Práctica 2. Estudio de la radiación con un detector Geiger-Müller.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Práctica 2. Estudio de la radiación con un detector Geiger-Müller."

Transcripción

1 Práctica 2. Estudio de la radiación con un detector Geiger-Müller. Objetivo: La finalidad de esta práctica es el conocimiento de los métodos de medida de radiación en entornos de baja radiación mediante detectores de ionización de tipo Geiger-Müller. Estudio de la emisión radioactiva y sus propiedades, los efectos producidos sobre las radiaciones al pasar a través de la materia, y la utilización de métodos estadísticos en Física Experimental (distribución gaussiana vs poisson). MANTENERSE ALEJADO O RESGUARDADO DE LAS MUESTRAS RADIOACTIVAS Y USAR SIEMPRE LAS PINZAS O LA BARRA DE MANIPULACION PARA SU MANEJO. ESTIMAR CON EL GEIGER- MÜLLER PORTATIL LA DISTANCIA DE SEGURIDAD NECESARIA NOTA1: Comandos MS-DOS para crear una carpeta donde almacenar los datos (sólo 1ª vez) e iniciar el programa de toma de datos: C:\> mkdir lablink\medidas\nombreapellido C:\> cd lablink\medidas\nombreapellido C:\lablink\medidas\NombreApellido>..\..\lablink.exe Aceptar tras la bienvenida al programa y detección en COM1 NOTA2: Comando para copiar los archivos de datos al disquete (unidad A:) para su paso al ordenador de apoyo y análisis C:\lablink\medidas\NombreApellido> copy *.txt A: 1. Estudio del dispositivo experimental. Tratar de entender todos los aspectos que influyen en la detección de la radiación producida por la fuente, hasta su detección en el G-M incluyendo la lectura y transmisión electrónica de las señales. Considerar sólo errores estadísticos poissonianos (n ± n) más sencillos de calcular, e ignorar los sistemáticos. Geiger-Müller y cable de señal+hv (no tocar encendido) Placas Contador conectado a PC Muestras Figura 1. Esquema del dispositivo de la práctica Referencia del equipamiento (Geiger-Müller cilíndrico, 3.5cm de radio, 10cm de largo): 1

2 2. Curva plateau: se trata de determinar esta curva, con el fin de obtener el voltaje óptimo de trabajo. Para ello, se aumenta el voltaje progresivamente de 25 en 25V desde que el detector comienza a registrar cuentas (~700V). Se debe utilizar todo el rango posible de tensiones aplicables, sin superar el voltaje de la zona de avalancha (1200V). Identificar la zona central del plateau de acuerdo a la figura 2. Ajustar la región a una recta, determinando su pendiente m, que debería ser menor que un incremento del 10% en la tasa cada 100V (m = 2 (R2-R1) 10 4 /(R2+R1)/(V2-V1) <10% ). Caracterizar la anchura de esta zona y extraer conclusiones: el valor de tensión de trabajo ~1000V debería estar comprendido en el 40-60% del rango de plateau. Repetir para todas las muestras disponibles teniendo en cuenta la incertidumbre estadística: cps ± cps Procedimiento a través del software de control del PC (el contador ha de estar en modo REMOTE) una vez arrancado el programa LABLINK (ver NOTA1): borrar la medida existente para obtener una nueva, en el Menu ir a FILE-> New. Después: VIEW-> Digital CPS. Luego PRESETS-> PRESET TIME y aumentar hasta 30s. A continuación, MODE -> VOLTAGE RAMP ON. Iniciar la medida con el botón COUNT. El programa comenzará en un voltaje de 0V para progresivamente ir aumentando en pasos de 25V registrando durante 30s el número de cuentas totales en ese intervalo de tiempo: ignorar la fecha, sólo importa el tiempo transcurrido (Elapsed). Una vez concluida la medida guardar en FILE-> SaveAs usando un nombre para el archivo que no exceda de 8 caracteres y especificar la extensión (.txt), por ejemplo SrCurva.txt. Figura 2. Curva plateau típica de un detector G-M 2

