TEMA 4.- SISTEMAS DE ECUACIONES DIFERENCIALES ORDINARIAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 4.- SISTEMAS DE ECUACIONES DIFERENCIALES ORDINARIAS"

Transcripción

1 TEMA 4- SISTEMAS DE ECUACIONES DIFERENCIALES ORDINARIAS 41 - Introducción Denición: Un sistema de ecuaciones diferenciales de primer orden en el que sus derivadas estén dadas explícitamente se puede expresar y 1 = f 1 (t, y 1, y 2,, y n ) Si se denota y y 2 = f 2 (t, y 1, y 2,, y n ) = y n = f n (t, y 1, y 2,, y n ) y = (y 1 (t), y 2 (t),, y n (t)) t F(t, y) = (f 1 (t, y), f 2 (t, y),, f n (t, y)) t el sistema (1) se puede escribir como d y(t) = F(t, y) dt Denición: Si las funciones f 1, f 2,, f n son lineales en y 1, y 2,, y n, el sistema (1) recibe el nombre de sistema lineal de primer orden, y su expresión general es y 1 = a 11 (t)y 1 + a 12 (t)y a 1n (t)y n + g 1 (t) y 2 = a 21 (t)y 1 + a 22 (t)y a 2n (t)y n + g 2 (t) = y n = a n1 (t)y 1 + a n2 (t)y a nn (t)y n + g n (t) Cuando las funciones a ij, i, j = 1, 2,, n son constantes (2) es un sistema lineal de primer orden con coecientes constantes Denición: Si alguna función f i, i = 1, 2,, n es no lineal en y 1, y 2,, y n, (1) es un sistema no lineal de primer orden 1 (1) (2)

2 Denición: Una solución del sistema (1) es un conjunto de n funciones y 1 (t), y 2 (t),, y n (t) que satisfacen todas las ecuaciones Denición: El sistema (1) junto con las condiciones iniciales y 1 (t 0 ) = y 10, y 2 (t 0 ) = y 20,, y n (t 0 ) = y n0 donde t 0 I e y 10, y 20,, y n0 son números reales, recibe el nombre de problema de valor inicial (PVI) En forma vectorial un PVI se expresa d y(t) = F(t, y), dt t y(t 0 ) = y 0 donde t 0 I e y 0 = (y 10, y 20,, y n0 ) t I 42 - Sistemas de ecuaciones lineales de primer orden Matricialmente el sistema (2) se puede expresar de la forma con y = A(t)y + g(t) a 11 (t) a 12 (t) a 1n (t) a A(t) = 21 (t) a 22 (t) a 2n (t) a n1 (t) a n2 (t) a nn (t) y 1 (t) g 1 (t) y y(t) = 2 (t) g(t) = g 2 (t) y n (t) g n (t) Si g i (t) = 0, i = 1, 2,, n el sistema se dice que es homogéneo Denición: La matriz A(t) es continua en un intervalo I si todos sus elementos a ij (t) son funciones continuas 2

3 Sea la ecuación diferencial y (n) + a n 1 (t)y (n 1) + + a 1 (t)y + a 0 (t)y = b(t) (3) donde a i (t), i = 0, 1,, n 1, y b(t) son funciones continuas en I Si se introducen las variables y 1 = y, y 2 = y, y 3 = y,, y n = y (n 1) se tiene que y 1 = y = y 2, y 2 = y = y 3,, y n = y (n) Por tanto y 1 = y 2 y 2 = y 3 y n 1 = y n = a 0 (t)y 1 a 1 (t)y 2 a n 1 (t)y n + b(t) y n (4) Proposición: a) Si y = ϕ(t) es solución de (3), entonces la función vectorial y(t) = ( ϕ(t), ϕ (t),, ϕ (n 1) (t) ) t es solución de (4) b) Si y(t) = (y 1 (t), y 2 (t),, y n (t)) t es solución de (4) entonces y 1 (t) es solución de (3) Teorema: Sea el sistema y = A(t)y +g(t), donde A(t) y g(t) son continuas en un intervalo I de R Sea t 0 I e y 0 = (y 01, y 02,, y 0n ) t R n Entonces, existe una única solución y(t) del sistema tal que y(t 0 ) = y Sistemas homogéneos Sea el sistema de ecuaciones diferenciales de primer orden y = A(t)y (5) donde A(t) es una matriz de orden n n continua en un intervalo I 3

4 Proposición: a) Si ϕ(t) es una solución de (5) tal que existe t 0 con ϕ(t 0 ) = 0, entonces ϕ(t) = 0 t I b) Si y 1 (t) e y 2 (t) son soluciones de (5), entonces la función αy 1 (t) + βy 2 (t), α, β R, es también solución de (5) Proposición: Sean y 1 (t), y 2 (t),, y k (t), k soluciones de (5) Entonces y 1 (t), y 2 (t),, y k (t), k son independientes (dependientes) en I si y solo si existe t 0 I tal que y 1 (t 0 ), y 2 (t 0 ),, y k (t 0 ) son vectores de R n linealmente independientes (dependientes) Proposición: Consideremos el sistema homogeneo (5) El espacio vectorial S H de todas las soluciones de (5) es dimensión n Denición: Si y 1 (t), y 2 (t),, y n (t) es un conjunto de n soluciones independientes de (5) en el intervalo I, entonces reciben el nombre de sistema fundamental de soluciones de (5) en I La solución general del sistema I se dene como y(t) = C 1 y 1 (t) + C 2 y 2 (t) + + C n y n (t) donde C i, i = 1, 2,, n son constantes arbitrarias Sistemas no homogéneos Sea el sistema de ecuaciones diferenciales lineales de primer orden y = A(t)y + g(t) (6) donde A(t) y g(t) son continuas en un cierto intervalo I Para sistemas de este tipo, se llama solución particular, y p, a cualquier vector que no contiene parámetros arbitrarios y tal que sus elementos son funciones que que satisfacen (6) Teorema: La solución general del sistema y escribirse como y(t) = y h (t) + y p (t), = A(t)y + g(t) puede donde y h es la solución general de y = A(t)y e y p (t) es la solución particular de y = A(t)y + g(t) 4

