna y Magnetismo J. Pozo, J. Pozo, A. A. eón eón y.m. y.m. horbadjian. APÍTUO OENTE ATENA (A.. ntroducción Para generar corriente alterna, se puede considerar

Más detalles

RÉGIMEN PERMANENTE DE CORRIENTE ALTERNA SINUSOIDAL

RÉGIMEN PERMANENTE DE CORRIENTE ALTERNA SINUSOIDAL CPÍTULO 3 RÉGIMEN PERMNENTE DE CORRIENTE LTERN SINUSOIDL PR1. TEÓRICO-PRÁCTICO FSORES... 2 PR2. TEÓRICO-PRÁCTICO FSORES... 2 PR3. MÉTODOS SISTEMÁTICOS... 3 PR4. POTENCIS... 3 PR5. POTENCIS... 4 PR6. POTENCIS...

Más detalles

CURSO VIII CICLO SISTEMAS ELECTRICOS DE POTENCIA SEMANA 2

CURSO VIII CICLO SISTEMAS ELECTRICOS DE POTENCIA SEMANA 2 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA CURSO VIII CICLO SISTEMAS ELECTRICOS DE POTENCIA SEMANA 2 OBJETIVO Representar y analizar un SEP monofásico BIBLIOGRAFIA Duncan-Sarma.2003.

Más detalles

En la figura se muestra un generador alterno sinusoidal conectado a una resistencia.

En la figura se muestra un generador alterno sinusoidal conectado a una resistencia. INACAP ELECTRICIDAD 2 GUIA DE APRENDIZAJE UNIDAD-2 CIRCUITOS BASICOS EN CORRIENTE ALTERNA SINUSOIDAL En esta unidad se estudiará el comportamiento de circuitos puros ( resistivos, inductivos y capacitivos)

Más detalles

UNIVERSIDAD DE VIGO. Escuela de Ingeniería de Telecomunicación

UNIVERSIDAD DE VIGO. Escuela de Ingeniería de Telecomunicación UNIVESIDAD DE VIGO Escuela de Ingeniería de Telecomunicación Grado en Ingeniería de Tecnologías de Telecomunicación Primer curso Análisis de circuitos lineales Examen de 8 mayo 0 Departamento de Teoría

Más detalles

CORRIENTE ALTERNA ÍNDICE

CORRIENTE ALTERNA ÍNDICE CORRIENTE ALTERNA ÍNDICE 1. Introducción 2. Generadores de corriente alterna 3. Circuito de CA con una resistencia 4. Circuito de CA con un inductor 5. Circuito de CA con un condensador 6. Valores eficaces

Más detalles

El circuito mostrado en la figura representa un modelo más próximo a un caso real. jω hlt

El circuito mostrado en la figura representa un modelo más próximo a un caso real. jω hlt ARMONICAS Ejemplo 1.3 El circuito mostrado en la figura 1.3.1 representa un modelo más próximo a un caso real. jω hlt representa la impedancia j de Thévenin de un circuito complejo, es una reactancia ω

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2010-2011 MATERIA: ELECTROTECNIA INSTRUCCIONES GENERALES Y VALORACIÓN TIEMPO:

Más detalles

Sistemas Lineales 1 - Práctico 10

Sistemas Lineales 1 - Práctico 10 Sistemas Lineales 1 - Práctico 10 Sistemas Polifásicos 1 er semestre 2018 1.-En los circuitos de la figura 1, las fuentes forman un sistema triásico y perfecto. Figura 1: Carga conectada en estrella y

Más detalles

GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA

GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA 1. Un circuito serie de corriente alterna consta de una resistencia R de 200 una autoinducción de 0,3 H y un condensador de 10 F. Si el generador

Más detalles

UNIVERSIDAD JOSE CARLOS MARIATEGUI LECCIÓN Nº 06 EXPRESIONES COMPLEJAS PARA LA CORRIENTE Y EL VOLTAJE 1. ELEMENTOS PASIVOS

UNIVERSIDAD JOSE CARLOS MARIATEGUI LECCIÓN Nº 06 EXPRESIONES COMPLEJAS PARA LA CORRIENTE Y EL VOLTAJE 1. ELEMENTOS PASIVOS LECCIÓN Nº 06 EXPRESIONES COMPLEJAS PARA LA CORRIENTE Y EL VOLTAJE 1. ELEMENTOS PASIVOS 61 2. FASORES Es necesario conocer las entidades de Euler y números complejos para entender favores. Sean a y b dos

Más detalles

ELSP14 Electricidad Aplicada II. ELSP14 Electricidad Aplicada II

ELSP14 Electricidad Aplicada II. ELSP14 Electricidad Aplicada II Guía de ÁREA Ejercicios ELECTRICIDAD-ELECTRÓNICA en Aula N 1 Tema: Relación de grafica de función seno con onda sinusoidal Docente: Milton Sepúlveda P. Unidad de Aprendizaje N 1: Origen y teoría de la

