Soluciones del capítulo 4 Sistemas de ecuaciones diferenciales lineales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Soluciones del capítulo 4 Sistemas de ecuaciones diferenciales lineales"

Transcripción

1 Soluciones del capítulo 4 Sistemas de ecuaciones diferenciales lineales Héctor Lomelí y Beatriz Rumbos 8 de marzo de 4 a X t C e t + C e 4t b X t C e c X t C d X t C + t + C e 4t 4 + C e t t + C e 4 a X t C e t cos t sin t b X t C e t 4 + C e t c X t C e t cos t sin t d X t C e t + C e t sin t cos t 4t t + C e t sin t cos t + C e t t t 4 a X t C e t b X t C e t c X t C e t + C e t cos cos + e t t t + sin t et 4 + C e t sin t sin t cos t +

2 44 a X t e t b X t e αt cos βt sin βt c X t + e t Por lo tanto, lim X t cos t + sin t cos t + sin t cos t sin t 4 a X t + we t + we t b w 46 a Se necesita que tra a + d y que det A ad cb xt b C yt e ωt b + C ω a e ωt b, con ω deta bc ad ω a a X t C b lim X t X t e t + C e 4t C + C e t cos t + sin t cos t + sin t 4 cos t + C e t sin t cos t sin t cos t 4 sin t 49 4 A 7 7 a El conjunto {w t, w t,, w n t} es linealmente independiente para todo tiempo t Por lo tanto las columnas de t son linealmente independientes, de modo que existe la inversa t b Cada w con i,,, n es solución de la ecuación Ẋ AX, por lo que ẇ i Aw i Así, t w, w,, w n Aw, Aw,, Aw n Aw, w,, w n A t

3 c Sea Y t t t s f sds Entonces ty t t s f sds Por otra parte, Ẏ t t t f t + t t s f sds f t + t ty t f t + A t ty t f t + AY t Por lo tanto Y t es una solución particular de Ẋt AX t + f t 4 Sea el sistema Ẋ AX con A Su polinomio característico esta dado por p A λ A I λ a a a a m a m λ λ λ a a a a m a m λ Si λ, entonces λ λ p A λ λ a + a λ a a m a m λ λ λ λ a + a λ + a a λ m a m λ λ λ λ λ + a m + a m λ + + a + a λ m λ m λ m λ + a m + a m + + a λ λ m + a λ m m λ m + a m λ m + + a λ + a Si λ, la igualdad también se cumple Por lo tanto, la ecuación característica del sistema es λ m +a m λ m + + a λ + a

4 4 Sea λ k un vector propio de la matriz A del problema anterior Entonces un vector v k vector propio de A asociado a λ k si y solo si satisface el sistema de ecuaciones: λ k λ k v v λ k v m a a a a m a m λ k v v v m es un El último renglón es una combinación lineal de los demás Entonces basta que para cada i,, m se cumpla v i λ k v i, o lo que es lo mismo v i λ i k v Es decir, vectores de la forma Por lo tanto, es un vector propio de A asociado a λ k 4 xt a yt xt b yt C e 4 t 4 C e 4 t 4 v k v k + C e t + C e t v λ k v λ k v λ m k v λ k λ k λ m k e t a ẋ ẏ f x, y b xt C e t t 4 4 Si t e w entonces w ln t Por lo tanto dw t e w Lo que implica que t dx e w dw dx dw dx dw ew e w dw dx dy De forma similar t dy dw Entonces el sistema se convierte en ẋw a xw + b yw, ẏw a xw + b yw 4

5 46 xt yt C t + C t 4 47 a Sean λ λ dos valores propios distintos y sean v, v vectores propios correspondientes Sean C y C constantes tales que C v + C v Entonces AC v + C v C λ v + C λ v Por otra parte λ C v + C v C λ v + C λ v Restando ambas ecuaciones C λ λ v Lo que implica C De forma similar C Por lo tanto v y v son linealmente independientes b Sean λ, λ,, λ k valores propios distintos y v, v,, v n vectores propios correspondientes Para demostrar pos inducción matemática se supone que {v, v,, v n } son linealmente independientes Sean C, C,, c n constantes tales que n i c iv i v n Entonces Por otra parte A n c i v i c i λ i v i λ n v n i n i n n λ n c i v i c i λ n v i λ n v n i i Restando ambas ecuaciones n i c iλ n λ i v i Lo que implica C C c n Por lo tanto {v, v,, v n } son también linealmente independientes 48 a xt cos t + sin te t Además, lim xt b xt + et Además, lim xt c xt 4 7 et 7 e 6t Además, lim xt d xt + te t Además, lim xt e xt te t Además, lim xt 49 f xt 4e t + 8 e t + Además, lim xt a yx u+w e x + u w cos x + u+v+w sin x b Si w u y v u entonces se tiene que yx ue x Por lo tanto lim yx x 4 yt e t + 4 et cos t et sin t Además lim yt no esta definido ya que la función oscila