5 43 - Sistemas lineales de primer orden con coecientes constantes El sistema (2) cuando los coecientes son constantes se puede escribir de la forma y = Ay + g(t) Primero se buscan soluciones del sistema homogéneo asociado y = Ay De forma similar al caso escalar, se pueden buscar soluciones de la forma y = v e λt donde v es un vector constante y λ un escalar Teniendo en cuenta que d dt v eλt = λv e λt se obtiene que para el sistema homogéneo Av = λv Proposición: Sea v = (v 1, v 2,, v n ) t un vector propio de A asociado al valor propio λ Entonces la función y(t) = v e λt = v 1 v 2 v n eλt es una solución de y = Ay en el intervalo < t < + Proposición: Sean v 1, v 2,, v n vectores propios de A linealmente independientes, asociados a los valores propios λ 1, λ 2,, λ n, (iguales o distintos) Entonces, las siguientes funciones son un sistema fundamental de soluciones de y = Ay en < t < + y 1 = v 1 e λ 1t, y 2 = v 2 e λ 2t,, y n = v n e λ nt, 5

6 Proposición: Si la matriz A tiene n valores propios distintos λ 1, λ 2,, λ n con v 1, v 2,, v n vectores propios asociados, entonces, la solución general de y = Ay es y 1 = C 1 v 1 e λ 1t +C 2 v 2 e λ 2t + + C n v n e λ nt Valores propios complejos Proposición: Sea y = y 1 (t)+iy 2 (t) una solución compleja de y = Ay Entonces, y 1 (t) e y 2 (t) son soluciones reales de y = Ay La solución compleja es y(t) = v e λt = (v 1 + iv 2 ) e (a+ib)t = (v 1 + iv 2 ) e at (cos bt + i sen bt) = e at [v 1 cos bt v 2 sen bt + i(v 1 sen bt + v 2 cos bt)] y las soluciones reales son y 1 (t) = e at (v 1 cos bt v 2 sen bt) y 2 (t) = e at (v 1 sen bt + v 2 cos bt) Es facil ver que las soluciones reales y 1 (t) e y 2 (t) son independientes 44 - Variación de parámetros Denición: Sea y 1 (t), y 2 (t),, y n (t) un sistema fundamental de soluciones de y = Ay La matriz Y (t) cuyas columnas son las n soluciones independientes del sistema y = Ay recibe el nombre de matriz fundamental de soluciones del sistema Proposición: a) Una matriz Y (t) es una matriz fundamental de soluciones de y = d Ay si, y sólo si, Y (t) = A Y (t) y det(y (0)) 0 dt b) La matriz exponencial e At es una matriz fundamental de soluciones de y = Ay 6

7 c) Si X(t) e Y (t) son matrices fundamentales de soluciones de y = Ay, entonces existe una matriz constante C tal que Y (t) = X(t) C Teorema: Sea Y (t) una matriz fundamental de soluciones de y = Ay Entonces, e At = Y (t) Y (0) 1 Sea el problema de valor inicial y = Ay + g(t), y(t 0 ) = y 0 (7) e y 1 (t), y 2 (t),, y n (t) n soluciones independientes de y = Ay, cuya solución general es y(t) = C 1 y 1 (t) + C 2 y 2 (t) + + C n y n (t) El método de variación de parámetros consiste en buscar una solución de (7) de la forma y(t) = u 1 y 1 (t) + u 2 y 2 (t) + + u n y n (t) donde u i, i = 1, 2,, n son funciones reales a determinar Matricialmente el sistema anterior se puede expresar como y(t) = Y (t) u(t) donde Y (t) es la matriz fundamental de soluciones y u(t) = ( u 1 (t), u ( t),, u n (t) ) t Sustituyendo esta expresión en y = Ay + g(t), se obtiene Y (t)u(t) + Y (t)u (t) = AY (t)u(t) + g(t) Como Y (t) es una matriz fundamental de soluciones, Y = AY (t), y la ecuación anterior se reduce a Y (t)u (t) = g 7

8 Por lo tanto Integrando entre t 0 y t se obtiene u(t) = u(t 0 ) + t u (t) = Y (t) 1 g(t) t 0 Y (s) 1 g(s)ds = Y (t 0 ) 1 y 0 + y la solución de la ecuación diferencial es y(t) = Y (t)u(t) = Y (t)y (t 0 ) 1 y 0 + Y (t) Si Y (t) = e At Y (0), entonces y(t) = e A(t t 0) y 0 + e At t t t t 0 e As g(s)ds La solución general del problema y = Ay + g(t) es y(t) = e At C + e At e At g(t)dt 45 - Método de los coecientes indeterminados t 0 Y (s) 1 g(s)ds, t 0 Y (s) 1 g(s)ds Similar al método de los coecientes indeterminados para ecuaciones diferenciales escalares 8

14 Sistemas lineales de ecuaciones diferenciales con coeficientes

14 Sistemas lineales de ecuaciones diferenciales con coeficientes Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 14 Sistemas lineales de ecuaciones diferenciales con coeficientes constantes 14.1 Definición Se llama sistema lineal con coeficientes constantes al

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES ESPACIOS VECTORIALES Un espacio vectorial sobre K es una conjunto V que cumple: 1) Existe una regla que asocia a dos elementos u, v V su suma que se denota por u + v, que es también elemento de V y que

Más detalles

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales ETS Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Noviembre

Más detalles

MATEMÁTICAS ESPECIALES II PRÁCTICA 5 Parte I - Sistemas de ecuaciones diferenciales de primer orden.

