DISTANCIAS Y ÁNGULOS EN EL ESPACIO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DISTANCIAS Y ÁNGULOS EN EL ESPACIO"

Transcripción

1 DISTANCIAS Y ÁNGULOS EN EL ESPACIO VECTOR PERPENDICULAR A UN PLANO Dado un plano definido por su ecuación general, Ax + By + Cz + D, el ector n ( A, B, C) es perpendicular al plano. Dados dos puntos cualesquiera del plano P (x, y, z ) y P (x, y, z ), probaremos que el producto escalar de los ectores P (x x, y y, z z ) y n es nulo. P n.p P (A(x x ) + B(y y ) + C(z z ) Como P, se cumple que Ax + By + Cz + D Como P, se erifica que Ax + By + Cz + D Restando, A(x x ) + B(y y ) + C(z z ), es decir,.p P ( n Ejemplo: Ecuación del plano que pasa por P(,, ) y es perpendicular al ector (, ) El plano buscado será x + y z + D Como pasa por el punto P(,, ), ( ). +.+ ( ). + D, es decir, D 5. luego la ecuación del plano será : x + y z n ( A, B, C) P P ÁNGULO FORMADO POR DOS RECTAS Ángulo de dos rectas es el menor de los ángulos formados por sus respectios ectores de dirección. De la definición de producto escalar, se obtiene: u. u + u + u cos. u. u + u + u + + x x r : u s : x x y y u Tomamos el alor absoluto a fin de obtener el menor de los ángulos que forman las rectas. y y z z u z z

2 ÁNGULO FORMADO POR DOS PLANOS Dos planos Ax + By + Cz + D y A x + B y + C z + D, determinan al cortarse cuatro ángulos diedros que son iguales dos a dos. Se llama ángulo de los dos planos al más pequeño de los ángulos diedros. Dicho ángulo es igual o suplementario al que forman los ectores perpendiculares de cada plano n n (A, B, C) n n (A, B, C ) También hemos de tomar el alor absoluto a fin de obtener el menor de los ángulos. n.n cos n. n A A.A + B.B + C.C + B + C A + B + C Ejemplos:. Calcula el ángulo que formado por las rectas r y s siendo: x y z 4 x y z r : ; s : 5 Los ectores de dirección de las respectias rectas son u (,,5) y (,, ),por tanto,. + ( ).+ 5.( ) 5 4 cos 7,68º + ( ) ( ) Calcula el ángulo que forman los planos : x y ; : x + y z n Los ectores perpendiculares a cada uno de los planos son: n (,,) y n (,, ). n.n + cos, 75,º n. n ÁNGULO FORMADO POR UNA RECTA Y UN PLANO Es el ángulo formado por la recta y la proyección de dicha recta sobre el plano. Teniendo en cuenta que y β son complementarios, sen cos β Además, n (A, B, C) (,, ) β r

3 n. sen cos β n. A A + B + B + C + C + + Ejemplo: Calcula el ángulo que forma la recta x + y + z 5 Vector perpendicular al plano: n (,, ) Vector director de la recta (,, -) x y 5 z + con el plano de ecuación.+. +.( ) sen ; 47,6º DISTANCIA ENTRE DOS PUNTOS Distancia entre dos puntos A y B es el módulo del ector que une dichos puntos. Si las coordenadas de los puntos son A (x, y, z ) y B (x, y, z ) AB (x x, y y, z z ) y entonces, d(a, B) (x x ) + (y y ) + (z z Ejemplo: A ) Calcula la distancia entre los puntos A(,, ) y B(,, ) B d ( A, B) ( ) + ( ) + ( ) DISTANCIA DE UN PUNTO A UNA RECTA A es un punto de la recta es un ector director. P x, y, ( z d A x, y, ),, ) ( z ) ( r

4 El área del triángulo iene definida por las siguientes fórmulas: base altura AP Area, es decir,.d AP y, por tanto, Ejemplo: AP d Halla la distancia del punto P(,, ) a la recta dada por las siguientes ecuaciones paramétricas: λ y + λ λ Un punto de la recta es A(,, ) AP (,, ) (,, ), ector director de la recta. AP,, (, 4, 5) ; 6 ( ) + ( 4) + ( 5) d(p, r) DISTANCIA DE UN PUNTO A UN PLANO P( x, y, z) El triángulo RQP es rectángulo. n ( A, B, C) d 9º Q R( x, y, z) Dado el plano : Ax + By + Cz + D, el ector n (A, B, C) es perpendicular al plano. Obserando la figura, d (P, ) QP RP. cos. pero teniendo en cuenta la definición de producto escalar, n.rp n.rp d (P, ) RP. n. RP n cos n.rp, luego, RP n.

5 Si utilizamos las coordenadas de R, P y n resulta: n (A, B, C) ; RP (x x, y y, z z ) y entonces, A(x x) + B(y y) + C(z z) Ax d(p, ) A + B C Ax + By + Cz + D es decir, d(p, ) A + B + C + By + Cz A Ax By Cz + B + C ya que como Ax + D Ax By Cz R, By + Cz + D Ejemplo: Calcula la distancia del punto P(,, ) al plano x y + z + Ax d + By + Cz + D.. + ( ) + A + B + C + ( ) + DISTANCIA MÍNIMA ENTRE DOS RECTAS QUE SE CRUZAN P d r 9 s Q Siendo x x r: u y y u z z u ; s: x x y y z z Para hallar la distancia entre dichas rectas procedemos de la forma siguiente: a. Hallamos la ecuación del plano. Dicho plano contiene a la recta s y es paralelo a la recta r por lo que utilizaremos el punto Q y los ectores de las dos rectas: x x y y z z u u u b. Después hallamos la distancia del punto P(x, y, z ) de r al plano