3 3. Naturaleza estadística de la emisión radioactiva: distribución de Poisson. Las desintegraciones radioactivas son procesos aleatorios por eso cuando el número de desintegraciones es pequeño (radiación ambiental) se puede usar la distribución de Poisson ya que cumple las características de un proceso de poissoniano: El nº de sucesos en 2 intervalos independientes siempre es independiente. La probabilidad de que un suceso ocurra en un intervalo es proporcional a la longitud del intervalo. La probabilidad que ocurra más de 1 suceso en un intervalo suficientemente pequeño es despreciable (no se producen sucesos simultáneos). Se pretende estudiar si el fondo radioactivo, dado su carácter aleatorio, sigue o no una distribución de Poisson que toma valores discretos (x = nº de cuentas/sucesos) : µ µ µ donde P P da la probabilidad de observación de x sucesos en un intervalo de tiempo Δt. Una característica especial de la distribución de Poisson, que puede ser observada en el caso de un número pequeño de cuentas (x<20), es su asimetría. Por tanto se tomarán muchas medidas (>100) del número de cuentas en ausencia de fuente durante un periodo de tiempo pequeño (2 segundos), representando la frecuencia de repetición para 0, 1, 2, 3,.. cuentas en un histograma. Ajustar a una distribución poissoniana utilizando el valor esperado teórico de la expresión de Poisson para un valor de media µ, a determinar tanteando (una primera estimación es el promedio de las medidas obtenidas). Tener en cuenta las incertidumbres estadísticas del número de medidas ( P(x)). Los valores de fondo típicos en el laboratorio en el G-M son ~ cps. La varianza de una poissoniana es su propia media µ; comprobar que el valor corresponde con la desviación estándar de los datos. Se asumen errores poissonianos en toda la práctica por su facilidad de cálculo. Si es posible, probar también a poner el casquete de plomo de la práctica del centellador (poniéndose de acuerdo con los compañeros que la estén realizando) repitiendo la medida para ver el efecto sobre el fondo (compuesto principalmente de muones). Procedimiento a través del software de control del PC: establecer el voltaje de trabajo según lo aprendido en el apartado anterior (1000V es un buen valor de trabajo) a través de PRESETS-> High Voltage. Establecer el número de medidas (mínimo 100): PRESETS-> Runs. Seleccionar la duración de las mismas (Δt=2s): PRESETS->Time. Crear una nueva medida borrando la anterior: FILE-> New. Comenzar la medida con COUNT. Guardar la medida en disco con FILE-> SaveAs usando un nombre para el archivo que no exceda de 8 caracteres y especificar la extensión (.txt), e.g. Poisso2s.txt NOTA3: Si se realiza el tratamiento de datos con Hoja de cálculo, puede ser útil la función CONTAR.SI(rango_de_celdas; valor_a_contar) para obtener el histograma. 3