MATEMÁTICAS ESPECIALES II PRÁCTICA 5 Parte I - Sistemas de ecuaciones diferenciales de primer orden. MATEMÁTICAS ESPECIALES II - 8 PRÁCTICA 5 Parte I - Sistemas de ecuaciones diferenciales de primer orden. Considere el sistema de ecuaciones diferenciales ordinarias (EDOs) de primer orden dx dt = f (t,

Más detalles

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia Sistemas lineales de ecuaciones diferenciales Juan-Miguel Gracia Índice Sistemas lineales 2 Búsqueda de una solución especial 3 Aplicación a sistemas 4 Problema de condiciones iniciales 2 / 2 Sistemas

Más detalles

Tema 8 Ecuaciones diferenciales

Tema 8 Ecuaciones diferenciales Tema 8 Ecuaciones diferenciales 1. ECUACIONES DIFERENCIALES ORDINARIAS Definición 1.1: Ecuación diferencial Se llama ecuación diferencial de orden n a una ecuación que relaciona la variable independiente

Más detalles

Sistemas de Ecuaciones Diferenciales

Sistemas de Ecuaciones Diferenciales Lección 8 Sistemas de ecuaciones diferenciales lineales 1 Sistemas de Ecuaciones Diferenciales Consideremos el sistema A + S X + S k 1 k 2 Inicialmente se añaden 2 moles de S y 1 mol de A d[a] dt = k 1

Más detalles

Complementos de Análisis. Año 2016

Complementos de Análisis. Año 2016 Complementos de Análisis. Año 2016 Práctica 8. Ecuaciones diferenciales ordinarias. 1 Modelando con ecuaciones diferenciales Modelar con ecuaciones diferenciales las siguientes situaciones. Intentar resolver

Más detalles

3. Sistemas de n ecuaciones diferenciales lineales de primer orden

3. Sistemas de n ecuaciones diferenciales lineales de primer orden Dpto Matemática Aplicada, Facultad de Informática, UPM EDO Sistemas Lineales 1 3 Sistemas de n ecuaciones diferenciales lineales de primer orden Se define un sistema de ecuaciones diferenciales lineales

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Ecuaciones Diferenciales Lineales

Ecuaciones Diferenciales Lineales Ecuaciones Diferenciales Lineales Manuel Fernández García-Hierro 23 de octubre de 2012 Ecuaciones diferenciales lineales. Introducción Este capítulo está dedicado casi en su totalidad a las ecuaciones

Más detalles

Ecuaciones lineales de segundo orden

Ecuaciones lineales de segundo orden GUIA 5 Ecuaciones lineales de segundo orden En esta guía estudiaremos algunos conceptos básicos relativos a las ecuaciones diferenciales lineales así como algunas técnicas que permiten el cálculo explícito

Más detalles

Álgebra Lineal. Tema 5 Ecuaciones diferenciales lineales

Álgebra Lineal. Tema 5 Ecuaciones diferenciales lineales Álgebra Lineal. Tema 5 Dep. Matemática Aplicada. UMA Tasa relativa de crecimiento Si x(t representa alguna cantidad física como el volumen de una sustancia, la población de ciertas especies, o el número

Más detalles

Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular.

Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. 1. Definiciones previas 1.1. Wronskiano Diremos que el Wronskiano de un conjunto

Más detalles

Lección 6: Ecuaciones diferenciales

Lección 6: Ecuaciones diferenciales Lección 6: Ecuaciones diferenciales 61 Introducción La estática comparativa ha dominado el estudio de la economía durante mucho tiempo, y aún hoy se sigue utilizando para resolver muchos problemas económicos

Más detalles

Ecuaciones lineales de orden superior

Ecuaciones lineales de orden superior ANEXO GUIA 5 Ecuaciones lineales de orden superior Las ideas presentadas para ecuaciones lineales de segundo orden se pueden generalizar a ecuaciones lineales de orden n d n x n + a n 1(t) dn 1 x n 1 +

Más detalles

Tema 3.- SISTEMAS DIFERENCIALES LINEALES Ampliación de Matemáticas. Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial.

Tema 3.- SISTEMAS DIFERENCIALES LINEALES Ampliación de Matemáticas. Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial. Tema 3- SISTEMAS DIFERENCIALES LINEALES Ampliación de Matemáticas Ingeniería Técnica Industrial Especialidad en Electrónica Industrial Índice General 1 Introducción 1 2 Sistemas lineales de primer orden

Más detalles

Definición. Un conjunto de ecuaciones diferenciales con varias funciones incógnitas, se llama sistema de ecuaciones diferenciales.