6 4 a yx v u e x + v+u e x cos x + v u+4 e x sin x b Si u y v entonces yx e x Por lo tanto lim yx x 4 yt 4 et 4 e t sin t 44 En cada uno de los incisos, se demostrará que la función propuesta es una solución del problema lineal Sea A una matriz de El polinomio característico de A es p A λ λ traλ + deta Por el teorema de Cayley-Hamilton, se cumple la siguiente igualdad p A A A traa + detai a Si A tiene dos valores propios reales y distintos λ, λ, entonces el polinomio característico se puede escribir como: p A λ λ λ λ λ Esto implica que Por tanto, si definimos y A λ I A λ I M M λ λ A λ I λ λ A λ I, entonces se cumple que M + M I y M M M M Además, AM λ M y AM λ M Si X t [ e λ t M + e λ t M x, entonces Por otra parte, Ẋt [ e λ t λ M + e λ t λ M x AX t [ e λ t AM + e λ t AM x [ e λ t λ M + e λ t λ M x Ẋt Finalmente, al sustituir t, verificamos que X [M + M x x b Si A tiene un valor propio repetido λ, entonces Por tanto, si definimos se cumple que AM λm y M + λi A Si A λi M A λi X t e λt [I + t M x, 6

7 entonces Por otra parte, Ẋt e λt [λi + λt M + M x e λt [A + λt M x AX t e λt [A + t AM x e λt [A + λt M x Finalmente, al sustituir t, verificamos que X x c Si A tiene un par valores propios complejos conjugados α ± βi entonces el polinomio característico se puede escribir como: p A λ λ α + β Esto implica que A αi + β I Por tanto, si definimos M A αi, tendríamos que M β I y por tanto, AM αm β I Si [ X t e αt sin βt cos βt I + β M x, entonces [ Ẋt e αt sin βt cos βt αi + M + β αm β I x, [ e αt sin βt cos βt A + AM β x, Esto implica que Ẋt A X t Finalmente, al sustituir t, verificamos que X x 7

DIAGRAMAS DE FASE DE SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN

DIAGRAMAS DE FASE DE SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN DIAGRAMAS DE FASE DE SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN Alejandro Lugon 26 de mayo de 2010 1. Ecuaciones planares: dos dimensiones Las soluciones del sistema homogéneo: ẋ = ax

Más detalles

SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES HOMOGÉNEAS DE PRIMER ORDEN

SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES HOMOGÉNEAS DE PRIMER ORDEN SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES HOMOGÉNEAS DE PRIMER ORDEN Alejandro Lugon 26 de mayo de 2010 1. Ecuaciones planares: dos dimensiones El sistema homogéneo: ẋ a 11 x + a 12 y (1) ẏ a 21 x

Más detalles

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Grado en Matemáticas Curso 203-204 . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes

Más detalles

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia Sistemas lineales de ecuaciones diferenciales Juan-Miguel Gracia Índice Sistemas lineales 2 Búsqueda de una solución especial 3 Aplicación a sistemas 4 Problema de condiciones iniciales 2 / 2 Sistemas

Más detalles

Ecuaciones lineales de orden superior

Ecuaciones lineales de orden superior ANEXO GUIA 5 Ecuaciones lineales de orden superior Las ideas presentadas para ecuaciones lineales de segundo orden se pueden generalizar a ecuaciones lineales de orden n d n x n + a n 1(t) dn 1 x n 1 +

Más detalles

Lista de ejercicios # 4

Lista de ejercicios # 4 UNIVERSIDAD DE COSTA RICA MA-5 FACULTAD DE CIENCIAS Ecuaciones Diferenciales para Ingeniería ESCUELA DE MATEMÁTICA Primer Ciclo del 5 Lista de ejercicios # 4 Sistemas de ecuaciones diferenciales. EPII-II-