4 4. Naturaleza estadística de la emisión radioactiva: distribución de Gauss. La distribución de Gauss es simétrica en todo su rango y toma valores continuos: donde P G da la probabilidad de observación de x sucesos en un intervalo de tiempo Δt, µ = media que en este caso ha de ser positiva, y σ 2 = varianza. La distribución de Gauss reproduce un proceso aleatorio suma de un gran número (~NAvogadro de núcleos) de variables aleatorias, como es el caso de la emisión de una muestra radioactiva. Con el fin de estudiar esta distribución, se efectuarán varias medidas (cuantas más mejor) con la muestra Sr 90. En el análisis de datos, representar gráficamente las distribuciones de frecuencia de repetición obtenidas (quizá sea necesario agrupar los valores de las medidas en rangos para obtener valores que se repiten en más de una ocasión; es decir, cuantas veces se ha medido entre 100 y 110 cps, entre 110 y 120cps, entre 120 y 130cps...) y estimar la media y anchura de la distribución a través de un ajuste gaussiano. La expresión anterior es para una gaussiana normalizada (normal). Si el número de desintegraciones es del orden de 20 o mayor la distribución de Poisson se aproxima a una distribución de Gauss. Discutir si la distribución obtenida sigue una gaussiana o no. Comprobar este hecho ajustando también la distribución a una poissoniana con media µ obtenida del ajuste gaussiano. Comparar la desviación estándar de los valores con las varianzas de las poissonianas y gaussianas obtenidas. Procedimiento a través del software de control del PC: Trabajar a 1000V. Establecer el número de medidas (mínimo 500): PRESETS-> Runs. Seleccionar la duración de las mismas (Δt): PRESETS->Time, 1 segundo. Crear una nueva medida borrando la anterior: FILE-> New. Comenzar la medida con COUNT. Guardar la medida en disco con FILE-> SaveAs usando un nombre para el archivo que no exceda de 8 caracteres y especificar la extensión (.txt), e.g. GausSr.txt. Usar sólo la muestra de Sr Ley de la inversa del cuadrado de la distancia. Muchas fuentes radiactivas son isótropas, lo que significa, que a medida que aumenta la distancia entre la fuente y el detector, el mismo número de partículas se extiende por una superficie cuya magnitud varía con el cuadrado de la distancia. Utilizando sólo la fuente de Sr 90, ir variando la distancia entre la fuente y el detector, midiendo el número de cuentas a cada distancia. Representar las medias del número de cuentas obtenidas frente a la distancia al detector, y realizar un ajuste para determinar sus parámetros. Comparar el comportamiento 1/d 2 con la expresión vista en clase y discutir los resultados. 4

5 Procedimiento a través del software de control del PC: Tomar al menos 5 medidas de 10 segundos de duración en cada escalón con las que sea posible estimar una media de la gaussiana en cada punto. Medir la separación entre escalones y la distancia del primero a la superficie del detector cuando éste último esté apagado (~2cm). 6. Absorción de partículas β. La trayectoria de los e- en la materia no es una línea recta, especialmente a bajas energías. Esto hace que para electrones de la misma energía el espesor requerido para que queden completamente absorbidos no es el mismo. Además, la curva de transmisión de partículas β emitidas, debido a su distribución continua en energía (figura 3), difiere de la que se obtendría para un haz de electrones monoenergéticos. Figura 3. Gráfica cualitativa de la distribución de energía de partículas β en la desintegración β Esto significa que el rango (R) o alcance de este tipo de partículas es una cantidad que no está bien definida: (aprox. CSDA) espesor para el que el número de cuentas es compatible con fondo. Se pretende en este apartado determinar la curva que da el rango de partículas β en función del espesor de absorbente. Utilizar la fuente de Sr 90 : a) Determinar la actividad de la fuente (sin placa absorbente) en el segundo escalón. b) Colocar en el primer escalón diferentes espesores de Al y Pb, y medir el número de cuentas por unidad de tiempo. A partir de los datos obtenidos determinar experimentalmente el rango y el coeficiente de absorción para el Al ajustando a una exponencial las medidas. El espesor de cada placa se puede obtener del valor de densidad superficial (g/cm 2 ) especificado en la caja divido por la densidad volumétrica (g/cm 3 ) del Pb y Al que es constante para todos los espesores. Qué ocurre con el Pb? c) Se conoce para un gran número de núcleos la relación entre energía máxima y rango. En el intervalo de energías de 0 a 2.5 MeV, la relación entre el rango R (espesor mínimo para obtener cps compatible con fondo) del Al y la energía máxima de las β emitidas es lineal: Emax (MeV) = 1.84 R (en g/cm 2 ) A partir del rango obtenido experimentalmente para el 90Sr determinar la energía máxima de las β emitidas por este elemento. Comparar con el valor conocido del 90Sr teniendo en cuenta su isótopo hijo. Procedimiento a través del software de control del PC: Trabajar a 1000V. Tomar al menos 5 medidas de 10 segundos de duración con cada placa con las que poder estimar la media de la gaussiana para cada placa. Usar sólo Sr 90. Ignorar los plásticos. Guardar las medidas de cada placa en un fichero con la letra de identificación de cada placa. Copiar al disquete una vez se haya terminado con todas las placas. 5