Definición. Un conjunto de ecuaciones diferenciales con varias funciones incógnitas, se llama sistema de ecuaciones diferenciales. Unidad 4. Sistemas de Ecuaciones Diferenciales Las ecuaciones diferenciales tienen una gran utilidad en ingeniería así como en la ciencia, pero la mayoría de los problemas no dependen de una ecuación,

Más detalles

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Grado en Matemáticas Curso 203-204 . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes

Más detalles

Ecuaciones diferenciales de segundo orden

Ecuaciones diferenciales de segundo orden Ecuaciones diferenciales de segundo orden Leonardo Rodríguez Medina EDO I Trimestre 1O ed lineales de segundo orden Consideraremos ed de la forma u + p(t)u + q(t)u = f(t) (1) donde p, q y f son funciones

Más detalles

CAPÍTULO 4. Sistemas de ecuaciones lineales de primer orden

CAPÍTULO 4. Sistemas de ecuaciones lineales de primer orden CAPÍTULO 4 Sistemas de ecuaciones lineales de primer orden Hasta ahora hemos considerado únicamente ecuaciones diferenciales aisladas Sin embargo, en muchas aplicaciones aparecen situaciones en las que

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales 81 Introducción Denominamos sistema de ecuaciones a toda ecuación de la forma x (t) F ( t, x(t) ), (S) donde F : (a, b) R n R n La expresión anterior es muy general en el

Más detalles

1. Introducción. En (1.1) y (1.2), y es la variable dependiente y t es la variable independiente, a, c son parámetros. dy dt = aet, (1.

1. Introducción. En (1.1) y (1.2), y es la variable dependiente y t es la variable independiente, a, c son parámetros. dy dt = aet, (1. . Introducción Definición.. Una ecuación que contiene derivadas de una o más variables dependientes con respecto a una o más variables independientes se llama ecuación diferencial. En (.) y (.2), y es

Más detalles

Sistemas Lineales de Ecuaciones Diferenciales de Primer Orden

Sistemas Lineales de Ecuaciones Diferenciales de Primer Orden Sistemas Lineales de Ecuaciones Diferenciales de Primer Orden Ecuaciones Diferenciales Ordinarias Andrés Iturriaga J. Departamento de Ingeniería Matemática Universidad de Chile Primavera 211 Andrés Iturriaga

Más detalles

Sistemas de Ecuaciones Diferenciales Ordinarias.

Sistemas de Ecuaciones Diferenciales Ordinarias. E.E.I. CÁLCULO II Y ECUACIONES DIFERENCIALES Curso 2016-17 Lección 23 (Martes 25 abr 2017) Sistemas de Ecuaciones Diferenciales Ordinarias. 1. Observaciones generales sobre los sistemas de ecuaciones diferenciales

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 1. Determinante wronskiano 2 1.1. Wronskiano de f 1 (t), f 2 (t),..., f n (t)............... 3 1.2. Derivada

Más detalles

Lecturas Ecuaciones Diferenciales Ordinarias (III) Ampliación de Matemáticas. Grado en Ingeniería Civil Curso

Lecturas Ecuaciones Diferenciales Ordinarias (III) Ampliación de Matemáticas. Grado en Ingeniería Civil Curso 1 / 37 Lecturas Ecuaciones Diferenciales Ordinarias (III) Ampliación de Matemáticas. Grado en Ingeniería Civil Curso 2012-13 Diciembre 2012 Problemas de contorno A diferencia de los problemas de valores

Más detalles

Teoría Moderna de Control Lineal

Teoría Moderna de Control Lineal Teoría Moderna de Control Lineal 2 Índice general 1. Sistemas lineales determinísticos multivariables, invariantes, continuos 1 1.1. Introducción....................................... 1 1.1.1. Descripción

Más detalles

SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES HOMOGÉNEAS DE PRIMER ORDEN

SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES HOMOGÉNEAS DE PRIMER ORDEN SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES HOMOGÉNEAS DE PRIMER ORDEN Alejandro Lugon 26 de mayo de 2010 1. Ecuaciones planares: dos dimensiones El sistema homogéneo: ẋ a 11 x + a 12 y (1) ẏ a 21 x

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

Sistemas lineales homogéneos

Sistemas lineales homogéneos Lección 9 Sistemas de ecuaciones diferenciales lineales con coeficientes constantes 1 Sistemas lineales homogéneos Estudiaremos los sistemas de la forma x (t) = Ax(t) + b(t) Sistemas homogéneos: x = Ax

Más detalles

1. Estabilidad de Sistemas Lineales y Sistemas Lineales Perturbados

1. Estabilidad de Sistemas Lineales y Sistemas Lineales Perturbados 1. Estabilidad de Sistemas Lineales y Sistemas Lineales Perturbados 1.1. Introducción. Repaso de resultados conocidos AMPLIACIÓN DE ECUACIONES DIFERENCIALES GRADO EN MATEMÁTICAS, Universidad de Sevilla

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 3.- Espacios Vectoriales 1 Espacio Vectorial Un espacio vectorial sobre K es una conjunto V que cumple:

Más detalles

Algebra II: Resumen Teórico

Algebra II: Resumen Teórico Algebra II: Resumen Teórico Diego Martín Nieto Cid 7 de julio de 2009 Índice 1 Espacios vectoriales 2 11 Subespacios 2 12 Combinación Lineal 2 13 Independencia Lineal 2 14 Base 2 15 Coordenadas 2 16 Matriz

Más detalles

Tema 7: Ecuaciones diferenciales. Conceptos fundamentales. Integración de algunas ecuaciones diferenciales. Aplicaciones.

Tema 7: Ecuaciones diferenciales. Conceptos fundamentales. Integración de algunas ecuaciones diferenciales. Aplicaciones. Tema 7: Ecuaciones diferenciales. Conceptos fundamentales. Integración de algunas ecuaciones diferenciales. Aplicaciones. 1. Introducción y ejemplos. Las ecuaciones diferenciales ordinarias, e. d. o.,

Más detalles

Rotacional, Divergencia, Gradiente, Laplaciano

Rotacional, Divergencia, Gradiente, Laplaciano Rotacional, Divergencia, Gradiente, Laplaciano Denición 1. Rotacional Supongamos un campo F : U R 3 R 3, F, y, z = F 1, y, z, F, y, z, F 3, y, z diferenciable denido en el conjunto abierto U de R 3. Se

Más detalles

Pauta Prueba Solemne 2. y(x) = C 1 x 2 2C 2 x 2. Notemos que el determinante del Wronskiano de u y v esta dado por.