6 Ejemplo: Dadas la rectas 5 + λ r : y y 8 + λ + λ s : y λ + 4λ a. Estudia su posición relatia comprobando que se cruzan. b. Halla la mínima distancia entre ellas. Un punto de r es P(5,, 8) y un ector u (,, ) Un punto de s es Q(,, ) y un ector (,, 4) Vector PQ (,, 9) , por tanto, las rectas se cruzan. 9 Plano que contiene a la recta s y es paralelo a r: x y z + ; 6 (y ) (z + ) + (x ) 4(y ) 4 x + y z + 9 Ahora hallamos la distancia del punto (5,, 8) al plano hallado:.5 + ( ) d + + ( ) 9

7 EJERCICIOS RESUELTOS.- Halla la distancia del punto P(,-,) a la recta r que pasa por A(,,) y tiene como ector de dirección al ector (,4,) SOLUCIÓN: Ecuación de la recta r: + λ y + 4λ A(,,) G(+λ,+4λ,) d P(,-,) (,4,) G es un punto genérico de la recta. PG es un ector ariable y nos interesa el que sea perpendicular a la recta. Entonces se ha de cumplir que PG. ( + λ, + 4λ,).(,4,) (producto escalar nulo) y se obtiene λ El ector perpendicular a la recta será, por tanto, PG ( 8,6,) y la distancia buscada es el módulo del ector PG : d ( 8) Otra manera: Se aplica la fórmula: AP d donde A(,,), P(,-,) y (,4,) Determina las ecuaciones ectorial, paramétricas y general del plano determinado por los puntos A(,,), B(,-,) y C(5,-,). Halla la distancia del punto P(,7,) al plano hallado. SOLUCIÓN: Elegimos, por ejemplo, el punto A(,,) y formamos los ectores AB (,,) y AC (4,,) Ecuación ectorial: ( x, y, z) (,,) + λ(,,) + µ (4,, ) + λ + 4µ Ecuaciones paramétricas: : y λ µ λ + µ x y z Ecuación general: 4 P x, y, ( z d A x, y, ),, ) ( z ) ( r

8 Desarrollando el determinante se obtiene : x + 7y + z La distancia del punto P(,7,) al plano hallado, se obtiene aplicando la fórmula Ax + By + Cz + D d(p, ) A + B + C x y +.- Determina un punto P de la recta r : + λ : x + y + z + y : y λ + µ 6 + µ z que equidiste de los planos SOLUCIÓN: Expresamos el plano en forma cartesiana: x + y z + 6 : x + y z Pasando a paramétricas la recta, obtenemos un punto genérico: P( + λ, + λ,λ) Como d(p, ) d(p, ), resulta:.( + λ) +.( + λ) +.λ +.( + λ) +.( + λ).λ con lo que se ( ) 6λ + 6λ + obtiene, es decir, 6λ + 6λ De la primera ecuación obtenemos λ y de la segunda λ Lleando los alores de λ al punto genérico obtenemos dos puntos que equidistan de los planos dados: P(,, ) y P (,,) dado el plano de ecuación x + y + z, la recta r de ecuación y el punto P(,,), calcula: a) Ecuación de la recta que pasa por P y es perpendicular a b) Ecuación del plano que pasa por P y es perpendicular a r z r : y z + 4 SOLUCIÓN: a) El ector característico del plano es un ector director de la recta, es decir, (,, ) Y teniendo en cuenta que la recta pasa por P(,,), x y z b) En la recta r, hacemos z λ y queda de la siguiente forma: + λ r : y 4 + λ λ

9 El ector director de la recta es un ector característico del plano buscado. x + y + z + D Como el plano contiene al punto P(,,), D D -6 Ecuación del plano que pasa por P y es perpendicular a r: x + y + z Halla el simétrico del punto A(,,-) respecto al plano de ecuación : x y z + 5 Si la ecuación del plano es : x y z + 5, el ector característico del plano n (,, ) será ector director de la recta que pasa por A y A, por tanto, x y z + λ λ Y en paramétricas: y λ λ A(,,-) ( x, y, z ) A La intersección de la recta y el plano nos da las coordenadas del punto M:.λ ( λ) ( λ) + 5 λ Sustituyendo λ en la ecuación de la recta obtenemos el punto M(,, ) El punto M es el punto medio del segmento A A : + x x 4 + y y + z z Coordenadas del punto simétrico de A: A ( 4,,) M 6.- Halla el simétrico de A(,,) respecto de la recta x y z Plano perpendicular a la recta que pasa por A: x y + z + D Como dicho plano contiene al punto A,. + + D D -5 El plano tiene de ecuación : x y + z 5 A(,,) M (,-,) A (x, y,z )

10 Ecuación de la recta dada en paramétricas: λ x y z λ y λ + λ La intersección de la recta y el plano nos da el punto M: 4 λ + λ + + λ 5 λ Lleando λ a la recta obtenemos M (4,,) Como M es el punto medio de A y A, si aplicamos las fórmulas del punto medio, resulta: + x 4 x 6 + y y 4 + z z 5 Las coordenadas del simétrico de A son: A (6,4,5) 7.- Determina el ángulo que forman el plano : x + y z + 4 y la recta y r : x + z n. Aplicamos la fórmula sen donde n (A, B,C) y (,, ) n. n r β En primer lugar ponemos la recta en paramétricas: y r : y x, haciendo x λ, y λ x + z En la ª ecuación: 6 λ + z z 6 λ λ La recta r queda de la siguiente forma: r : y λ donde (,, ) 6 λ Y como n (,, )

11 n sen arcsen 9º n Dos értices consecutios de un paralelogramo son A(,,) y B(,,). El centro del paralelogramo es O(,,). Se pide: a) Las coordenadas de los otros dos értices. b) Ecuación del plano que contiene al paralelogramo c) Área del paralelogramo. D (x,y,z ) C (x,y,z ) O(,,) a) Aplicando las fórmulas de las coordenadas del punto medio de un segmento, + x + y x ; + z y ; z Las coordenadas de C son: C(,,) Del mismo modo obtenemos D(,, ) b) Ecuación del plano: OA (,,); OB (,, ) Con el punto O y los ectores OA y OB podemos escribir su ecuación: x y z x y z + d) El área del paralelogramo podemos calcularla de la forma siguiente: Área AD AB AD (,,) AB (,, ) A(,,) B(,,) AD AB,, (,, 4) Área + ( ) + ( 4) 4 u