6 7. Detección y apantallamiento de α y γ. Teniendo en cuenta que la detección de estas partículas en un detector GM es reducida, comprobar los efectos de los materiales disponibles (incluido el papel) en las muestras α y γ. Qué material es necesario para protegernos de radiación γ? Ténganse en cuenta la figura 4. Utilizar si es necesario muestras γ puras de las disponibles en el laboratorio (Na 22 con γ 1.27MeV o Ba 133 con γ<0.4mev) para comprobar la respuesta midiendo con una placa fina de Pb y luego con otra de Al de espesor comparable (L y R) Cuál es la eficiencia de detección de partículas α si la actividad de la muestra de Pu 238 en 1990 era 37kBq? A través de la estimación del rango (R) en el aire de las αs se puede estimar su energía como Eα(MeV) R +1.5, dónde R está en cm. (Para el Pu 238, Eα =5.4MeV) γ Figura 4. Dependencia del coeficiente de atenuación de masa para la radiación γ en Pb, Al y Fe frente a la energía del fotón 6

Paso de partículas α a traves medios materiales: pérdida de energía en aire

Paso de partículas α a traves medios materiales: pérdida de energía en aire Departamento de Fisica Atomica, Molecular y Nuclear Facultad de Ciencias Fisicas. UCM Asignatura: Radiofísica Paso de partículas α a traves medios materiales: pérdida de energía en aire 1. Introducción

Más detalles

Practica 1. Detección de γ usando un centelleador de NaI(Tl)

Practica 1. Detección de γ usando un centelleador de NaI(Tl) Practica 1. Detección de γ usando un centelleador de NaI(Tl) Objetivos: La finalidad de esta práctica es familiarizarse con: a) características de los detectores de centelleo y la cadena de lectura de

Más detalles

Actividad VI.58 Naturaleza estadística del decaimiento radioactivo

Actividad VI.58 Naturaleza estadística del decaimiento radioactivo Actividad VI.58 Naturaleza estadística del decaimiento radioactivo Objetivo Investigación de la naturaleza estadística del decaimiento radioactivo. Distribución de Poisson. Empleo de Multi Channel Scaling

Más detalles

TECNICAS EXPERIMENTALES V (Curso )

TECNICAS EXPERIMENTALES V (Curso ) TECNICAS EXPERIMENTALES V (Curso 2010-2011) Práctica 7 FUNDAMENTOS DE RADIACTIVIDAD: ESTADISTICA Y LEY DE DESINTEGRACION Resumen: Las desintegraciones en una fuente radiactiva ocurren aleatoriamente. Si

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

Introducción al Diseño de Experimentos.

Introducción al Diseño de Experimentos. Introducción al Diseño de Experimentos www.academia.utp.ac.pa/humberto-alvarez Introducción Una población o universo es una colección o totalidad de posibles individuos, especímenes, objetos o medidas

Más detalles

Interacción de la radiación electromagnética con la materia. L.C.Damonte 2014

Interacción de la radiación electromagnética con la materia. L.C.Damonte 2014 Interacción de la radiación electromagnética con la materia L.C.Damonte 014 Interacción de la radiación electromagnética con la materia o Los fotones se clasifican de acuerdo a su origen: Rayos (0.1MeV-5MeV)

Más detalles

Curso de SUPERVISORES de instalaciones radiactivas (IR). MÓDULO BÁSICO. PRÁCTICAS PRÁCTICA 2. EQUIPOS DE MEDIDA DE CONTAMINACIÓN SUPERFICIAL