Pauta Prueba Solemne 2. y(x) = C 1 x 2 2C 2 x 2. Notemos que el determinante del Wronskiano de u y v esta dado por. Pauta Prueba Solemne 1. Determine si las siguientes afirmaciones son verdaderas o falsas. Justifique su respuesta. a) (0.5pt) Suponga que las funciones u(x) = x y v(x) = x son soluciones de una ecuación

Más detalles

1. Ecuaciones exactas.

1. Ecuaciones exactas. 1. Ecuaciones exactas. Definición Sean D un subconjunto abierto de R 2 y M, N : D R dos funciones continuas en D. Se dice que la ecuación diferencial: está escrita en forma exacta en D cuando existe una

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES ECUACIONES DIFERENCIALES Técnicas básicas de resolución de ecuaciones diferenciales de primer orden 1. Introducción 1.1. Notaciones. Las ecuaciones diferenciales son ecuaciones cuyas incógnitas son funciones

Más detalles

Ecuaciones diferenciales

Ecuaciones diferenciales de primer orden 21 de noviembre de 2016 de primer orden Introducción Introducción a las ecuaciones diferenciales Las primeras ecuaciones diferenciales surgen al tratar de resolver ciertos problemas de

Más detalles

Soluciones del capítulo 4 Sistemas de ecuaciones diferenciales lineales

Soluciones del capítulo 4 Sistemas de ecuaciones diferenciales lineales Soluciones del capítulo 4 Sistemas de ecuaciones diferenciales lineales Héctor Lomelí y Beatriz Rumbos 8 de marzo de 4 a X t C e t + C e 4t b X t C e c X t C d X t C + t + C e 4t 4 + C e t t + C e 4 a

Más detalles

Lista de ejercicios # 4

Lista de ejercicios # 4 UNIVERSIDAD DE COSTA RICA MA-5 FACULTAD DE CIENCIAS Ecuaciones Diferenciales para Ingeniería ESCUELA DE MATEMÁTICA Primer Ciclo del 5 Lista de ejercicios # 4 Sistemas de ecuaciones diferenciales. EPII-II-

Más detalles

1. ESPACIO EUCLÍDEO. ISOMETRÍAS

1. ESPACIO EUCLÍDEO. ISOMETRÍAS 1 1. ESPACIO EUCLÍDEO. ISOMETRÍAS Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos conceptos

Más detalles

1. Teoría de Conjuntos y Funciones

1. Teoría de Conjuntos y Funciones Universidad Central de Venezuela Facultad de Ciencias Escuela de Matemática Álgebra I 1. Teoría de Conjuntos y Funciones 1.1. Teoría de Conjuntos 1. Dados los conjuntos A, B y C, demuestre que: a) (A B)

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS, MAT1532 EXAMEN FINAL

ECUACIONES DIFERENCIALES ORDINARIAS, MAT1532 EXAMEN FINAL ECUACIONES DIFERENCIALES ORDINARIAS, MAT1532 EXAMEN FINAL PROFESORES ISABEL FLORES Y ROLANDO REBOLLEDO Ejercicio 1. [15 %] Resolver la ecuación 1) x + 5x + 6x = 25t 2 cos t Solución. Esta ecuación se puede

Más detalles

4. Espacios vectoriales

4. Espacios vectoriales Contents 4 Espacios vectoriales 2 4.1 Dependencia e independencia lineal.................................. 4 4.2 Subespacios vectoriales.............................................. 7 4.3 Bases y dimensión..................................................

Más detalles

Correspondencia entre vectores y columnas de sus coordenadas respecto a una base fija

Correspondencia entre vectores y columnas de sus coordenadas respecto a una base fija Correspondencia entre vectores y columnas de sus coordenadas respecto a una base fija Objetivos. Mostrar que la correspondencia entre vectores y columnas de sus coordenadas (respecto a una base fija) preserva

Más detalles

Jorge Mozo Fernández Dpto. Matemática Aplicada

Jorge Mozo Fernández Dpto. Matemática Aplicada Álgebra y Ecuaciones Diferenciales Lineales y Matemáticas II E.T.S. Ingenieros de Telecomunicación I.T. Telecomunicación Esp. Telemática y Sistemas de Telecomunicación Curso 2009-2010 Tema 6: Introducción

Más detalles

1 Ecuaciones diferenciales

1 Ecuaciones diferenciales 1 Ecuaciones diferenciales La solución a una ecuación algebraica es un número, o un conjunto de números que satisfacen la ecuación. Por ejemplo las soluciónes de x 2 4x + 3 = 0 son x 0 = 1 y x 1 = 3. Las

Más detalles

1. Es un problema largo, pero casi todos los apartados son de tipo estándar. Consideramos el sistema no lineal 2D cuadrático dado por

1. Es un problema largo, pero casi todos los apartados son de tipo estándar. Consideramos el sistema no lineal 2D cuadrático dado por Fecha: 7 de enero de 24 Problemas Tiempo total: 2 horas y 3 minutos Es un problema largo, pero casi todos los apartados son de tipo estándar Consideramos el sistema no lineal 2D cuadrático dado por { x

Más detalles

MODELACION EN VARIABLES DE ESTADO

MODELACION EN VARIABLES DE ESTADO CAPÍTULO VIII INGENIERÍA DE SISTEMAS I MODELACION EN VARIABLES DE ESTADO 8.1. DEFINICIONES Estado: El estado de un sistema dinámico es el conjunto más pequeño de variables de modo que el conocimiento de