Más detalles

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3 1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de

Más detalles

Complementos de Análisis. Año 2016

Complementos de Análisis. Año 2016 Complementos de Análisis. Año 2016 Práctica 8. Ecuaciones diferenciales ordinarias. 1 Modelando con ecuaciones diferenciales Modelar con ecuaciones diferenciales las siguientes situaciones. Intentar resolver

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

Sistemas lineales homogéneos

Sistemas lineales homogéneos Lección 9 Sistemas de ecuaciones diferenciales lineales con coeficientes constantes 1 Sistemas lineales homogéneos Estudiaremos los sistemas de la forma x (t) = Ax(t) + b(t) Sistemas homogéneos: x = Ax

Más detalles

Parte 3. Vectores y valores propios

Parte 3. Vectores y valores propios Parte 3. Vectores y valores propios Gustavo Montero Escuela Universitaria Politécnica Universidad de Las Palmas de Gran Canaria Curso 2006-2007 Valores y vectores propios Valor propio Se dice que el número

Más detalles

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE 3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

Parte 3. Vectores y valores propios

Parte 3. Vectores y valores propios Parte 3. Vectores y valores propios Gustavo Montero Escuela Universitaria Politécnica Universidad de Las Palmas de Gran Canaria Curso 2004-2005 1 Introducción a los valores y vectores propios 2 3 4 5 Valores

Más detalles

Sesión 18: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K

Sesión 18: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K Sesión 8: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K ) Calculamos los valores propios de A y sus multiplicidades algebraicas con: d A λ = det A λi nxn = Si d A

Más detalles

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas.

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas. UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 27 Dr. Rodolfo Salinas abril 27 Control Moderno N abril 27 Dr. Rodolfo Salinas Respuesta en el tiempo

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

MATEMÁTICAS II (PAUU XUÑO 2011)

MATEMÁTICAS II (PAUU XUÑO 2011) MATEMÁTICAS II (PAUU XUÑO 0) OPCIÓN A. a) Sean C, C, C 3 las columnas primera, segunda y tercera, respectivamente, de una matriz cuadrada M de orden 3 con det (M ) = 4. Calcula enunciando las propiedades

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales GUIA 9 Sistemas de ecuaciones lineales Un mundo en el que habitara una sola especie no sería interesante, como tampoco es muy interesante un circuito RLC aislado o un oscilador mecánico desconectado de

Más detalles

1. ECUACIONES DIFERENCIALES ORDINARIAS

1. ECUACIONES DIFERENCIALES ORDINARIAS 1 1. ECUACIONES DIFERENCIALES ORDINARIAS 1.1. PRIMERAS DEFINICIONES. PROBLEMA DEL VALOR INICIAL Definición 1.1. Una ecuación diferencial es una ecuación en la que intervienen una variable dependiente y

Más detalles

3. Ecuaciones diferenciales. Mayo, 2009

3. Ecuaciones diferenciales. Mayo, 2009 Cálculo 3. Ecuaciones diferenciales Mayo, 2009 Clasificación de las ecuaciones diferenciales 1. Ecuaciones diferenciales ordinarias 1.a Ecuaciones diferenciales ordinarias de primer orden Nociones generales

Más detalles

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios 61 Matemáticas I : Álgebra Lineal Tema 6 Diagonalización 61 Valores y vectores propios 611 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

A P U N T E S D E Á L G E B R A L I N E A L

A P U N T E S D E Á L G E B R A L I N E A L A P U N T E S D E Á L G E B R A L I N E A L Universidad Nacional Autónoma de Méico Facultad de Ingeniería. M.I. Luis Cesar Vázquez Segovia Grupo: Semestre: - TEMA.- ESPACIOS VECTORIALES. Definición. Sea

Más detalles

Tema 2: Espacios vectoriales

Tema 2: Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 Tema 2: Espacios vectoriales Ejercicios 1. En R 2 se definen las siguientes operaciones: (x 1, y 1 ) + (x 2, y 2 ) = (x 1 + x 2, y 1 +

Más detalles

Deducción de las fórmulas del método del gradiente conjugado

Deducción de las fórmulas del método del gradiente conjugado Deducción de las fórmulas del método del gradiente conjugado Objetivos. Demostrar el teorema sobre los subespacios de Krylov en el método del gradiente conjugado. Requisitos. Subespacios generados por

Más detalles

Diagonalización de matrices

Diagonalización de matrices 7 Diagonalización de matrices 7.1. Matrices diagonalizables Existen diversos procesos en los que el estado en cada uno de sus pasos se puede representar por un determinado vector y en los que, además,

Más detalles

Definición. Un conjunto de ecuaciones diferenciales con varias funciones incógnitas, se llama sistema de ecuaciones diferenciales.