Más detalles

ELO102 Teoría de Redes I Tercer Certamen y soluciones 1er. Semestre 2009

ELO102 Teoría de Redes I Tercer Certamen y soluciones 1er. Semestre 2009 EO10 Teoría de edes I Tercer Certamen y soluciones 1er. Semestre 009 Sin formularios, sin libros, sin apuntes, sin calculadora y sin cualquier tipo de dispositivo electrónico. No hay preguntas durante

Más detalles

Definiciones iniciales en corriente alterna

Definiciones iniciales en corriente alterna Definiciones iniciales en corriente alterna Objetivos 1. Calcular y relacionar entre si los distintos parámetros que caracterizan a las funciones sinusoidales, según los criterios conocidos de las matemáticas

Más detalles

Procesos transitorios y frecuencia compleja

Procesos transitorios y frecuencia compleja Procesos transitorios y frecuencia compleja Objetivos 1. Comprender y familiarizarse con los procesos transitorios en circuitos de primer orden estimulados con corriente alterna, aplicando el método clásico

Más detalles

Departamento de Electrónica y Sistemas PARTE III) CIRCUITOS CON SEÑALES VARIANTES EN EL TIEMPO

Departamento de Electrónica y Sistemas PARTE III) CIRCUITOS CON SEÑALES VARIANTES EN EL TIEMPO Departamento de Electrónica y Sistemas PARTE III) CIRCUITOS CON SEÑALES VARIANTES EN EL TIEMPO 1) Señales y sistemas 2) Tipos de señales 3) Función de transferencia de los elementos pasivos de un circuito

Más detalles

INDICE Capitulo 1. Variables de Circuitos Capitulo 2. Elementos de Circuito Capitulo 3. Circuitos Resistivos Simples

INDICE Capitulo 1. Variables de Circuitos Capitulo 2. Elementos de Circuito Capitulo 3. Circuitos Resistivos Simples INDICE Capitulo 1. Variables de Circuitos 1 1.1. Introducción a la ingeniería eléctrica 1 1.2. Sistema internacional de unidades 8 1.3. Introducción al análisis de circuitos 10 1.4. Voltaje y corriente

Más detalles

Tema 0. Cálculos de potencia

Tema 0. Cálculos de potencia ema Cálculos de potencia emario Potencia y Energía Potencia Instantánea Energía t W = t 1 p t =v t.i t Watios p t dt Julios p =potencia absorbida p =potencia entregada t Potencia media (activa) P media

Más detalles

Práctico 4 - Int. a la Electrotécnica

Práctico 4 - Int. a la Electrotécnica Práctico 4 - Int. a la Electrotécnica Transformador Trifásico Problema 1 Tres transformadores monofásicos se conectan entre si para formar un banco trifásico. Los transformadores tienen relación de vueltas

Más detalles

PRÁCTICA NÚMERO 6. ESTUDIO DE UN CIRCUITO RLC EN CORRIENTE ALTERNA.

PRÁCTICA NÚMERO 6. ESTUDIO DE UN CIRCUITO RLC EN CORRIENTE ALTERNA. PRÁCTCA NÚMERO 6. ESTUDO DE UN CRCUTO RLC EN CORRENTE ALTERNA. 6.. Análisis Teórico del Circuito. En las prácticas anteriores se ha analizado el comportamiento del circuito RLC cuando este es alimentado

Más detalles

Teoría de Circuitos: presentación del curso

Teoría de Circuitos: presentación del curso Teoría de Circuitos: presentación del curso Pablo Monzón Instituto de Ingeniería Eléctrica (IIE) Facultad de Ingeniería-Universidad de la República Uruguay Segundo semestre - 2018 Contenido 1 Presentación

Más detalles

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (III) TERCERA PARTE: corriente

Más detalles

Algunas ideas por analizar:

Algunas ideas por analizar: Algunas ideas por analizar: Repaso de Potencias Calidad del Convertidor /Rectificador Qué ocurre si la fuente no es ideal (tiene una inductancia)? Es una carga altamente inductiva? Cómo conseguir corriente

Más detalles

6. CORRIENTE ALTERNA PARA SIMPLIFICAR LA NOTACIÓN V V

6. CORRIENTE ALTERNA PARA SIMPLIFICAR LA NOTACIÓN V V 6. OENE AENA 6.1 ircuito, circuito y circuito. Fasores. 6. ircuito, circuitos en serie con y sin generador. 6.3 ircuito en serie con fasores. 6.4 esonancia 6.5 ransformadores. AA MFA A NOAÓN 6.1 ircuito,

Más detalles

Sistemas Lineales 1. Pablo Monzón. Primer semestre

Sistemas Lineales 1. Pablo Monzón. Primer semestre Sistemas Lineales 1 Pablo Monzón Instituto de Ingeniería Eléctrica (IIE) Facultad de Ingeniería-Universidad de la República Uruguay Primer semestre - 2018 Contenido 1 Presentación del curso 2 Objetivos