Más detalles

Ecuaciones lineales de orden n con coecientes constantes

Ecuaciones lineales de orden n con coecientes constantes Ecuaciones lineales de orden n con coecientes constantes Una ecuación lineal de orden n con coecientes constantes es una ecuación de la forma: a n d n y(t) dt n + a n 1 d n 1 y(t) dt n 1 +... + a 1 dy(t)

Más detalles

Introducción a las ecuaciones diferenciales lineales

Introducción a las ecuaciones diferenciales lineales Introducción a las ecuaciones diferenciales lineales Rafael José Hernández Heredero 3 de diciembre de 202. Ecuación lineal de segundo orden Una ecuación diferencial lineal de segundo orden es una expresión

Más detalles

Sistemas de Control lineal óptimo con realimentación de estado

Sistemas de Control lineal óptimo con realimentación de estado Capítulo 5 Sistemas de Control lineal óptimo con realimentación de estado La principal restricción de este sistema de control es suponer que se puede medir en todo instante de tiempo el estado completo

Más detalles

Nociones sobre sistemas de ecuaciones diferenciales Fernando Peláez Bruno - Curso 2016 de Cálculo III

Nociones sobre sistemas de ecuaciones diferenciales Fernando Peláez Bruno - Curso 2016 de Cálculo III Nociones sobre sistemas de ecuaciones diferenciales Fernando Peláez Bruno - Curso 2016 de Cálculo III 01 Un Modelo de inflación y desempleo El siguiente ejemplo (sugerido por Gastón Cayssials, está sacado

Más detalles

Espacio de n-uplas. Operaciones. Propiedades. Combinaciones lineales. Interpretación geométrica. Independencia lineal. c Jana Rodriguez Hertz p.

Espacio de n-uplas. Operaciones. Propiedades. Combinaciones lineales. Interpretación geométrica. Independencia lineal. c Jana Rodriguez Hertz p. Espacio de n-uplas Operaciones. Propiedades. Combinaciones lineales. Interpretación geométrica. Independencia lineal. c Jana Rodriguez Hertz p. /4 Operaciones con filas Al realizar T.E. lo que hicimos

Más detalles

Soluciones Periódicas de Sistemas Diferenciales Lineales de Varias Clases

Soluciones Periódicas de Sistemas Diferenciales Lineales de Varias Clases Memorias de la XXIII Semana de Investigación y Docencia en Matemáticas. Departamento de Matemáticas, Universidad de Sonora, Marzo, 213, pp. 25 31. Nivel: Superior Soluciones Periódicas de Sistemas Diferenciales

Más detalles

1. Coeficientes Indeterminados

1. Coeficientes Indeterminados MA2601 - Ecuaciones Diferenciales Ordinarias. Semestre 2009-03 Profesor: Julio López. Auxiliar: Sebastián Reyes Riffo. Clase auxiliar 07-08 11-14/enero/2010 1. Coeficientes Indeterminados Sirve para encontrar

Más detalles

Lista de ejercicios # 3. Sistemas de ecuaciones diferenciales

Lista de ejercicios # 3. Sistemas de ecuaciones diferenciales UNIVERSIDAD DE COSTA RICA FCULTAD DE CIENCIAS MA-005 Ecuaciones Diferenciales ESCUELA DE MATEMÁTICA I Ciclo del 207 Uso de operadores Lista de ejercicios # 3 Sistemas de ecuaciones diferenciales (3PII206

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales José Vicente Romero Bauset jvromero@mat.upv.es Tema 3: Ecuaciones diferenciales lineales de orden superior Ecuaciones diferenciales lineales Una EDO F ( t,y,y,...,y (n)) = 0 se dice que es lineal si F

Más detalles

MATEMÁTICAS ESPECIALES II PRÁCTICA 1 CLASE 1 Ecuaciones de variables separables

MATEMÁTICAS ESPECIALES II PRÁCTICA 1 CLASE 1 Ecuaciones de variables separables MATEMÁTICAS ESPECIALES II PRÁCTICA CLASE Ecuaciones de variables separables. Hallar la ecuación de la familia de curvas tales que la pendiente de la recta tangente en un punto cualquiera tome el valor

Más detalles

Matriz fundamental. X(t) = (x 0 e at,y 0 e dt ) 0 e bt )(

Matriz fundamental. X(t) = (x 0 e at,y 0 e dt ) 0 e bt )( Capítulo 1 Matriz fundamental Continuaremos estudiando las ecuaciones diferenciales lineales homogéneas autónomas pero ahora en IR n Obtendremos la solución analítica para algunos casos y mencionaremos

Más detalles

8 Soluciones en serie de ecuaciones lineales I

8 Soluciones en serie de ecuaciones lineales I 8 Soluciones en serie de ecuaciones lineales I Algunas ecuaciones diferenciales ordinarias lineales con coecientes variables no tienen soluciones elementales. Se puede encontrar, en algunos casos, soluciones

Más detalles

Geometría afín y proyectiva, 2016 SEMANA 2

Geometría afín y proyectiva, 2016 SEMANA 2 Geometría afín y proyectiva, 2016 SEMANA 2 Sonia L. Rueda ETS Arquitectura. UPM September 20, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra

Más detalles

CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES

CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 Unidades: - Matrices (Bloque Álgebra) - Determinantes (Bloque Álgebra) - Sistemas de ecuaciones lineales (Bloque Álgebra) - Vectores (Bloque

Más detalles

r r a) Clasificar el sistema x = Ax en función del parámetro r R.