12 9.- Halla la ecuación del plano que es perpendicular a : x 6y + z y contiene a la recta intersección de : 4x y + z y + λ : y + λ + µ + λ + µ Ecuación general de : x y z x y + z + 4x y + z : que pasamos a paramétricas resoliendo el sistema: x y + z + 4x y + z Sumando se obtiene x x + y z Sustituyendo en una de las dos ecuaciones resulta z y y haciendo y λ, : y λ + λ Un punto del plano buscado puede ser el de la recta intersección: (,,-) Los dos ectores que necesitamos serán: El ector director de la recta intersección: (,, ) El ector característico del plano : w (, 6,) Ecuación del plano : x y z + x + y z 5 6 (Después de desarrollar el determinante y simplificar el resultado).- Halla la ecuación del plano que es perpendicular a los planos : z y z, + + y : 6x + y + z sabiendo que pasa por el punto A(4,,). Para determinar un plano necesitamos: Un punto Dos ectores paralelos al plano y no paralelos entre sí. El punto lo tenemos. Los ectores característicos de y, (,, ) y w (6,,), son paralelos al plano y no paralelos entre sí. Por tanto, x 4 y z 6

13 Desarrollando el determinante, 6 (x 4) + 6(y ) + 6(z ) 8(z ) (x 4) 4(y ), es decir, : x + y z +.- Determina una constante a, para que el plano de ecuación ax + y + z forme un ángulo de radianes con el plano z Un ector característico del plano ax + y + z es n (a,, ) n n Un ector característico del plano z, es n (,,) Aplicando la fórmula cos a a n.n cos resulta: n. n + Eleando al cuadrado, a + 4 a ± a + a + x y z x + y + z.- dadas las rectas r : ; s : a) Halla la distancia entre las dos rectas b) Determina la ecuación de la perpendicular común a las dos rectas. a) Plano que contiene a la recta s y es paralelo a r: (zona sombreada) x + y + z x + 4y z + Un punto de la recta r es P(,,) d Ahora calculamos la distancia del punto P al plano hallado: d ( ) 6 b) la perpendicular común podemos expresarla por la intersección de los dos planos que contienen a cada una de las dos caras sombreadas:

14 ,,) es un ector director de r t r w (,,) es un ector director de s El ector w es perpendicular a cada uno de los ectores dados: i j k i 4j + k (, 4,) s x y z x + y + z Plano : ; Plano : 4 4

15 Ejercicios propuestos t.- Estudia si las rectas r : y t s : t y + t t se cruzan en el espacio. Encuentra la distancia entre ellas. Escogemos un punto y un ector de cada recta. Como el determinante formado por el ector que uno los puntos de ambas rectas y los ectores directores es distinto de cero, las rectas se cruzan. Distancia entre r y s:.- Se dan las rectas y r : y z s : z 5 x y z a) Inestiga si son paralelas. b) En caso afirmatio, halla la ecuación del plano que las contiene Hacemos z λ y las expresamos en paramétricas. a) Las rectas son paralelas porque los ectores directores son proporcionales. b) Escogemos un punto de cada recta y formamos el ector que une ambos puntos. Con dicho ector, un ector director de una de ellas y uno de los dos puntos que conocemos, escribimos la ecuación del plano: x 4y z +.- Determina las coordenadas del punto simétrico de A(-,,-7), respecto de la recta x + y z + Hallamos un plano perpendicular a la recta que pasa por A. A continuación buscamos la intersección de la recta y el plano. El punto de intersección es el punto medio de A y su simétrico A A (,, ) x y z x + y z 4.- Las rectas y, se cruzan en el espacio. Calcula la 4 distancia entre ellas y la ecuación de la recta perpendicular común a ambas rectas. d 4 Recta perpendicular común: 4λ y λ 5λ

16 x y z 5.- Halla la distancia entre las rectas r : ; x 5 s : y z x y 6.- Comprueba que la recta y halla la distancia de la recta al plano. z 7 es paralela al plano x + y + z El producto escalar del ector director de la recta y del ector característico del plano ha de ser nulo. (Condición de paralelismo de recta y plano) 4 d 7.- Halla la recta que pasa por A(,,) y es paralela a los planos x y + z + y x y + z + 6 x y z y z Las rectas r : s : se cruzan en el espacio. x + y 7 y 4 Escribe las ecuaciones paramétricas de ambas rectas. Halla un punto de r y otro punto de s tales que el ector con origen en uno y extremo en el otro, sea perpendicular a ambas rectas. 7 λ a) r : y λ λ : y 5 µ a) Tomamos un punto genérico de r y un punto genérico de s: P(7 λ, λ, λ); Q (, 5, µ ) El ector PQ ha de ser perpendicular a cada uno de los ectores directores de las rectas dadas. (Producto escalar nulo) Resoliendo el sistema se obtiene λ, µ alores que lleados a P y Q nos dan los puntos P (5,,) y Q(, 5,) x y + z 9.- Considera el punto P(5,-,9) y la recta r : 6 a) Calcula la ecuación de la recta s que corta perpendicularmente a r y pasa por P. b) Halla el punto de corte de las dos rectas. a) Expresamos r en paramétricas y tomamos un punto genérico de la misma: G( λ, λ,6λ)

17 Como el producto escalar de PG y ha de ser nulo, obtenemos λ Obtenido PG, la ecuación de la recta s x 5 y + z 9 será: 6 P(5,-,9) G (,,6) r b) Punto de corte: G(, 4,6).- Sea el plano : x y + 4z y el punto P(,-,) a) Calcula la distancia d entre el plano y el punto P. b) Halla la ecuación de un plano paralelo a y distinto del mismo, que también diste de P la misma distancia d. c) Calcula el olumen de la figura limitada por el plano y los tres planos coordenados. s 4 a) C b) : x y + 4z 4 c) La coordenadas de los értices A(,,), B(,-6,) y C(,,) Volumen 6 u A B