Definición. Un conjunto de ecuaciones diferenciales con varias funciones incógnitas, se llama sistema de ecuaciones diferenciales. Unidad 4. Sistemas de Ecuaciones Diferenciales Las ecuaciones diferenciales tienen una gran utilidad en ingeniería así como en la ciencia, pero la mayoría de los problemas no dependen de una ecuación,

Más detalles

Autovalores y autovectores Diagonalización y formas canónicas

Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores.propiedades Sea V un espacio vectorial sobre K y f End(V ). Fijada una base de V, existirá una matriz cuadrada A,

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 13 Capítulo 6 Año 5 6.1. Modelo 5 - Opción A Problema 6.1.1 ( puntos) Justificar razonadamente

Más detalles

Cálculo de la función exponencial de una matriz

Cálculo de la función exponencial de una matriz Cálculo de la función exponencial de una matriz Rafael Morones E. Dept. de Matemáticas, ITAM 22 de marzo de 2012 1. Introducción. Originalmente este texto estaba concebido para obtener la solución de un

Más detalles

VALORES Y VECTORES PROPIOS

VALORES Y VECTORES PROPIOS VALORES Y VECTORES PROPIOS En diversos campos de la ingeniería y las matemáticas surge el problema de calcular los valores escalares λ y los vectores x 0 tales que para la matriz cuadrada A se cumple Ax

Más detalles

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

PROBLEMAS RESUELTOS ÁLGEBRA LINEAL. Tema 5. Operadores Lineales en Espacios con Producto Interno OPERADOR ADJUNTO. ; donde: F(z)=α z ( )

PROBLEMAS RESUELTOS ÁLGEBRA LINEAL. Tema 5. Operadores Lineales en Espacios con Producto Interno OPERADOR ADJUNTO. ; donde: F(z)=α z ( ) OPERDOR DJUNO Problema : Sea el espacio vectorial con producto interno complejo definido por z w, en donde w es el conjugado de w. Obtener el adjunto del operador lineal ( zw) = F : cua regla de correspondencia

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Producto tensorial entre tensores

Producto tensorial entre tensores Tensores cartesianos Producto tensorial entre tensores Producto tensorial entre tensores Se define el producto tensorial entre los tensores S CT(m) y T CT(n) como el tensor S T CT(n + m): S T = S i1...i

Más detalles

El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos

El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos c Jana Rodriguez Hertz p. 1/1 Suma de matrices - definición Si dos matrices A,B M m n K tienen el mismo

Más detalles

Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero

Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero 11 de Diciembre de 2008 2 B.G.O. 104.- Determina si los siguientes subconjuntos del espacio vectorial correspondiente son subvariedades afines:

Más detalles

PROBLEMAS RESUELTOS ÁLGEBRA LINEAL Tema 3. Transformaciones Lineales

PROBLEMAS RESUELTOS ÁLGEBRA LINEAL Tema 3. Transformaciones Lineales Tema. Transformaciones Lineales TEMA: TRANSFORMACIÓN LINEAL, NÚCLEO Y RECORRIDO Problema : Sean P el espacio vectorial real de los polinomios de grado menor o igual a dos con coeficientes reales y la transformación

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES

Trabajo Práctico N 5: ESPACIOS VECTORIALES Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

Cálculo de autovalores

Cálculo de autovalores Cálculo de autovalores Damián Ginestar Peiró Departamento de Matemática Aplicada Universidad Politécnica de Valencia Curso 2011-2012 (UPV) Cálculo de autovalores Curso 2011-2012 1 / 28 Índice 1 Preliminares

Más detalles

Valores y vectores propios

Valores y vectores propios Valores y vectores propios Problemas teóricos El los siguientes problemas se denota por L(V ) conjunto de los operadores lineales en un espacio vectorial V (en otras palabras, de las transformaciones lineales

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales 81 Introducción Denominamos sistema de ecuaciones a toda ecuación de la forma x (t) F ( t, x(t) ), (S) donde F : (a, b) R n R n La expresión anterior es muy general en el

Más detalles

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t).