Más detalles

Aplicación de funciones de variable compleja en circuitos eléctricos: fasores

Aplicación de funciones de variable compleja en circuitos eléctricos: fasores Aplicación de funciones de variable compleja en circuitos eléctricos: fasores Ocampo Matias Estudiante de Ingeniería Eléctrica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina

Más detalles

ELECTROTECNIA Circuitos de Corriente Alterna

ELECTROTECNIA Circuitos de Corriente Alterna ELECTROTECNIA Circuitos de Corriente Alterna Juan Guillermo alenzuela Hernández (jgvalenzuela@utp.edu.co) Universidad Tecnológica de Pereira Segundo Semestre de 2014 Juan alenzuela 1 alores Eficaces de

Más detalles

Calidad en el Servicio Eléctrico

Calidad en el Servicio Eléctrico magnitud de -Cargas y no David Llanos Rodríguez dllanosr@eia.udg.es Girona, Febrero 18 de 2003 magnitud de -Cargas y no Introducción: Uso racional de la energía eléctrica quiere decir obtener el máximo

Más detalles

Unidad 3 - Corriente Alterna Conceptos:

Unidad 3 - Corriente Alterna Conceptos: Unidad 3 - Corriente Alterna Conceptos: 1. LabView Signal Express. Circuito LC 3. Circuito RLC Oscilaciones Electromagnéticas En los circuitos RC y RL verificamos ue la carga, la corriente y la diferencia

Más detalles

Unidad Didáctica 2. Corriente Alterna Monofásica. Instalaciones y Servicios Parte II. Corriente Alterna Monofásica

Unidad Didáctica 2. Corriente Alterna Monofásica. Instalaciones y Servicios Parte II. Corriente Alterna Monofásica Instalaciones y Servicios Parte II Corriente Alterna Monofásica Unidad Didáctica 2 Corriente Alterna Monofásica Instalaciones y Servicios Parte II- UD2 CONTENIDO DE LA UNIDAD Introducción a la corriente

Más detalles

Potencia en corriente alterna

Potencia en corriente alterna Potencia en corriente alterna En una corriente eléctrica la potencia se define como el producto entre la tensión y la intensidad de corriente: P(t) = V(t) I(t) En corriente alterna, al ser valores que

Más detalles

ELECTROTECNIA Análisis Fasorial de Circuitos de Corriente Alterna

ELECTROTECNIA Análisis Fasorial de Circuitos de Corriente Alterna ELECTROTECNIA Análisis Fasorial de Circuitos de Corriente Alterna Juan Guillermo Valenzuela Hernández (jgvalenzuela@utp.edu.co) Universidad Tecnológica de Pereira Segundo Semestre de 2014 Juan Valenzuela

Más detalles

Energía y Telecomunicaciones

Energía y Telecomunicaciones Energía y Telecomunicaciones Tema 2.2. Circuitos de corriente alterna. Material complementario Alberto Arroyo Gu

Más detalles

Sílabo de Circuitos eléctricos

Sílabo de Circuitos eléctricos Sílabo de Circuitos eléctricos I. Datos generales Código ASUC 00077 Carácter Obligatorio Créditos 4 Periodo académico 2017 Prerrequisito Física II Horas Teóricas: 2 Prácticas 4 II. Sumilla de la asignatura

Más detalles

INTRODUCCION A LA TEORIA DE LA CORRIENTE ALTERNA

INTRODUCCION A LA TEORIA DE LA CORRIENTE ALTERNA INACAP ELECTRICIDAD 2 GUIA DE APRENDIZAJE UNIDAD-1 INTRODUCCION A LA TEORIA DE LA CORRIENTE ALTERNA INTRODUCCION A LA TEORIA DE LA CORRIENTE ALTERNA El suministro de energía eléctrica a las viviendas e

Más detalles

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser Objetivos: Estudiar el comportamiento de distintos elementos (resistores,

Más detalles

Teoría de Circuitos. Pablo Monzón. Segundo semestre

Teoría de Circuitos. Pablo Monzón. Segundo semestre Teoría de Circuitos Pablo Monzón Instituto de Ingeniería Eléctrica (IIE) Facultad de Ingeniería-Universidad de la República Uruguay Segundo semestre - 2017 Contenido 1 Presentación del curso 2 Objetivos

Más detalles

1. Qué es un circuito de corriente alterna?. 3. A qué se denomina impedancia de un circuito RLC?.

1. Qué es un circuito de corriente alterna?. 3. A qué se denomina impedancia de un circuito RLC?. Laboratorio 4 El Circuito RLC Serie 4.1 Objetivos 1. Estudiar las características de un circuito RLC serie de corriente alterna. 2. Medir los voltajes eficaces en cada uno de los elementos del circuito

Más detalles

CIRCUITOS ELÉCTRICOS EN CORRIENTE ALTERNA

CIRCUITOS ELÉCTRICOS EN CORRIENTE ALTERNA CIRCUITOS ELÉCTRICOS EN CORRIENTE ALTERNA Alicia Mª. Esponda Cascajares 4 de may de 008 Alicia Ma. Esponda Cascajares 1 CORRIENTE ALTERNA Se habla de corriente ALTERNA cuando la dirección de la corriente