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula:

Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: PROBLEMAS MÉTRICOS ÁNGULOS ÁNGULO QUE FORMAN DOS RECTAS Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: cos α = ÁNGULO QUE

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos.- Comprueba que las rectas r x + y y s x y + 4 son secantes y halla el punto de intersección de las mismas., es decir, los coeficientes de las incógnitas no son proporcionales, por

Más detalles

Ejercicios resueltos

Ejercicios resueltos ECUACIÓN DE LA RECTA.- PRIMERO DE BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. Ejercicios resueltos.- Comprueba que las rectas r x + y y s x y + 4 son secantes y halla el punto de intersección de las mismas.,

Más detalles

GEOMETRÍA ANALÍTICA EN EL ESPACIO (ÁNGULOS, DISTANCIAS Y SIMETRÍAS)

GEOMETRÍA ANALÍTICA EN EL ESPACIO (ÁNGULOS, DISTANCIAS Y SIMETRÍAS) GEOMETRÍA ANALÍTICA EN EL ESPACIO (ÁNGULOS, DISTANCIAS Y SIMETRÍAS ÁNGULOS EN EL ESPACIO ÁNGULO ENTRE DOS RECTAS El ángulo formado por dos rectas que se cortan en un punto, o bien por dos rectas que se

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

Espacio métrico 2º Bachillerato

Espacio métrico 2º Bachillerato Espacio métrico 2º Bachillerato Presentación elaborada por la profesora Ana Mª Zapatero a partir de los materiales utilizados en el centro (Editorial SM) Ángulo entre dos rectas El ángulo de dos rectas

Más detalles

Observa que : OA + AB = OB a + AB = b AB = b a

Observa que : OA + AB = OB a + AB = b AB = b a .- PUNTOS EN EL ESPACIO Sistema de referencia Un sistema de referencia en el espacio es un conjunto formado por un punto de referencia O y la base ortonormal canónica B = i, j, k. Se representa así:. En

Más detalles

Medidas en el espacio

Medidas en el espacio Medidas en el espacio Introducción: En el tema anterior vimos: Las ecuaciones de la recta y el plano Las propiedades afines de la recta y el plano Paralelísmo Incidendia Intersección En el presenta tema

Más detalles

Tema 6: Ángulos y distancias en el espacio

Tema 6: Ángulos y distancias en el espacio Tema 6: Ángulos y distancias en el espacio February, 017 1 Ángulos entre elementos del espacio Los ángulos entre elementos del espacio, es una aplicación sencilla del producto escalar. Recuerdo las condiciones

Más detalles

Ángulos, distancias, áreas y volúmenes

Ángulos, distancias, áreas y volúmenes UNIDAD 6 Ángulos, distancias, áreas y volúmenes e suelen llamar problemas afines a todos los S que se refieren a intersección (incidencia) y paralelismo de los elemento básicos del espacio: puntos, rectas

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,

Más detalles

Tema 11: Problemas Métricos

Tema 11: Problemas Métricos ..- Distancia entre dos puntos : Tema : Problemas Métricos B AB A d( A, B) AB La distancia entre dos puntos Aa (, a, a) Bbb (,, b ) es el módulo del vector que une dichos puntos: d( A, B) AB b a b a b

Más detalles

Problemas métricos. 1. Problemas afines y problemas métricos

Problemas métricos. 1. Problemas afines y problemas métricos . Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas

Más detalles

Apellidos: Nombre: Opción A

Apellidos: Nombre: Opción A EXAMEN DE MATEMATICAS II 3ª EVALUACIÓN Apellidos: Nombre: S Instrucciones: Curso: 2º Grupo: A Día: 27 - IV - 17 CURSO 201-17 a) Duración: 1 HORA y 30 MINUTOS. b) Debes elegir entre realizar únicamente

Más detalles

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos MATEMÁTICAS 1º BACH. C. N. Y S. 5 de enero de 010 Geometría y Logaritmos x yz 1) Tomar logaritmos, y desarrollar, en la siguiente expresión: A 4 ab log x log b 4log a log y ) Quitar logaritmos: log A )

Más detalles

GEOMETRÍA EN EL ESPACIO.

GEOMETRÍA EN EL ESPACIO. GEOMETRÍA EN EL ESPACIO.. ESPACIOS VECTORIALES VECTOR FIJO Segmento orientado. Queda determinado por Origen A(a, a, a ); extremo B(b, b, b ) Módulo: Longitud del AB ( b a) ( b a) ( b a) segmento AB Características:

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA TEMA 3: Distancias, ángulos y lugares geométricos.

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA TEMA 3: Distancias, ángulos y lugares geométricos. MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA TEMA 3: Distancias, ángulos y lugares geométricos. 3.1 DISTANCIAS EN EL ESPACIO 3.1.1 Distancia entre dos puntos Dados los puntos A(x 0, y 0, z

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO Temas 6 y 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1 TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO RECTAS Y PLANOS EJERCICIO 1 : Halla el volumen del tetraedro determinado por los ejes

Más detalles

GEOMETRÍA VECTORES. Sean: u = (1,0, 1); v = (2, 3,0); w = ( 1,2,2) Producto escalar u v. u v = (1,0, 1) (2, 3,0) = ( 3) 1 0 = 2

GEOMETRÍA VECTORES. Sean: u = (1,0, 1); v = (2, 3,0); w = ( 1,2,2) Producto escalar u v. u v = (1,0, 1) (2, 3,0) = ( 3) 1 0 = 2 º bachillerato MATEMÁTICAS II Sean: u = (1,0, 1); v = (, 3,0); w = ( 1,,) Producto escalar u v Aplicaciones: - Cálculo de ángulos. cos(u, v ) = VECTORES u v = (1,0, 1) (, 3,0) = 1 + 0 ( 3) 1 0 = u v u