Curso de SUPERVISORES de instalaciones radiactivas (IR). MÓDULO BÁSICO. PRÁCTICAS PRÁCTICA 2. EQUIPOS DE MEDIDA DE CONTAMINACIÓN SUPERFICIAL PRÁCTICA 2. EQUIPOS DE MEDIDA DE CONTAMINACIÓN SUPERFICIAL CSN 2013 ÍNDICE: GUIÓN:... 3 MATERIALY EQUIPO UTILIZADO:... 3 1. VERIFICACIONES Y CALIBRACIÓN.... 4 2. PROCEDIMIENTO DE MEDIDA... 4 3. LÍMITE

Más detalles

UNIVERSIDAD DE MANAGUA

UNIVERSIDAD DE MANAGUA UNIVERSIDAD DE MANAGUA Al más alto nivel SIMULACIÓN DE SISTEMAS Guía práctica #1 Determinar la Distribución de los datos de una Simulación Prof.: MSc. Julio Rito Vargas A. Enero 013 Objetivos: Utilizar

Más detalles

EXPERIENCIAS CON MICROONDAS

EXPERIENCIAS CON MICROONDAS EXPERIENCIAS CON MICROONDAS OBJETIVOS 1)Generales 1 1) Comprender en la práctica, algunas de las propiedades generales de las ondas electromagnéticas. 1 2) Estudiar las propiedades y fenómenos relacionados

Más detalles

Título: Determinación del alcance y energía de emisores Beta

Título: Determinación del alcance y energía de emisores Beta CODIGO: LABPR-006 FECHA: / / INSTRUCTOR: I. Objetivos: Título: Determinación del alcance y energía de emisores Beta Realizar estudios de absorción de rayos Beta con la ayuda de un contador GM para determinar

Más detalles

Introducción al tratamiento de datos experimentales. Aplicación en fisicoquímica

Introducción al tratamiento de datos experimentales. Aplicación en fisicoquímica Introducción al tratamiento de datos experimentales Aplicación en fisicoquímica Medidas experimentales 1. 8.86 M H 2 O 2 100V 8.93M Titulación con KMnO 4 2. 8.78 M 3. 9.10 M Resultado promedio: 8.91 M

Más detalles

Cálculo de Probabilidades y Estadística. Segunda prueba. 1

Cálculo de Probabilidades y Estadística. Segunda prueba. 1 08231. Cálculo de Probabilidades y Estadística. Segunda prueba. 1 Problema 1. Se eligen tres puntos A, B y C, al azar e independientemente, sobre una circunferencia. Determinar la distribución del valor

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel UNIVERSIDAD DE MANAGUA Al más alto nivel SIMULACIÓN DE SISTEMAS Guía práctica #1 Determinar la Distribución de los datos de una Simulación Prof.: MSc. Julio Rito Vargas A. Grupo: Ingeniería Industrial

Más detalles

PRÁCTICA 2 MANEJO DE EQUIPOS DE DETECCIÓN DE LA CONTAMINACIÓN SUPERFICIAL. VERIFICACIÓN PREVIA AL USO DE LOS EQUIPOS.

PRÁCTICA 2 MANEJO DE EQUIPOS DE DETECCIÓN DE LA CONTAMINACIÓN SUPERFICIAL. VERIFICACIÓN PREVIA AL USO DE LOS EQUIPOS. PRÁCTICA 2 MANEJO DE EQUIPOS DE DETECCIÓN DE LA CONTAMINACIÓN SUPERFICIAL. VERIFICACIÓN PREVIA AL USO DE LOS EQUIPOS. GUIÓN MATERIAL 1. VERIFICACIONES Y CALIBRACIÓN.... 4 2. PROCEDIMIENTO DE MEDIDA....