Más detalles

Práctico 3. IIE - Facultad de Ingeniería - Universidad de la República

Práctico 3. IIE - Facultad de Ingeniería - Universidad de la República Ejercicio 3.1 Práctico 3 IIE - Facultad de Ingeniería - Universidad de la República Siendo Z = 10e j30 (Ω) calcular en ambos casos (donde la fuente es equillibrada, de valor 220 V) los valores de la corriente

Más detalles

CAPITULO 8 FILTROS ACTIVOS INTRODUCCIÓN 8.1 EL PROBLEMA DE LOS FILTROS PASIVOS

CAPITULO 8 FILTROS ACTIVOS INTRODUCCIÓN 8.1 EL PROBLEMA DE LOS FILTROS PASIVOS CAPITULO 8 FILTROS ACTIVOS INTRODUCCIÓN Uno de los tópicos que ha recibido mayor atención en la compensación de armónicas en los últimos años, es el de los filtros activos de potencia. Estos filtros están

Más detalles

ANÁLISIS DE CIRCUITOS DE CORRIENTE ALTERNA

ANÁLISIS DE CIRCUITOS DE CORRIENTE ALTERNA Universidad Católica del Maule Escuela de Ingeniería en Construcción Asignatura : Circuitos Eléctricos ANÁLISIS DE CIRCUITOS DE CORRIENTE ALTERNA Profesor: Francisco Valdebenito A. ELECTRICIDAD ETAPA DEL

Más detalles

IEM-315-T Ingeniería Eléctrica

IEM-315-T Ingeniería Eléctrica IEM-315-T Ingeniería Eléctrica Circuitos en el Régimen Senoidal Permanente. Introducción. En la ingeniería eléctrica, las funciones de excitación senoidales tienen gran importancia, puesto que las señales

Más detalles

Aplicando el cálculo de tensiones en el circuito tenemos

Aplicando el cálculo de tensiones en el circuito tenemos Problema PTC0004- Se dispone de un circuito RC como el de la figura. Calcular: a) El espectro de amplitud del sistema (en escalas lineal y logarítmica). b) El espectro de fase del sistema (en escalas lineal

Más detalles

Tema 3. Régimen Permanente Parte II. Régimen Permanente Senoidal

Tema 3. Régimen Permanente Parte II. Régimen Permanente Senoidal Tema 3. Régimen Permanente Parte. Régimen Permanente Senoidal Sistemas y Circuitos Los equipos de comunicaciones trabajan con señales sinusoidales Amplitud [] Fase [rad] Sinusoides: Acos( 2π fct θ ) Amplitud,

Más detalles

INACAP ELECTRICIDAD 2 GUIA DE APRENDIZAJE UNIDAD-3 CIRCUITOS ALTERNOS MONOFASICOS EN REGIMEN PERMANENTE SINUSOIDAL

INACAP ELECTRICIDAD 2 GUIA DE APRENDIZAJE UNIDAD-3 CIRCUITOS ALTERNOS MONOFASICOS EN REGIMEN PERMANENTE SINUSOIDAL INACAP ELECTRICIDAD 2 GUIA DE APRENDIAJE UNIDAD-3 CIRCUITOS ALTERNOS MONOFASICOS EN REGIMEN PERMANENTE SINUSOIDAL CIRCUITOS ALTERNOS MONOFASICOS EN REGIMEN PERMANENTE SINUSOIDAL La aplicación de una tensión

Más detalles

UNIVERSIDAD DE VIGO. Escuela de Ingeniería de Telecomunicación

UNIVERSIDAD DE VIGO. Escuela de Ingeniería de Telecomunicación UNIVESIDAD DE VIGO Escuela de Ingeniería de Telecomunicación Grado en Ingeniería de Tecnologías de Telecomunicación Primer curso Análisis de circuitos lineales Examen de 11 julio 2012 Departamento de Teoría

Más detalles

Análisis y Diseño de Circuitos Eléctricos Nombre en Inglés Analysis and Design of Electrical Circuits SCT

Análisis y Diseño de Circuitos Eléctricos Nombre en Inglés Analysis and Design of Electrical Circuits SCT PROGRAMA DE CURSO Código Nombre EL 3001 Análisis y Diseño de Circuitos Eléctricos Nombre en Inglés Analysis and Design of Electrical Circuits SCT Unidades Horas de Horas Docencia Horas de Trabajo Docentes

Más detalles

CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA

CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA www.ceduvirt.com CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA EJEMPLO 1: Cinco ciclos de una señal ocurren en un tiempo de 25 msg. Hallar el periodo y la frecuencia. Solución Si

Más detalles

V cos(wt) = V + V. = L. Sustituyendo, se obtiene la ecuación del dt circuito RL: di L + Ri = Vmcos(wt) dt