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 20 de enero de 20 (2.5 p.) ) Se considera la aplicación lineal f : R 4 R definida por: f(x y

Más detalles

3. Determinantes. Propiedades. Depto. de Álgebra, curso

3. Determinantes. Propiedades. Depto. de Álgebra, curso Depto de Álgebra curso 06-07 3 Determinantes Propiedades Ejercicio 3 Use la definición para calcular el valor del determinante de cada una de las siguientes matrices: 3 0 0 α A = 5 4 0 A = 6 A 3 = 0 β

Más detalles

ÁLGEBRA LINEAL I Práctica 5

ÁLGEBRA LINEAL I Práctica 5 ÁLGEBRA LINEAL I Práctica 5 Espacios vectoriales (Curso 2014 2015) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2

Más detalles

Sistemas de ecuaciones diferenciales y el uso de operadores

Sistemas de ecuaciones diferenciales y el uso de operadores Sistemas de ecuaciones diferenciales y el uso de operadores En la clase anterior resolvimos algunos sistemas de ecuaciones diferenciales sacándole provecho a la notación matricial. Sin embrago, algunos

Más detalles

CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero

CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero Fundamento Científico del Currículum de Matemáticas en Enseñanza Secundaria CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero ESPACIOS VECTORIALES DEFINICIÓN... 1 PROPIEDADES DE

Más detalles

SISTEMAS LINEALES DE PRIMER ORDEN

SISTEMAS LINEALES DE PRIMER ORDEN CAPÍTULO 7 SISTEMAS LINEALES DE PRIMER ORDEN 7.1. INTRODUCCION Estudiaremos el sistema de n ecuaciones lineales de primer orden: x 1 = a 11 (t)x 1 +a 12 (t)x 2 +...+a 1n (t)x n +f 1 (t) x 2 = a 21 (t)x

Más detalles

Sistemas Lineales y Matrices

Sistemas Lineales y Matrices Profesores Hernán Giraldo y Omar Saldarriaga Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Ejemplo Solución de sistemas de ecuaciones lineales, usaremos este

Más detalles

CAPÍTULO 4. Sistemas de ecuaciones lineales de primer orden

CAPÍTULO 4. Sistemas de ecuaciones lineales de primer orden CAPÍTULO 4 Sistemas de ecuaciones lineales de primer orden Hasta ahora hemos considerado únicamente ecuaciones diferenciales aisladas Sin embargo, en muchas aplicaciones aparecen situaciones en las que

Más detalles

Valores propios y vectores propios Diagonalización

Valores propios y vectores propios Diagonalización CAPÍTULO Valores propios y vectores propios Diagonalización Este capítulo consta de cuatro secciones Con el fin de dar una idea de lo que se hará en las dos primeras secciones, se considerará un espacio

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Ecuaciones de 2do Orden) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Otoño 2011, Resumen clases Julio López EDO 1/20 Operadores

Más detalles

Nociones sobre sistemas de ecuaciones diferenciales Fernando Peláez Bruno - Curso 2016 de Cálculo III

Nociones sobre sistemas de ecuaciones diferenciales Fernando Peláez Bruno - Curso 2016 de Cálculo III Nociones sobre sistemas de ecuaciones diferenciales Fernando Peláez Bruno - Curso 2016 de Cálculo III 01 Un Modelo de inflación y desempleo El siguiente ejemplo (sugerido por Gastón Cayssials, está sacado

Más detalles

Matriz fundamental. X(t) = (x 0 e at,y 0 e dt ) 0 e bt )(

Matriz fundamental. X(t) = (x 0 e at,y 0 e dt ) 0 e bt )( Capítulo 1 Matriz fundamental Continuaremos estudiando las ecuaciones diferenciales lineales homogéneas autónomas pero ahora en IR n Obtendremos la solución analítica para algunos casos y mencionaremos

Más detalles

Inversa generalizada e inversa condicional de matrices

Inversa generalizada e inversa condicional de matrices CAPÍTULO Inversa generalizada e inversa condicional de matrices Este capítulo consta de cuatro secciones Las dos primeras versan sobre la definición, propiedades y cálculo de la inversa generalizada de