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 3, Opción A Reserva, Ejercicio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 22 MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio

Más detalles

Seis problemas resueltos de geometría

Seis problemas resueltos de geometría Problema 1 a) Dados los puntos P(4, 2, 3) y Q(2, 0, 5), da la ecuación implícita del plano π de modo que el punto simétrico de P respecto a π es Q. b) Calcula el valor del parámetro λ R para que el plano

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 1 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio

Más detalles

GEOMETRÍA ANALÍTICA EN EL ESPACIO (PRODUCTOS ESCALAR, VECTORIAL Y MIXTO) PRODUCTO ESCALAR DE DOS VECTORES. número real

GEOMETRÍA ANALÍTICA EN EL ESPACIO (PRODUCTOS ESCALAR, VECTORIAL Y MIXTO) PRODUCTO ESCALAR DE DOS VECTORES. número real GEOMETRÍA ANALÍTICA EN EL ESPACIO (PRODUCTOS ESCALAR, VECTORIAL Y MIXTO) PRODUCTO ESCALAR DE DOS VECTORES El producto escalar de dos vectores v y u es un número real, que se obtiene multiplicando los módulos

Más detalles

Tema 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1

Tema 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1 Tema 7 Rectas y planos en el espacio Matemáticas II - º Bachillerato 1 ÁNGULOS EJERCICIO 33 : Halla el ángulo que forma la recta y el plano π: x y + 4z 0. 3x y z + 1 0 r : x + y 3z 0 EJERCICIO 34 : En

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,

Más detalles

Solución. También se observa que el punto N es el punto medio del segmento MB, es decir

Solución. También se observa que el punto N es el punto medio del segmento MB, es decir MODELOS GEOMETRÍA 1 Ejercicio n 4 de la opción A de septiembre de 2007 [1 25 puntos] Halla los dos puntos que dividen al segmento de extremos A(1,2,1) y B(-1,0,3) en tres partes iguales. [1 25 puntos]

Más detalles

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por x = 1+t 1. [014] [EXT-A] Considera los puntos A(1,1,) y B(1,-1,-) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por A y

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 3, Opción B Junio, Ejercicio 4, Opción A Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

Departamento de matemáticas

Departamento de matemáticas Geometría con solución Problema 1: Sea r y s las rectas dadas por: a) Hállese el valor de m para que ambas rectas se corten. b) Para m = 1, hállese la ecuación del plano que contiene a r y s Problema 2:

Más detalles

GEOMETRÍA ANALÍTICA - Ejercicios de Selectividad

GEOMETRÍA ANALÍTICA - Ejercicios de Selectividad GEOMETRÍA ANALÍTICA - Ejercicios de Selectividad 1 Se sabe que los puntos A (1,0,-1), B (3,, 1) y C (-7, 1, 5) son los vértices consecutivos de un paralelogramo ABCD. (a) Calcula las coordenadas del punto

Más detalles

x-z = 0 x+y+2 = [2012] [SEP-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por

x-z = 0 x+y+2 = [2012] [SEP-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por 1. [01] [SEP-B] Halla el punto simétrico del P(,1,-5) respecto de la recta r definida por x-z = 0 x+y+ = 0.. [01] [SEP-A] Sean los puntos A(0,0,1), B(1,0,-1), C(0,1,-) y D(1,,0). a) Halla la ecuación del

Más detalles

Unidad 6 Geometría euclídea. Producto escalar

Unidad 6 Geometría euclídea. Producto escalar Unidad 6 Geometría euclídea Producto escalar PÁGINA 131 SOLUCIONES 1 La recta 4 x 3y + 6 = 0 tiene de pendiente 4 m = 3 4 Paralela: y 1 = ( x ) 4x 3y 5 = 0 3 4 Perpendicular: y 1 = ( x ) 3x + 4y 10 = 0

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometría del espacio: problemas de ángulos y distancias; simetrías MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Ángulos

Más detalles

Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. R es una cuaterna { O,i, j, k}

Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. R es una cuaterna { O,i, j, k} Geometría afín del espacio MATEMÁTICAS II 1 1 SISTEMA DE REFERENCIA. ESPACIO AFÍN Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. Definición: Un sistema de referencia

Más detalles

ECUACIÓN DE LA RECTA

ECUACIÓN DE LA RECTA ECUCIÓN DE L RECT.- PRIMERO DE BCHILLERTO.- TEORÍ Y EJERCICIOS. Pág. ECUCIÓN DE L RECT Sistema de referencia. Es el conjunto formado por: Un punto O del plano llamado origen. Una base B {i, j } para los

Más detalles

TEMA 6. Ángulos, distancias, simetrías Problemas Resueltos

TEMA 6. Ángulos, distancias, simetrías Problemas Resueltos Matemáticas II (Bachillerato de Ciencias) Soluciones de los problemas propuestos Tema 6 88 Ángulos entre rectas y planos TEMA 6 Ángulos, distancias, simetrías Problemas Resueltos Dadas las rectas r y s

Más detalles

Colegio Internacional Torrequebrada. Departamento de Matemáticas

Colegio Internacional Torrequebrada. Departamento de Matemáticas Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 7 MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,

Más detalles

EL ESPACIO EUCLÍDEO. 1.- Sean (R 3,R 3,f) el espacio afín usual tridimensional real, R ={P 0, P 1, P 2, P 3 } y R,

EL ESPACIO EUCLÍDEO. 1.- Sean (R 3,R 3,f) el espacio afín usual tridimensional real, R ={P 0, P 1, P 2, P 3 } y R, EL ESPACIO EUCLÍDEO 1.- Sean (R,R,f) el espacio afín usual tridimensional real, R {P 0, P 1, P, P } y R, {Q 0, Q 1, Q,Q } dos referencias afines de (R,R,f) de bases asociadas B{ P 0 P 1 P 0 P, P0 P } y

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: 28 - IV 14 CURSO Opción A 1.- Sean las matrices A = , B =