V cos(wt) = V + V. = L. Sustituyendo, se obtiene la ecuación del dt circuito RL: di L + Ri = Vmcos(wt) dt ircuitos y en estado estable ircuito Supongamos un circuito como el mostrado en la figura. Suponga que se desea calcular la corriente i(t) que circula por el circuito. De acuerdo con la ey de Kirchoff

Más detalles

ANÁLISIS DE CIRCUITOS EN CORRIENTE ALTERNA

ANÁLISIS DE CIRCUITOS EN CORRIENTE ALTERNA ANÁLISIS DE CIRCUITOS EN CORRIENTE ALTERNA ANÁLISIS DE CIRCUITOS EN CORRIENTE ALTERNA José Danilo Rairán Antolines Germán Antonio Guevara Velandia Helmuth Edgardo Ortíz Suárez Universidad Distrital Francisco

Más detalles

UNIVERSIDAD NACIONAL DEL SANTA

UNIVERSIDAD NACIONAL DEL SANTA UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 3 CURSO: SISTEMAS ELECTRICOS DE POTENCIA PROFESOR : MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA INGENIERO MECANICO ELECTRICISTA

Más detalles

UNIDAD I CIRCUITOS CON INTERRUPTORES Y DIODOS

UNIDAD I CIRCUITOS CON INTERRUPTORES Y DIODOS UNIDAD I CIRCUITOS CON INTERRUPTORES Y DIODOS CIRCUITOS CON INTERRUPTORES Definiciones: Carga: Conjunto de dispositivos eléctricos aguas abajo del interruptor. Interruptor: dispositivo que permite la circulación

Más detalles

CORRIENTE ALTERNA. Fasor tensión Vm. Por supuesto, en forma análoga podrá escribirse la expresión de la transformada de la intensidad comoi

CORRIENTE ALTERNA. Fasor tensión Vm. Por supuesto, en forma análoga podrá escribirse la expresión de la transformada de la intensidad comoi CORRENTE ALTERNA 1 1) Dominio de la frecuencia y ecuaciones transformadas Sea una tensión senoidal del tipo v( t) = V$ cos( ωt+ ϕ ). En virtud de la ecuación de Euler, la anterior expresión puede ser escrita

Más detalles

Análisis de circuitos

Análisis de circuitos Análisis de circuitos Ingeniería Técnica de Telecomunicación (primer curso) Escuela Técnica Superior de Ingenieros de Telecomunicación (Universidad de Vigo) Examen de diciembre de 2008 (soluciones) Preparado

Más detalles

A. 4R/5 D. 19R/16 B. 5R/19 E. 5R/4 C. 16R/19 F. Otra (Especifique detrás)

A. 4R/5 D. 19R/16 B. 5R/19 E. 5R/4 C. 16R/19 F. Otra (Especifique detrás) NOMBRE: TEST 1ª PREGUNTA RESPUESTA El circuito de la figura está formado por 10 varillas conductoras de igual material y sección, con resistencia R. La resistencia equivalente entre los terminales A y

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA PRUES DE CCESO L UNVERSDD MTERS DE MODLDD: FSES GENERL Y ESPECÍFC CURSO 010-011 CONVOCTOR: : JUNO MTER: ELECTROTECN EL LUMNO ELEGRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y

Más detalles

Sílabo de Circuitos Eléctricos

Sílabo de Circuitos Eléctricos Sílabo de Circuitos Eléctricos I. Datos generales Código ASUC 00077 Carácter Obligatorio Créditos 4 Periodo académico 2018 Prerrequisito Física II Horas Teóricas: 2 Prácticas 4 II. Sumilla de la asignatura

Más detalles

Circuitos de Corriente. Alterna. Fundamentos Físicos y Tecnológicos de la Informática

Circuitos de Corriente. Alterna. Fundamentos Físicos y Tecnológicos de la Informática Fundamentos Físicos y Tecnológicos de la Informática ircuitos de orriente - Tensión y corriente alterna. Funciones sinusoidales. Valores medio y eficaz. - Relación tensión corriente en los elementos de

Más detalles

EL 57A SISTEMAS ELECTRICOS DE POTENCIA

EL 57A SISTEMAS ELECTRICOS DE POTENCIA EL 57A SISTEMAS ELECTRICOS DE POTENCIA Clase 1: Introducción Luis Vargas AREA DE ENERGIA DEPARTAMENTO DE INGENIERIA ELECTRICA EQUIPO DOCENTE Profesor de Cátedra : Ayudantes: Luis Vargas email: lvargasd@ing.uchile.cl

Más detalles

Tema 5. Régimen Permanente Senoidal. Sistemas y Circuitos

Tema 5. Régimen Permanente Senoidal. Sistemas y Circuitos Tema 5. Régimen Permanente Senoidal Sistemas y Circuitos 5. Respuesta SLT a exponenciales complejas Analicemos la respuesta de los SLT ante exponenciales complejas Tiempo continuo: xt () e st s σ + jω