r r a) Clasificar el sistema x = Ax en función del parámetro r R. Examen Final de Ecuaciones Diferenciales Fecha: 15 de junio de 2012 3 Problemas (7.5 puntos) Tiempo total: 3 horas Problema 1 [2.5 puntos]. Queremos dibujar el croquis de un sistema lineal 2D y realizar

Más detalles

Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación

Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 6 Espacios euclídeos 6.1 Producto escalar. Espacio euclídeo Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación

Más detalles

CAPITULO 8. LA TRANSFORMADA DE LAPLACE La transformada de Laplace

CAPITULO 8. LA TRANSFORMADA DE LAPLACE La transformada de Laplace CAPITULO 8. LA TRANSFORMADA DE LAPLACE 8.1. La transformada de Laplace Definición 1.Sea f (t) una función definida para t 0. Se define la transformada de Laplace de f (t) de la forma, - s es un parámetro

Más detalles

Pauta Examen Final - Ecuaciones Diferenciales

Pauta Examen Final - Ecuaciones Diferenciales UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERIA Y CIENCIAS INSTITUTO DE CIENCIAS BÁSICAS ECUACIONES DIFERENCIALES Pauta Examen Final - Ecuaciones Diferenciales P1.- Indicar el tipo de EDO de las siguientes

Más detalles

Lección 11 Ecuaciones Diferenciales de Segundo Orden. Ecuaciones de segundo orden

Lección 11 Ecuaciones Diferenciales de Segundo Orden. Ecuaciones de segundo orden Lección 11 Ecuaciones Diferenciales de Segundo Orden 1 En forma normal: Ejemplo: Ecuaciones de segundo orden x = f (t, x, x ) 2tx x + 1 x = 0 x = (x ) 2 1 2tx Casos Particulares Ecuaciones en las que no

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales GUIA 9 Sistemas de ecuaciones lineales Un mundo en el que habitara una sola especie no sería interesante, como tampoco es muy interesante un circuito RLC aislado o un oscilador mecánico desconectado de

Más detalles

Sistemas de Ecuaciones Diferenciales

Sistemas de Ecuaciones Diferenciales Semana 8 - Clase 5// Tema 4: Sistemas y Series Sistemas de Ecuaciones Diferenciales Cuando consideramos la evolución de sistemas con varios grados de libertad o con varias partículas, naturalmente arribamos

Más detalles

Subespacios de espacios vectoriales

Subespacios de espacios vectoriales Subespacios de espacios vectoriales Objetivos. Estudiar la definición, el criterio y algunos ejemplos de subespacios vectoriales. Muchos espacios vectoriales importantes (por ejemplo, espacio de soluciones

Más detalles

1. SISTEMAS DE ECUACIONES DIFERENCIALES

1. SISTEMAS DE ECUACIONES DIFERENCIALES 1 1 SISTEMAS DE ECUACIONES DIFERENCIALES 11 SISTEMAS LINEALES DE PRIMER ORDEN Un sistema de ecuaciones diferenciales del tipo dx 1 dt a 11 tx 1 + a 1n tx n + f 1 t dx n dt a n1 tx 1 + a nn tx n + f n t

Más detalles

2. Propiedades generales de la ecuación lineal de orden n. La ecuación diferencial lineal de orden n más general tiene la forma

2. Propiedades generales de la ecuación lineal de orden n. La ecuación diferencial lineal de orden n más general tiene la forma 2. Propiedades generales de la ecuación lineal de orden n La ecuación diferencial lineal de orden n más general tiene la forma a n (t)y (n) + a n 1 (t)y (n 1) + + a 1 (t)y + a 0 (t)y = g(t). (2.1) Si g(t)

Más detalles

9. DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES.

9. DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES. 9 DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES 91 Derivadas parciales y direccionales de un campo escalar La noción de derivada intenta describir cómo resulta afectada una función y = f(x) por un cambio

Más detalles

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas.

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas. UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 27 Dr. Rodolfo Salinas abril 27 Control Moderno N abril 27 Dr. Rodolfo Salinas Respuesta en el tiempo

Más detalles

1. Algunas deniciones y resultados del álgebra lineal

1. Algunas deniciones y resultados del álgebra lineal . Algunas deniciones y resultados del álgebra lineal Denición. (Espacio vectorial o espacio lineal sobre R) Un espacio vectorial o espacio lineal sobre el campo de los números reales, R, es un conjunto

Más detalles

Examen de Ecuaciones Diferenciales

Examen de Ecuaciones Diferenciales PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE MATEMATICAS MAT532 Examen-2006/ Examen de Ecuaciones Diferenciales Profesores Claudio Fernández y Rolando Rebolledo Ejercicio (20 % Resolver las ecuaciones

Más detalles

2.1 Descripción en espacio de estado de sistemas dinámicos

2.1 Descripción en espacio de estado de sistemas dinámicos 2 Análisis de sistemas lineales 2.1 Descripción en espacio de estado de sistemas dinámicos El objetivo de este capítulo es formular una teoría general de describir los sistemas dinámicos en funcion de

Más detalles

Resumen de Geometría Diferencial de Curvas y Supercies

Resumen de Geometría Diferencial de Curvas y Supercies Resumen de Geometría Diferencial de Curvas y Supercies E: Espacio euclídeo de dimensión 2 ó 3 (R n, δ) con δ como producto escalar euclídeo Norma de un vector u E: u = u, u 1 2 1. Curvas planas C o diferenciable:

Más detalles

1. SISTEMAS DE ECUACIONES DIFERENCIALES Introducción. Comencemos considerando la ecuación escalar de orden n

1. SISTEMAS DE ECUACIONES DIFERENCIALES Introducción. Comencemos considerando la ecuación escalar de orden n 1 SISTEMAS DE ECUACIONES DIFERENCIALES 11 Introducción Comencemos considerando la ecuación escalar de orden n a n (t)y (n) + + a 1 (t)y + a 0 (t)y = g(t), (11) con las condiciones iniciales y(t 0 ) = d

Más detalles

Tema 4: Sistemas de ecuaciones lineales.