Más detalles

Selección de distribuciones de probabilidad

Selección de distribuciones de probabilidad Selección de distribuciones de probabilidad Georgina Flesia FaMAF 3 de mayo, 2012 Análisis estadístico de datos simulados Los sistemas reales tienen fuentes de aleatoriedad: Tipo de sistema Fabricación

Más detalles

INTERACCIÓN DE LA RADIACIÓN CON LA MATERIA. Enrique Nácher

INTERACCIÓN DE LA RADIACIÓN CON LA MATERIA. Enrique Nácher INTERACCIÓN DE LA RADIACIÓN CON LA MATERIA. Enrique Nácher Tipos de radiación Partículas pesadas cargadas (p, d, α...) Electrones (+ / -) Neutrones Rayos γ y X Los neutrones sólo interaccionan con los

Más detalles

INTERACCION DE LAS RADIACIONES ELECTROMAGNETICAS CON LA MATERIA

INTERACCION DE LAS RADIACIONES ELECTROMAGNETICAS CON LA MATERIA NTERACCON DE LAS RADACONES ELECTROMAGNETCAS CON LA MATERA B.C. Paola Audicio Asistente de Radiofarmacia, CN Radiación ionizante: ionización del material atravesado M M + + e - excitación de las estructuras

Más detalles

Medición y comparación del coeficiente de atenuación lineal de líquidos (con y sin gas)

Medición y comparación del coeficiente de atenuación lineal de líquidos (con y sin gas) Medición y comparación del coeficiente de atenuación lineal de líquidos (con y sin gas) Marlen Hernández Ortiz Héctor Antonio Durán Muñoz Eduardo Manzanares Acuña Héctor René Vega Carrillo Unidad de Académica

Más detalles

Interacción de la radiación con la materia

Interacción de la radiación con la materia Interacción de la radiación con la materia Fernando Mata Colodro Servicio de Radiofísica y Protección Radiológica. Hospital General Universitario Santa Lucía. Cartagena. RADIACION PARTICULAS FOTONES Colisiones

Más detalles

TÉCNICAS EXPERIMENTALES V FÍSICA CUÁNTICA

TÉCNICAS EXPERIMENTALES V FÍSICA CUÁNTICA TÉCNICAS EXPERIMENTALES V FÍSICA CUÁNTICA P1 Medida de la Constante de Planck. Efecto fotoeléctrico. RNB P2 Experimento de Franck-Hertz. Niveles de energía de los átomos RNB P3 Dispersión de Rutherford

Más detalles

RESUMEN CONTENIDOS TERCERA EVALUACIÓN PROBABILIDAD DISTRIBUCIÓN BINOMIAL DISTRIBUCIÓN NORMAL

RESUMEN CONTENIDOS TERCERA EVALUACIÓN PROBABILIDAD DISTRIBUCIÓN BINOMIAL DISTRIBUCIÓN NORMAL RESUMEN CONTENIDOS TERCERA EVALUACIÓN PROBABILIDAD DISTRIBUCIÓN BINOMIAL DISTRIBUCIÓN NORMAL 1) PROBABILIDAD Experimentos aleatorios. Concepto de espacio muestral y de suceso elemental. Operaciones con

Más detalles

REAL SOCIEDAD ESPAÑOLA DE FÍSICA REAL SOCIEDAD ESPAÑOLA DE FÍSICA. XX Olimpiada FASE LOCAL DE LA RIOJA. 27 de febrero de 2009.