Más detalles

ELECTROTECNIA Circuitos de Corriente Alterna

ELECTROTECNIA Circuitos de Corriente Alterna ELECTROTECNIA Circuitos de Corriente Alterna Juan Guillermo Valenzuela Hernández (jgvalenzuela@utp.edu.co) Universidad Tecnológica de Pereira Segundo Semestre de 2014 Juan Valenzuela 1 Elementos de circuitos

Más detalles

TEORÍA DE CIRCUITOS I Fecha 15/11/12

TEORÍA DE CIRCUITOS I Fecha 15/11/12 Primer Parcial 1) Para la red de la figura: a) Aplicando el MCM obtener en forma simbólica la expresión matricial necesaria para encontrar las corrientes de las mallas. TEORÍA DE CIRCUITOS I Fecha 15/11/12

Más detalles

En un circuito de CA los generadores suministran energía que es absorbida por los elementos pasivos (R, L y C). Esta energía absorbida puede:

En un circuito de CA los generadores suministran energía que es absorbida por los elementos pasivos (R, L y C). Esta energía absorbida puede: www.clasesalacarta.com 1 Elementos Lineales Tema 7.- CA Elementos Lineales Cuando se aplica una tensión alterna con forma de onda senoidal a los bornes de un receptor eléctrico, circula por él una corriente

Más detalles

Ejercicios Tipo Examen:

Ejercicios Tipo Examen: Universidad Autónoma Metropolitana, Unidad Azcapotzalco Departamento de Energía Área de Ingeniería Energética y Electromagnética 2 Ejercicios Tipo Examen: Circuitos Eléctricos en Corriente Alterna (1131071)

Más detalles

Conversión AC-DC monofásicos. Configuraciones no controladas. I.- Circuito monofásico no controlado con carga resistiva.

Conversión AC-DC monofásicos. Configuraciones no controladas. I.- Circuito monofásico no controlado con carga resistiva. Conversión AC-DC monofásicos. Configuraciones no controladas I.- Circuito monofásico no controlado con carga resistiva. Formas de onda del circuito conversor AC-DC monofásico con carga R El diodo entra

Más detalles

Análisis de circuitos trifásicos. Primera parte

Análisis de circuitos trifásicos. Primera parte Análisis de circuitos trifásicos. Primera parte Objetivos 1. Mencionar el principio de funcionamiento de los generadores trifásicos. 2. Establecer los tipos básicos de conexiones de circuitos trifásicos

Más detalles

CAPITULO 2 CONCEPTOS BÁSICOS SOBRE ARMÓNICAS. La serie de Fourier de una señal o función periódica x (t) tiene la expresión:

CAPITULO 2 CONCEPTOS BÁSICOS SOBRE ARMÓNICAS. La serie de Fourier de una señal o función periódica x (t) tiene la expresión: Capítulo : Conceptos Básicos sobre Armónicas CAPITULO CONCEPTOS BÁSICOS SOBRE ARMÓNICAS.1 ANÁLISIS DE FOURIER La serie de Fourier de una señal o función periódica x (t) tiene la expresión: ( T T ) cos

Más detalles

CURSO CERO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA

CURSO CERO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA CURSO CERO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA Dpto. Ingeniería Eléctrica Escuela Politécnica Superior Universidad de Sevilla CIRCUITOS ELECTRICOS CIRCUITOS DE CORRIENTE CONTÍNUA CIRCUITOS DE CORRIENTE

Más detalles

9 José Fco. Gómez Glez., Benjamín Glez. Díaz, María de la Peña Fabiani, Ernesto Pereda de Pablo

9 José Fco. Gómez Glez., Benjamín Glez. Díaz, María de la Peña Fabiani, Ernesto Pereda de Pablo PROBLEMAS DE CIRCUITOS EN CORRIENTE ALTERNA 25. Una fuente de voltaje senoidal, de amplitud Vm = 200 V y frecuencia f=500 Hz toma el valor v(t)=100 V para t=0. Determinar la dependencia del voltaje en

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FIS0: FÍSIA GENEA II GUÍA #0: orriente alterna Objetivos de aprendizaje. Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Estudiar el funcionamiento de circuitos de

Más detalles

SERVICIO NACIONAL DE APRENDIZAJE SENA SISTEMAS TRIFÁSICOS

SERVICIO NACIONAL DE APRENDIZAJE SENA SISTEMAS TRIFÁSICOS SERVICIO NACIONAL DE APRENDIZAJE SENA REGIONAL DISTRITO CAPITAL CENTRO DE ELECTRICIDAD, ELECTRÓNICA Y TELECOMUNICACIONES SISTEMAS TRIFÁSICOS Anderson Ardia Ordoñez Agenda Introducción Fuentes trifásicas

Más detalles

Guía de Problemas Nº 4 - Electrotecnia 2 Corrientes No Senoidales

Guía de Problemas Nº 4 - Electrotecnia 2 Corrientes No Senoidales FACULTAD DE INGENIERIA - U.N.M.D.P. DEPARTAMENTO DE INGENIERIA ELECTRICA. ASIGNATURA : Electrotecnia 2 (Plan 2004) CARRERA : Ingeniería Eléctrica y Electromecánica. PROBLEMA Nº 1: Encuentre la serie trigonométrica

Más detalles

Circuitos Eléctricos Trifásicos. Introducción.