Más detalles

ÁLGEBRA LINEAL. EXAMEN FINAL 18 de Enero de b) (0, 5 puntos) Estudia si la siguiente afirmación es verdadera o falsa, justificando

ÁLGEBRA LINEAL. EXAMEN FINAL 18 de Enero de b) (0, 5 puntos) Estudia si la siguiente afirmación es verdadera o falsa, justificando ÁLGEBRA LINEAL EXAMEN FINAL 8 de Enero de Apellidos y Nombre: Duración del examen: 3 horas Publicación de notas: enero Revisión de Examen: feb Ejercicio. ( puntos a (, puntos Estudia si la siguiente afirmación

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 7 MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,

Más detalles

2. Teorema de las multiplicidades algebraica y geométrica.

2. Teorema de las multiplicidades algebraica y geométrica. Guía. Álgebra III. Examen parcial II. Valores y vectores propios. Forma canónica de Jordan. Teoremas con demostraciones que se pueden incluir en el examen El examen puede incluir una demostración entera

Más detalles

Tema 3.- SISTEMAS DIFERENCIALES LINEALES Ampliación de Matemáticas. Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial.

Tema 3.- SISTEMAS DIFERENCIALES LINEALES Ampliación de Matemáticas. Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial. Tema 3- SISTEMAS DIFERENCIALES LINEALES Ampliación de Matemáticas Ingeniería Técnica Industrial Especialidad en Electrónica Industrial Índice General 1 Introducción 1 2 Sistemas lineales de primer orden

Más detalles

1. Ecuaciones lineales con coeficientes constantes. Ecuaciones de primer orden. 2. Encontrar la solución de los siguientes problemas de valor inicial.

1. Ecuaciones lineales con coeficientes constantes. Ecuaciones de primer orden. 2. Encontrar la solución de los siguientes problemas de valor inicial. . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes problemas de valor inicial. ẋ =5x, x0) =.. ẋ + x =0, x) =.. ẋ + x = te t, x0) =. si

Más detalles

Matrices Particionadas Traza de una Matriz

Matrices Particionadas Traza de una Matriz CAPÍTULO Matrices Particionadas Traza de una Matriz Este capítulo consta de tres secciones Las dos primeras versan sobre matrices particionadas La tercera sección trata sobre la traza de una matriz En

Más detalles

Análisis cualitativo de sistemas no lineales

Análisis cualitativo de sistemas no lineales Análisis cualitativo de sistemas no lineales Ecuaciones Diferenciales Ordinarias Andrés Iturriaga J. Departamento de Ingeniería Matemática Universidad de Chile Primavera 2011 Andrés Iturriaga J. (DIM)

Más detalles

Tema 3: MATRICES. Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada

Tema 3: MATRICES. Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Tema 3: MATRICES Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría I. Curso 2003/04 Licenciatura: Matemáticas

Más detalles

Bases y dimensión. Problemas teóricos. En todos los problemas se supone que V es un espacio vectorial sobre un campo F. p=1

Bases y dimensión. Problemas teóricos. En todos los problemas se supone que V es un espacio vectorial sobre un campo F. p=1 Bases y dimensión Problemas teóricos Bases de un espacio vectorial En todos los problemas se supone que V es un espacio vectorial sobre un campo F. Definición de base. Sean b 1,..., b n V. Se dice que

Más detalles

TEMA 6. EIGENVALORES Y EIGENVECTORES

TEMA 6. EIGENVALORES Y EIGENVECTORES TEMA 6. EIGENVALORES Y EIGENVECTORES M. C. Roberto Rosales Flores INSTITUTO TECNOLÓGICO SUPERIOR DE TLAXCO Ingeniería en Logística M. C. Roberto Rosales Flores (ITST TEMA 6. EIGENVALORES Y EIGENVECTORES

Más detalles

Operador Diferencial y Ecuaciones Diferenciales

Operador Diferencial y Ecuaciones Diferenciales Operador Diferencial y Ecuaciones Diferenciales. Operador Diferencial Un operador es un objeto matemático que convierte una función en otra, por ejemplo, el operador derivada convierte una función en una

Más detalles

Capítulo 1: Diagonalización de matrices

Capítulo 1: Diagonalización de matrices Capítulo : Diagonalización de matrices Matrices y determinantes Definición Una matriz es un arreglo rectangular de números reales a a a m a A a a m a n a n a nm La matriz es de orden n m si consta de n

Más detalles

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones

Más detalles

UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA

UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA AL GEBRA III UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA ALGEBRA III DEFINICION : Sea L : V V un operador lineal sobre el espacio vectorial

Más detalles

Aplicaciones Lineales. Diagonalización de matrices.