Apellidos: Nombre: Curso: 2º Grupo: A Día: 28 - IV 14 CURSO Opción A 1.- Sean las matrices A = , B = S Instrucciones: EXAMEN DE MATEMATICAS II 3ª EVALUACIÓN Apellidos: Nombre: Curso: º Grupo: A Día: 8 - IV 4 CURSO 03-4 a) Duración: HORA y 30 MINUTOS. b) Debes elegir entre realizar únicamente los cuatro

Más detalles

1. Distancia entre puntos y rectas en el espacio. 3. Calcula la distancia existente entre las rectas: Solución: d(r, s) =

1. Distancia entre puntos y rectas en el espacio. 3. Calcula la distancia existente entre las rectas: Solución: d(r, s) = 7 Espacio métrico. Distancia entre puntos y rectas en el espacio Piensa y calcula Dados los puntos A, 4, ) y B5,, 4), halla las coordenadas del vector: AB AB,5,) Aplica la teoría. Calcula la distancia

Más detalles

Nombre y Apellido: C.I: Profesor: Sección:

Nombre y Apellido: C.I: Profesor: Sección: Universidad Central de Venezuela Facultad de Ingeniería Departamento de Matemáticas Aplicadas Álgebra Lineal Parcial % 3 de noviembre de 7 Semestre 7 Nombre y Apellido: C.I: Profesor: Sección:. Dados A

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

hallar; a) Ecuación del plano que pasa por r y por (1, 3, 8) b) Distancia desde el origen al plano anterior

hallar; a) Ecuación del plano que pasa por r y por (1, 3, 8) b) Distancia desde el origen al plano anterior x 1 y 1. Distancia entre la recta = = z y el plano (x, y, z) = (0, 1, 0) + τ(, 5, 1) + λ(1, 0, ) 3 5. Distancia del punto (, 3, 5) a la recta x 1 z = y = x + z y 3. Distancia entre las rectas r = y = y

Más detalles

Unidad 7 Producto vectorial y mixto. Aplicaciones.

Unidad 7 Producto vectorial y mixto. Aplicaciones. Unidad 7 Producto vectorial y mixto. Aplicaciones. 5 SOLUCIONES 1. Al ser u v =(,5,11), se tiene que ( u v) w = ( 17,13, 9 ). Como v w =( 3,, 7), por tanto u ( v w) = ( 19,11, 5).. Se tiene que: 3. Queda:

Más detalles

Distancia entre dos rectas que se cruzan Perpendicular común

Distancia entre dos rectas que se cruzan Perpendicular común Perpendicular común En un espacio de tres dimensiones dos rectas se cruzan cuando no tienen ningún punto en común y no están contenidas en el mismo plano. Si no tienen ningún punto en común pero sí que

Más detalles

= λ + 1 y el punto A(0, 7, 5)

= λ + 1 y el punto A(0, 7, 5) 94 GEOMETRÍA ANALÍTICA DEL ESPACIO en las PAU de Asturias Dados los puntos A(1, 0, 1), B(l, 1, 1) y C(l, 6, a), se pide: a) hallar para qué valores del parámetro a están alineados b) hallar si existen

Más detalles

TEMA 12: PROBLEMAS MÉTRICOS EN EL ESPACIO.

TEMA 12: PROBLEMAS MÉTRICOS EN EL ESPACIO. TEMA 12: PROBLEMAS MÉTRICOS EN EL ESPACIO. 1. Distancia entre dos puntos: Si A= (a 1, a 2, a 3 ) y B= (b 1, b 2, b 3 ), entonces: 2.Ángulo entre elementos del espacio: Ángulo entre dos rectas: d (A, B)

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (05-M4;Jun-B-4) Sea el plano π x + y z + 8 a) (5 puntos) Calcula el punto, P simétrico del punto (,,5 ) b) ( punto) Calcula la recta r, simétrica de la recta plano π P

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

EXAMEN DE MATEMÁTICAS II

EXAMEN DE MATEMÁTICAS II º Bachillerato CT EXAMEN DE MATEMÁTICAS II GEOMETRÍA. (Castilla y León, junio ). x z x y Se consideran las rectas r = y = y s = = z. 3 a) ( punto). Comprueba que las rectas r y s se cruzan. b) ( puntos).

Más detalles

TEMA 5 GEOMETRÍA ANALÍTICA

TEMA 5 GEOMETRÍA ANALÍTICA TEMA 5 GEOMETRÍA ANALÍTICA Ecuación general de la recta. Una recta queda determinada por un vector que tenga su dirección (llamado vector director) y un punto que pertenezca a esa recta. Tipos de ecuaciones

Más detalles

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso. Espacio euclídeo Determinación de ángulos

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso. Espacio euclídeo Determinación de ángulos Espacio euclídeo 5.1. Determinación de ángulos.... - 2-5.1.1. Ángulo determinado por dos rectas secantes.... - 2-5.1.2. Ángulo determinado por planos secantes.... - 2-5.1.3. Ángulo determinado por una

Más detalles

IES EL PILES SELECTIVIDAD OVIEDO DPTO. MATEMÁTICAS Geometría

IES EL PILES SELECTIVIDAD OVIEDO DPTO. MATEMÁTICAS Geometría P.A.U. de. (Oviedo). (junio 994) Dados los puntos A (,0, ), B (,, ), C (,6, a), se pide: i) hallar para qué valores del parámetro a están alineados, ii) hallar si existen valores de a para los cuales A,

Más detalles

= 1 3 = 0,612 unidades cuadradas.