Circuitos Eléctricos Trifásicos. Introducción. Circuitos Eléctricos Trifásicos. Introducción. La mayor parte de la generación, transmisión, distribución y utilización de la energía eléctrica se efectúa por medio de sistemas polifásicos; por razones

Más detalles

Análisis de circuitos

Análisis de circuitos Análisis de circuitos Ingeniería Técnica de Telecomunicación (primer curso) Escuela Técnica Superior de Ingenieros de Telecomunicación (Universidad de Vigo) Examen de septiembre de 28 (soluciones) Preparado

Más detalles

Capítulo 1 SEMANA 7. Capítulo 2 POTENCIA EN CORRIENTE ALTERNA

Capítulo 1 SEMANA 7. Capítulo 2 POTENCIA EN CORRIENTE ALTERNA Capítulo 1 SEMANA 7 Capítulo 2 POTENCIA EN CORRIENTE ALTERNA Potencia instantánea 1 : Esta definida como la potencia entregada a un dispositivo (carga) en cualquier instante de tiempo. Es el producto de

Más detalles

Instituto de Física, Facultad de Ciencias Electromagnetismo 2008

Instituto de Física, Facultad de Ciencias Electromagnetismo 2008 Problema Nº EECTROMAGNETISMO PRACTICO Nº 9 CIUITOS EÉCTRICOS RÉGIMEN TRANSITORIO Y SINUSOIDA En el circuito de la figura, la tensión vi ( t ) es periódica (de periodo T) y su forma de onda es la que se

Más detalles

VOLTAJE Y CORRIENTE ALTERNA CA

VOLTAJE Y CORRIENTE ALTERNA CA LECCIÓN Nº 05 VOLTAJE Y CORRIENTE ALTERNA CA 1. GENERALIDADES Hasta ahora se ha considerado que la corriente eléctrica se desplaza desde el polo positivo del generador al negativo (la corriente electrónica

Más detalles

1. Señales continuas o sinusoidales. 2. Cualquier señal (incluyendo continuas o sinusoidales).

1. Señales continuas o sinusoidales. 2. Cualquier señal (incluyendo continuas o sinusoidales). La transformación de Laplace permite tratar cualquier señal en el dominio del tiempo mediante la formulación de dicha señal en el dominio complejo. Alternativamente, la transformación de Fourier expresa

Más detalles

Sistemas Lineales 1 - Práctico 6

Sistemas Lineales 1 - Práctico 6 Sistemas Lineales 1 - Práctico 6 Series de Fourier 1 er semestre 2018 Las principales ideas a tener en cuenta en este práctico son: la respuesta en régimen a una entrada sinusoidal pura e(t) = A e. cos(ω

Más detalles

RESPUESTA COMPLETA DE UN CIRCUITO RLC EN SERIE EXCITADO CON UNA FUNCIÓN FORZANTE SENOIDAL

RESPUESTA COMPLETA DE UN CIRCUITO RLC EN SERIE EXCITADO CON UNA FUNCIÓN FORZANTE SENOIDAL RESPUESTA COMPLETA DE UN CIRCUITO RLC EN SERIE EXCITADO CON UNA FUNCIÓN FORZANTE SENOIDAL PROFESOR: LUIS RODOLFO DÁVILA MÁRQUEZ Departamento de Electricidad y Electrónica UNIVERSIDAD FRANCISCO DE PAULA

Más detalles

CIRCUITOS DE CORRIENTE ALTERNA CON NUMEROS COMPLEJOS

CIRCUITOS DE CORRIENTE ALTERNA CON NUMEROS COMPLEJOS CIRCUITOS DE CORRIENTE ALTERNA CON NUMEROS COMPLEJOS CIRCUITO R-L-C CONECTADO EN SERIE. Debido a que la impedancia (Z) es un termino general que se puede referir a una resistencia, una reactancia o combinación

Más detalles

FORMATO DE CONTENIDO DE CURSO

FORMATO DE CONTENIDO DE CURSO PÁGINA: 1 de 7 FACULTAD DE: Ciencias Básicas PROGRAMA DE: Física Plan de Estudio 2015-2 PLANEACIÓN DEL CONTENIDO DE CURSO 1. IDENTIFICACIÓN DEL CURSO NOMBRE : TEORÍA DE CIRCUITOS CÓDIGO : 217750 SEMESTRE

Más detalles

TEXTO: CIRCUITOS ELECTRICOS II, UN NUEVO ENFOQUE

TEXTO: CIRCUITOS ELECTRICOS II, UN NUEVO ENFOQUE UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA INSTITUTO DE INVESTIGACIÓN INFORME FINAL DE TRABAJO DE INVESTIGACIÓN TEXTO: CIRCUITOS ELECTRICOS II, UN NUEVO ENFOQUE AUTOR:

Más detalles

TEORÍA DE LOS CIRCUITOS I Araguás & Perez Paina. Guia 5. Fasores

TEORÍA DE LOS CIRCUITOS I Araguás & Perez Paina. Guia 5. Fasores Guia 5. Fasores 1. Utilizando el metodo fasorial, encontrar la respuesta de estado estable de la tensión en el capacitor v C (t) del circuito de la figura 1. i(t) = 10cos(4t)[A] 4Ω 0,25F v C (t) Figura

Más detalles

1) En el sistema trifásico de la figura se tiene el siguientes señales de voltaje medidas entre cada fase y neutro. Calcule:

1) En el sistema trifásico de la figura se tiene el siguientes señales de voltaje medidas entre cada fase y neutro. Calcule: UNIVERSIDAD TECNOLOGICA DE PEREIRA Taller Nº 1- Circuitos Eléctricos II. 1) En el sistema trifásico de la figura se tiene el siguientes señales de voltaje medidas entre cada fase y neutro. v an = 2 13200

Más detalles

Resonancia en Circuito RLC en Serie AC

Resonancia en Circuito RLC en Serie AC Laboratorio 5 Resonancia en Circuito RLC en Serie AC 5.1 Objetivos 1. Determinar las caracteristicas de un circuito resonante RLC en serie. 2. Construir las curvas de corriente, voltaje capacitivo e inductivo

Más detalles

Controladores de Potencia Análisis de los Circuitos Mediantes Series de Fourier

Controladores de Potencia Análisis de los Circuitos Mediantes Series de Fourier Análisis de los Circuitos Mediantes Series de Fourier Prof. Alexander Bueno M. 17 de septiembre de 211 USB Serie de Fourier Es una representación a través de expresiones trigonométricas de una función

Más detalles

TEORIA DE CIRCUITS. Régimen permanente senoidal

TEORIA DE CIRCUITS. Régimen permanente senoidal TEORIA DE CIRCUITS Régimen Permanente Senoidal Régimen permanente senoidal Fuente senoidal Utilización de fasores Impedancias Circuito transformado Circuitos trifásicos Análisis frecuencial Diagramas de

Más detalles

01/07/2009. Ecuaciones dinámicas del motor. Fig. 1 circuito equivalente del motor de CD con excitación independiente.

01/07/2009. Ecuaciones dinámicas del motor. Fig. 1 circuito equivalente del motor de CD con excitación independiente. Control de Máquinas Eléctricas Primavera 2009 1. Análisis vectorial de sistema trifásicos 1. Campo magnético 2. Devanado trifásico 3. Vector espacial de un sistema de corrientes 4. Representación gráfica

Más detalles

IV. Vibración bajo condiciones forzadas generales

IV. Vibración bajo condiciones forzadas generales Objetivos: 1. Reconocer que existen excitaciones periódicas no harmónicas y no periódicas.. Analizar la respuesta de un sistema de primer y de segundo orden bajo una fuerza periódica general. 3. Analizar

Más detalles

C.A. : Circuito con Resistencia R

C.A. : Circuito con Resistencia R Teoría sobre c.a obtenida de la página web - 1 - C.A. : Circuito con Resistencia R Intensidad Instantánea i(t) e Intensidad Eficaz I v(t) = V sen t) V I = ----- R V = R I i(t) = I sen t) V R = ----- I

Más detalles

Guia 6. Mallas y nudos

Guia 6. Mallas y nudos Guia 6. Mallas y nudos. En el circuito de la figura elegir las corrientes de mallas, calcular sus impedancias propias y copedancias, y armar la matríz de impedancias. Luego resolver el sistema matricial.

Más detalles

Conversión AC-DC monofásicos. Configuraciones no controladas. I.- Circuito monofásico con carga resistiva.

Conversión AC-DC monofásicos. Configuraciones no controladas. I.- Circuito monofásico con carga resistiva. Conversión AC-DC monofásicos. Configuraciones no controladas I.- Circuito monofásico con carga resistiva. Formas de onda del circuito conversor AC-DC monofásico con carga R El diodo entra en conducción

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PREBAS DE ACCESO A LA NIVERSIDAD L.O.G.S.E. CRSO 007-008 - CONVOCATORIA: ELECTROTECNIA EL ALMNO ELEGIRÁ NO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico

Más detalles

UNIVERSIDAD DE ALCALÁ Escuela Politécnica Superior Grado en Electrónica y Automática Industrial

UNIVERSIDAD DE ALCALÁ Escuela Politécnica Superior Grado en Electrónica y Automática Industrial 1.- El circuito de la figura se encuentra en las condiciones mostradas desde t = -. En t = 0 se conecta la fuente de tensión continua E, permaneciendo así indefinidamente. E= 12V ; R= 2 Ω ; L = 1 H a)

Más detalles