Aplicaciones Lineales. Diagonalización de matrices. Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición

Más detalles

ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica Industrial, Especialidad de Electricidad

ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica Industrial, Especialidad de Electricidad ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica Industrial, Especialidad de Electricidad Fundamentos Matemáticos de la Ingeniería Diciembre de 5. Primera parte Tiempo: horas. Se recuerda

Más detalles

PROBLEMAS DE ECUACIONES DIFERENCIALES

PROBLEMAS DE ECUACIONES DIFERENCIALES PROBLEMAS DE ECUACIONES DIFERENCIALES Manuel Calvo CURSO 25/6 Capítulo MÉTODOS ELEMENTALES DE INTEGRACIÓN.. Ecuaciones de variables separables ) Calcula, por separación de variables, la solución general

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 8-9.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales

Más detalles

Tema III: Sistemas Hamiltonianos: Variables acción

Tema III: Sistemas Hamiltonianos: Variables acción Tema III: Sistemas Hamiltonianos: Variables acción ángulo 1. Transformaciones canónicas Sea Hq, p, t) un hamiltoniano tal que ṗ = H q q = H p Una transformación en el espacio de fases Q = Qq, p) es canónica,

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios y subespacios vectoriales Espacios Vectoriales 1. Demuestre que con la suma y multiplicación habituales es un espacio vectorial real.. Considere el conjunto C de los números complejos con la suma

Más detalles

Ejercicios del Tema 2: Estructuras algebraicas básicas

Ejercicios del Tema 2: Estructuras algebraicas básicas Ejercicios del Tema 2: Estructuras algebraicas básicas En los ejercicios 1, 2, 8 y 9 se utilizará que si G = {g 1,...,g n } es un conjunto finito y * una operación interna definida en G, podemos utilizar

Más detalles

3a b 6a + 2b = 5. Calcula el valor de 3c d 6c + 2d. a + 2b a a + b a + b a + 2b a a a + b a + 2b. = 9b 2 (a + b)

3a b 6a + 2b = 5. Calcula el valor de 3c d 6c + 2d. a + 2b a a + b a + b a + 2b a a a + b a + 2b. = 9b 2 (a + b) PROBLEMAS RESUELTOS DE DETERMINANTES Determinantes de la selectividad de Andalucía. Determinantes de órdenes, y. Determinantes de orden n. ENUNCIADOS Determinantes de selectividad Antes del.. Se sabe que

Más detalles

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2 CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el

Más detalles

Algebra Lineal Tarea No 22: Valores y vectores propios Solución a algunos problemas de la tarea (al 29 de junio de 2014)

Algebra Lineal Tarea No 22: Valores y vectores propios Solución a algunos problemas de la tarea (al 29 de junio de 2014) Algebra Lineal Tarea No : Valores y vectores propios a algunos problemas de la tarea (al 9 de junio de 04. Para la matriz A A Indique cuáles vectores son vectores propios: ( ( ( v, v, v 3 3 Recordemos

Más detalles

MATEMÁTICAS I 13 de junio de 2007

MATEMÁTICAS I 13 de junio de 2007 MATEMÁTICAS I 13 de junio de 2007 2º EXAMEN PARCIAL Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0.2 puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- Si

Más detalles

NÚMEROS COMPLEJOS: C

NÚMEROS COMPLEJOS: C NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales

Más detalles

Control Moderno - Ing. Electrónica Ejercicio Resuelto 3: Teorema de Cayley-Hamilton

Control Moderno - Ing. Electrónica Ejercicio Resuelto 3: Teorema de Cayley-Hamilton Control Moderno - Ing. Electrónica Ejercicio Resuelto 3: Teorema de Cayley-Hamilton Introducción A continuación se presentan unos pocos y simples ejemplos que muestran como puede emplearse el Teorema de

Más detalles

Formas cuadráticas. Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza

Formas cuadráticas. Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Formas cuadráticas Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza A lo largo de todo el capítulo consideraremos que V un espacio vectorial real de dimensión finita n. 1 Formas bilineales

Más detalles

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior L. A. Núñez * Centro de Astrofísica Teórica, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 010 011). Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí. Demostrar