= 1 3 = 0,612 unidades cuadradas. RESOLUCIÓN DE ACTIVIDADES Actividades iniciales. Determina las ecuaciones de las rectas del plano perpendicular y paralela a la recta de ecuación 4 y + 6 0 y que pasan por el punto (, ). La recta 4 y +

Más detalles

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos]

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos] Matemáticas II Pruebas de Acceso a la Universidad GEOMETRÍA Junio 94 1 Sin resolver el sistema, determina si la recta x y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1 Razónalo

Más detalles

EJERCICIOS GEOMETRÍA PARTE 2 MATEMÁTICAS II

EJERCICIOS GEOMETRÍA PARTE 2 MATEMÁTICAS II EJERCICIOS GEOMETRÍA PARTE MATEMÁTICAS II 1) Comprobar que la recta r : x 10 = y 1 11/ = z 5 7 está contenida en el plano Π: x -8y + z = 8 Para que una recta esté contenida en un plano se tienen que verificar

Más detalles

Página 209 PARA RESOLVER. 44 Comprueba que el triángulo de vértices A( 3, 1), B(0, 5) y C(4, 2) es rectángulo

Página 209 PARA RESOLVER. 44 Comprueba que el triángulo de vértices A( 3, 1), B(0, 5) y C(4, 2) es rectángulo 44 Comprueba que el triángulo de vértices A(, ), B(0, ) y C(4, ) es rectángulo y halla su área. Veamos si se cumple el teorema de Pitágoras: AB = (0 + ) + ( ) = AC = (4 + ) + ( ) = 0 BC = 4 + ( ) = 0 +

Más detalles

R E S O L U C I Ó N. sabemos un punto A (1, 2, 0) y su vector director u (3,0,1). x 1 3 0

R E S O L U C I Ó N. sabemos un punto A (1, 2, 0) y su vector director u (3,0,1). x 1 3 0 x 13t Considera el punto P(1, 1,0) y la recta r dada por y 2. z t a) Determina la ecuación del plano que pasa por P y contiene a r. b) Halla las coordenadas del punto simétrico de P respecto de r. MATEMÁTICAS

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 2,

Más detalles

. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v

. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v EJERCICIOS BLOQUE III: GEOMETRÍA (04-M;Jun-A-4) Considera la recta r que pasa por los puntos A (,0, ) y (,,0 ) a) ( punto) Halla la ecuación de la recta s paralela a r que pasa por C (,,) b) (5 puntos)

Más detalles

Soluciones del ESPACIOS AFÍN Y EUCLÍDEO Curso 03/ En el espacio afín ordinario, se consideran las referencias:

Soluciones del ESPACIOS AFÍN Y EUCLÍDEO Curso 03/ En el espacio afín ordinario, se consideran las referencias: Soluciones del ESPACIOS AFÍN Y EUCLÍDEO Curso 03/04 1.- En el espacio afín ordinario, se consideran las referencias: R = { O,u, v,w} y R' = { O',u', v',w' }, donde OO'= u + 2v + 3w, u'= -u + v + w, v'=

Más detalles

Tema 6. Apéndice: La esfera

Tema 6. Apéndice: La esfera Matemáticas II (Bachillerato de Ciencias) Geometría del espacio: La esfera (Apéndice del TEMA 6) 141 Tema 6 Apéndice: La esfera La superficie esférica (la esfera) es el conjunto de puntos del espacio que

Más detalles

Matemáticas II Hoja 7: Problemas métricos

Matemáticas II Hoja 7: Problemas métricos Profesor: Miguel Ángel Baeza Alba (º Bachillerato) Matemáticas II Hoja 7: Problemas métricos Ejercicio : Se dan la recta r y el plano, mediante: x 4 y z x + y z 7 3 Obtener los puntos de la recta cuya

Más detalles

IES Fernando de Herrera Curso 2015 / 16 Tercer trimestre - Prueba de observación continua nº 1 2º Bach CT NOMBRE:

IES Fernando de Herrera Curso 2015 / 16 Tercer trimestre - Prueba de observación continua nº 1 2º Bach CT NOMBRE: IES Fernando de Herrera Curso 05 / 6 Tercer trimestre - Prueba de observación continua nº º Bach CT NOMBRE: Instrucciones: ) Todos los folios deben tener el nombre y estar numerados en la parte superior.

Más detalles

5. Determina el valor o los valores del parámetro m para que la recta r : x= y = z y el plano π: x z=0 formen un ángulo de 30º.

5. Determina el valor o los valores del parámetro m para que la recta r : x= y = z y el plano π: x z=0 formen un ángulo de 30º. EJERCICIOS: GEOMETRÍA EUCLÍDEA. PRODUCTO ESCALAR. 1. Considera las rectas que se cortan en el punto P(1,0,-1) y cuyos vectores directores son u=(,1, ) y v=(,, 1 ), respectivamente. Escribe las ecuaciones

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA EJERCICIOS DE GEOMETRÍA 1. Se consideran las rectas r x 2 = 0 x 2z = 1, s y + 3 = 0 y + z = 3 a) Estudiar la posición relativa de r y s. b) Hallar la mínima distancia entre ambas. Se pide: Sol: Se cruzan

Más detalles

023 calcula la ecuación general de los planos que contienen a dos de los ejes coordenados. Eje X y eje Y: Eje X y eje Z: Eje Y y eje Z:

023 calcula la ecuación general de los planos que contienen a dos de los ejes coordenados. Eje X y eje Y: Eje X y eje Z: Eje Y y eje Z: Solucionario 3 calcula la ecuación general de los planos que contienen a dos de los ejes coordenados. Eje X y eje Y: Eje X y eje Z: Eje Y y eje Z: x y z x y z x y z = z = = y = = x = Determina la posición

Más detalles

MATEMÁTICAS II. 2º BACHILLERATO EJERCICIOS DE GEOMETRÍA

MATEMÁTICAS II. 2º BACHILLERATO EJERCICIOS DE GEOMETRÍA MATEMÁTICAS II. º BACHILLERATO EJERCICIOS DE GEOMETRÍA REAL COLEGIO NTRA. SRA. DE LORETO FUNCACIÓN SPÍNOLA.- Halla la ecuación del plano, a. que pasa por A(,, 0) es perpendicular a w, 0 b. que pasa por

Más detalles

4. [ANDA] [JUN-B] Dados los puntos A(2,1,1) y B(0,0,1), halla los puntos C en el eje OX tales que el área del triángulo de vértices A, B y C es 2.