Tema 4: Sistemas de ecuaciones lineales. Tema 4: Sistemas de ecuaciones lineales 1 Rango de una matriz Definición Sea A Mat n m (K) Se llama rango de filas de A, y se denota por rg f (A) la dimensión del subespacio vectorial generado por las

Más detalles

SISTEMAS LINEALES DE PRIMER ORDEN

SISTEMAS LINEALES DE PRIMER ORDEN CAPÍTULO 7 SISTEMAS LINEALES DE PRIMER ORDEN 7.1. INTRODUCCION Estudiaremos el sistema de n ecuaciones lineales de primer orden: x 1 = a 11 (t)x 1 +a 12 (t)x 2 +...+a 1n (t)x n +f 1 (t) x 2 = a 21 (t)x

Más detalles

0.1. SISTEMAS DE ECUACIONES

0.1. SISTEMAS DE ECUACIONES .. SISTEMS DE ECUCIONES.. SISTEMS DE ECUCIONES... Conceptos previos l comienzo del tema de nimos los sistemas de ecuaciones diferenciales en general. En esta sección vamos a ver el caso particular en el

Más detalles

FUNCIONES VECTORIALES

FUNCIONES VECTORIALES FUNCIONES VECTORIALES Sergio Stive Solano Sabié 1 Enero de 2012 1 Visita http://sergiosolanosabie.wikispaces.com FUNCIONES VECTORIALES Sergio Stive Solano Sabié 1 Enero de 2012 1 Visita http://sergiosolanosabie.wikispaces.com

Más detalles

Ecuaciones diferenciales lineales Notas para los cursos 21 y 22 (J.L. Mancilla Aguilar)

Ecuaciones diferenciales lineales Notas para los cursos 21 y 22 (J.L. Mancilla Aguilar) Ecuaciones diferenciales lineales Notas para los cursos 21 y 22 (J.L. Mancilla Aguilar) 1. Funciones de variable real a valores complejos A lo largo de estas notas trabajaremos con funciones definidas

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) Primer Cuatrimestre - 03 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable. Vericar que se

Más detalles

Soluciones en series de potencias

Soluciones en series de potencias GUIA 8 Soluciones en series de potencias El Teorema Fundamental de existencia y unicidad de soluciones permite definir una función x = xt) como la única solución de un problema de valores iniciales. Un

Más detalles

Ejemplo Considére un sistema de dos ecuaciones con dos incognitas. ax + by = m. acx + ady = n

Ejemplo Considére un sistema de dos ecuaciones con dos incognitas. ax + by = m. acx + ady = n Sistemas de dos ecuaciones lineales con dos incognitas Ejemplo Considére un sistema de dos ecuaciones con dos incognitas ax + by = m cx + dy = n (donde a, b, c, d, m, n son números reales dados). Para

Más detalles

Cálculo diferencial e integral 3

Cálculo diferencial e integral 3 Cálculo diferencial e integral 3 Guía 1 1. Sean a 1,..., a n R n. Demuestra que el conjunto { W = x = (x 1,..., x n ) R n es un subespacio vectorial de R n. } n a i x i = 0 i=1 2. Sean W y V subespacios

Más detalles

1. Ecuaciones lineales con coeficientes constantes. Ecuaciones de primer orden. 2. Encontrar la solución de los siguientes problemas de valor inicial.

1. Ecuaciones lineales con coeficientes constantes. Ecuaciones de primer orden. 2. Encontrar la solución de los siguientes problemas de valor inicial. . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes problemas de valor inicial. ẋ =5x, x0) =.. ẋ + x =0, x) =.. ẋ + x = te t, x0) =. si

Más detalles

Espacios vectoriales DEFINICIÓN. PRIMERAS PROPIEDADES

Espacios vectoriales DEFINICIÓN. PRIMERAS PROPIEDADES Espacios vectoriales DEFINICIÓN. PRIMERAS PROPIEDADES Definición 47. Se dice que un conjunto E, a cuyos elementos llamaremos vectores, es un espacio vectorial sobre el cuerpo (IK, +, ), cuyos elementos

Más detalles

ECUACIONES Y SISTEMAS EN DIFERENCIAS

ECUACIONES Y SISTEMAS EN DIFERENCIAS Tema 9 ECUACIONES Y SISTEMAS EN DIFERENCIAS 9.1. Introducción En ocasiones, al construir un modelo matemático interesa elegir una variable que tome valores discretos. Así ocurre, por ejemplo, con el tiempo,

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 010 Práctica 3: Diferenciación Derivadas parciales y direccionales 1. Sea f una función continua en x = a. Probar que f es derivable en x =

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Coeficientes Indeterminados y Variación de Parámetros) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Otoño 2011, Resumen clases

Más detalles

2.10 Ejercicios propuestos

2.10 Ejercicios propuestos Ejercicios propuestos 99 1 0 0 0 x 1 0 1 0 0 x 2 0 0 1 0 x 3 x 2 0 0 0 1 x 4 + x 1 +4x 2 + x 3 x 2 0 0 0 1 x 5 x 2 1 0 0 0 x 1 0 1 0 0 x 2 0 0 1 0 x 3 x 2 0 0 0 1 x 4 + x 1 +4x 2 + x 3 x 2 0 0 0 0 x 5

Más detalles