Más detalles

Tema II: Dinámica en el espacio de fases

Tema II: Dinámica en el espacio de fases Tema II: Dinámica en el espacio de fases 1. Las ecuaciones de Hamilton Para sistemas autónomos en los que H no depende de t, es una constante del movimiento por lo que H(p, q = α (1.1 Esta ecuación determina

Más detalles

Resumen de Teoría de Matrices

Resumen de Teoría de Matrices Resumen de Teoría de Matrices Rubén Alexis Sáez Morcillo Ana Isabel Martínez Domínguez 1 de Octubre de 2004 1. Matrices. Generalidades. Definición 1.1. Se llama matriz de orden m n sobre un cuerpo K a

Más detalles

Sistemas de ecuaciones diferenciales lineales J.L. Mancilla Aguilar

Sistemas de ecuaciones diferenciales lineales J.L. Mancilla Aguilar Sistemas de ecuaciones diferenciales lineales JL Mancilla Aguilar Sistemas de ecuaciones diferenciales A lo largo de estas notas consideraremos sistemas de ecuaciones diferenciales lineales a coeficientes

Más detalles

EJERCICIOS DE MATRICES, DETERMINANTES Y PROBLEMAS. 1. (2001) De las matrices,,,

EJERCICIOS DE MATRICES, DETERMINANTES Y PROBLEMAS. 1. (2001) De las matrices,,, EJERCICIOS DE MATRICES, DETERMINANTES Y PROBLEMAS SELECTIVIDAD 1. (2001) De las matrices,,, determina cuáles tienen inversa y en los casos en que exista, calcula el determinante de dichas matrices. 2.

Más detalles

2.1. Ejemplos de curvas planas

2.1. Ejemplos de curvas planas 20 CAPÍTULO 2. CURVAS PARAMETRIZADAS un cambio afín de coordenadas que transforma la curva original en (t, t 2 ), que es manifiestamente una parábola. Para encontrarlo basta con escribir los polinomios

Más detalles

Independencia lineal y rango Ejemplos. Rango. Rango y matriz inversa Teorema de Rouché-Frobenius revisitado

Independencia lineal y rango Ejemplos. Rango. Rango y matriz inversa Teorema de Rouché-Frobenius revisitado Independencia lineal y rango Ejemplos. Rango. Rango y matriz inversa Teorema de Rouché-Frobenius revisitado c Jana Rodriguez Hertz p. /2 Independencia lineal Si el sistema x A + x 2 A 2 + + x n A n = O

Más detalles

EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA

EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean linealmente

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

5.1. Concepto de diagonalización y ejemplo de aplicación. Supongamos que queremos calcular una potencia elevada de una matriz cuadrada, por ejemplo,

5.1. Concepto de diagonalización y ejemplo de aplicación. Supongamos que queremos calcular una potencia elevada de una matriz cuadrada, por ejemplo, Apuntes de Álgebra Lineal Capítulo 5 Diagonalización 51 Concepto de diagonalización y ejemplo de aplicación Supongamos que queremos calcular una potencia elevada de una matriz cuadrada, por ejemplo, calcular

Más detalles

El Sistema de Lorenz

El Sistema de Lorenz Capítulo 4 El Sistema de Lorenz Este sistema fué encontrado por E. Lorenz en el año 1963, el objetivo que Lorenz tenía, era el de, mediante este sistema, poder predecir el clima. Los resultados no fueron

Más detalles

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A =

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A = Matrices: repaso Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas Una matriz A M m n es de la forma a 11 a 1n A = a m1 a mn Denotaremos A ij = a ij el coeficiente

Más detalles

Diagonalización de matrices

Diagonalización de matrices Capítulo 6 Diagonalización de matrices 6.. Introducción 6... Un ejemplo preliminar Antes de plantearlo de manera general, estudiaremos un ejemplo que servirá para situar el problema. Supongamos que, en

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS LINEALES DE SEGUNDO ORDEN

ECUACIONES DIFERENCIALES ORDINARIAS LINEALES DE SEGUNDO ORDEN ECUACIONES DIFERENCIALES ORDINARIAS LINEALES DE SEGUNDO ORDEN ARIEL M. SALORT asalort@dm.uba.ar Marzo de 2016 1. Teoría general Una ecuación diferencial ordinaria lineal de segundo orden puede ser escrita

Más detalles