4. [ANDA] [JUN-B] Dados los puntos A(2,1,1) y B(0,0,1), halla los puntos C en el eje OX tales que el área del triángulo de vértices A, B y C es 2. Selectividad CCNN 008 x-z = -. [ANDA] [SEP-A] Sea la recta dada por y+z = a) Halla la ecuación del plano que es paralelo a la recta s y contiene a la recta r, dada por x- = -y+ = z-. b) Estudia la posición

Más detalles

Geometría 3. Ejercicio 2. Dados los puntos = ( 1, 0, 0 ),

Geometría 3. Ejercicio 2. Dados los puntos = ( 1, 0, 0 ), Geometría 3 Ejercicio. Sean los puntos P (,, ), Q (,, 3) R (,3,). ) Calcula el punto P que es la proección del punto P sobre la recta que determinan Q R ) Halla la ecuación del lugar geométrico de los

Más detalles

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean

Más detalles

TEMA 5. GEOMETRÍA EN EL PLANO

TEMA 5. GEOMETRÍA EN EL PLANO TEMA 5. GEOMETRÍA EN EL PLANO. SISTEMAS DE REFERENCIA Y COORDENADAS Un sistema de referencia en el plano consta de dos rectas perpendiculares (llamadas ejes de coordenadas) que se cortan en el punto 0

Más detalles

BLOQUE II Geometría. Resoluciones de la autoevaluación del libro de texto

BLOQUE II Geometría. Resoluciones de la autoevaluación del libro de texto Pág. 1 de 1 Considera los vectores u(3,, 1), v ( 4, 0, 3) y w (3,, 0): a) Forman una base de Á 3? b) Halla m para que el vector (, 6, m) sea perpendicular a u. c) Calcula u, ì v y ( u, v). a) Para que

Más detalles

GEOMETRÍA (Selectividad 2016) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2016

GEOMETRÍA (Selectividad 2016) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2016 GEOMETRÍA (Selectividad 6) ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 6 Aragón, junio 6 ( puntos) a) ( punto) a) (,5 puntos) Si los vectores w y s verifican que w = s =,

Más detalles

Vectores equipolentes. Vector libre. Componentes de un vector

Vectores equipolentes. Vector libre. Componentes de un vector 1.- VECTORES. OPERACIONES Vector fijo Un vector fijo AB es un segmento orientado con origen en el punto A y extremo en B Todo vector fijo AB tiene tres elementos: Módulo: Es la longitud del segmento AB.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio 3, Opción B Reserva 2,

Más detalles

GEOMETRÍA ANALÍTICA EN EL ESPACIO

GEOMETRÍA ANALÍTICA EN EL ESPACIO GEOMETRÍ NLÍTIC EN EL ESPCIO PRODUCTO ESCLR ab = a b cosx (Cuando sepamos el ángulo que forman a y b (x)). ab = a b a b a b (Cuando sepamos las coordenadas de a y b ). Cuando los vectores son perpendiculares

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD 1 LA RECTA Y SUS ECUACIONES PROBLEMAS PROPUESTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivos

Más detalles

EXAMEN: TEMAS 4 Y 5 BCT 1º OPCIÓN A 25/02/2015

EXAMEN: TEMAS 4 Y 5 BCT 1º OPCIÓN A 25/02/2015 EXAMEN: TEMAS 4 Y BCT 1º OPCIÓN A 2/02/201 1. (1 punto) Sea M el punto medio del segmento AB. Expresa el vector OM como combinación lineal de los vectores OA y OB. Realizar una construcción gráfica de

Más detalles

GEOMETRÍA MÉTRICA. Usando sólo la escena: Si A( 1, 1,0) y B(k, 2,2), qué dos valores puede tomar k para que d(a,b)=3? Solución:

GEOMETRÍA MÉTRICA. Usando sólo la escena: Si A( 1, 1,0) y B(k, 2,2), qué dos valores puede tomar k para que d(a,b)=3? Solución: INTRODUCCIÓN. A1. Observa que: Ministerio de Educación, Cultura y Deporte. Año 2003 Si A(x 1,y 1,z 1 ) y B(x 2,y 2,z 2 ), entonces GEOMETRÍA MÉTRICA Usando sólo la escena: Si A( 1, 1,0) y B(k, 2,2), qué

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas Geometría analítica Matemáticas I 1.- Comprueba que el triángulo de vértices A(-1, 8), B(1, ) y C(4, ) es rectángulo y calcula su área. AB = (, 6) AC = (5, 5) BC = (,1) AB. AC = (, 6).(5, 5) = 10 + 0 =

Más detalles

G E O M E T R Í A M É T R I C A P L A N A

G E O M E T R Í A M É T R I C A P L A N A G E O M E T R Í A M É T R I C A P L A N A. PUNTO MEDIO D E UN SEGME NTO. S IMÉTRICO DE U N PUNTO Sean A y a,a b B,b las coordenadas de dos puntos del plano que determinan el segmento AB. Las coordenadas

Más detalles

vv = ( vi+ v j+ vk)( v i+ v j+ v k) = v v + v v + vv

vv = ( vi+ v j+ vk)( v i+ v j+ v k) = v v + v v + vv CÁLCULO VECTORIAL. INTRODUCCIÓN Cálculo de las componentes de un ector Dado un ector cuyo origen es el punto A ( x A,y A,z A ) y su extremo el punto B A ( x B,y B,z B ), las componentes del ector se calculan

Más detalles

EJERCICIOS DE GEOMETRÍA RESUELTOS

EJERCICIOS DE GEOMETRÍA RESUELTOS EJERCICIOS DE GEOMETRÍA RESUELTOS 1.- Dada la recta r: 4x + 3y -6 = 0, escribir la ecuación de la recta perpendicular a ella en el punto de corte con el eje de ordenadas. : - Hallamos el punto de corte

Más detalles