REAL SOCIEDAD ESPAÑOLA DE FÍSICA REAL SOCIEDAD ESPAÑOLA DE FÍSICA. XX Olimpiada FASE LOCAL DE LA RIOJA. 27 de febrero de 2009. XX Olimpiada ESPAÑOLA DE FÍSICA FASE LOCAL DE LA RIOJA 7 de febrero de 009 ª Parte P y P Esta prueba consiste en la resolución de dos problemas. Razona siempre tus planteamientos No olvides poner tus apellidos,

Más detalles

Las medidas y su incertidumbre

Las medidas y su incertidumbre Las medidas y su incertidumbre Laboratorio de Física: 1210 Unidad 1 Temas de interés. 1. Mediciones directas e indirectas. 2. Estimación de la incertidumbre. 3. Registro de datos experimentales. Palabras

Más detalles

Algunas distribuciones teóricas continuas

Algunas distribuciones teóricas continuas Algunas distribuciones teóricas continuas Dr. Pastore, Juan Ignacio Profesor Adjunto. Algunas Distribuciones Estadísticas Teóricas Distribución Continuas: a) Distribución Uniforme b) Distribución de Exponencial

Más detalles

Detectores de Partículas

Detectores de Partículas Detectores de Partículas Física de Astropartículas Master de Física Fundamental Juan Abel Barrio, Curso 12/13 Universidad Complutense de Madrid 1 Detección de radiación Radiación Detector Señal Amplificación

Más detalles

6.3. Distribuciones continuas

6.3. Distribuciones continuas 144 Bioestadística: Métodos y Aplicaciones Solución: Si consideramos la v.a. X que contabiliza el número de personas que padecen la enfermedad, es claro que sigue un modelo binomial, pero que puede ser

Más detalles

FS-210 Biofísica UNAH. Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física. Vida Media

FS-210 Biofísica UNAH. Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física. Vida Media Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Vida Media Elaborado por: Roger Ponce y Jonathan Fiallos Introducción La radiactividad, descubierta por primera vez en 1896

Más detalles

Capítulo 5: Probabilidad e inferencia

Capítulo 5: Probabilidad e inferencia Capítulo 5: Probabilidad e inferencia estadística (Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia Contenidos Principios de la probabilidad Conceptos básicos

Más detalles

Conceptos básicos sobre interacción de la radiación ionizante con la materia

Conceptos básicos sobre interacción de la radiación ionizante con la materia Conceptos básicos sobre interacción de la radiación ionizante con la materia Martín Gascón Introducción al laboratorio de Física Nuclear Técnicas experimentales avanzadas Departamento de Física de Partículas

Más detalles

Tema 4: Variables aleatorias. Tema 4: Variables Aleatorias. Tema 4: Variables aleatorias. Objetivos del tema:

Tema 4: Variables aleatorias. Tema 4: Variables Aleatorias. Tema 4: Variables aleatorias. Objetivos del tema: Tema 4: Variables aleatorias Tema 4: Variables Aleatorias Distribución de Bernouilli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno

Más detalles

DETECCIÓN DE RADIACIONES NUCLEARES

DETECCIÓN DE RADIACIONES NUCLEARES Curso 001-00 DETECCIÓN DE RADIACIONES NUCLEARES 1. Interacción de la radiación con la materia. Detectores gaseosos 3. Detectores de centelleo 4. Detectores semiconductores Física Nuclear y de Partículas

Más detalles

Variables aleatorias 1. Problema 1

Variables aleatorias 1. Problema 1 Variables aleatorias 1 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Estadística Variables aleatorias Problema 1 La dimensión de ciertas piezas sigue una distribución normal

Más detalles

Laboratorio 5 - UBA Primer Cuatrimestre de 1999

Laboratorio 5 - UBA Primer Cuatrimestre de 1999 Laboratorio 5 - UBA Primer Cuatrimestre de 1999 LA NATURALEZA ESTADISTICA DEL DECAIMIENTO RADIACTIVO. Autores: M.A. Agadakis. R.R. Yáñez. Por medio de la detección de las emisiones gamma de una fuente

Más detalles

DESCRIPCIÓN DE DATOS POR MEDIO DE GRÁFICAS

DESCRIPCIÓN DE DATOS POR MEDIO DE GRÁFICAS ÍNDICE Introducción: Entrene su cerebro para la estadística... 1 La población y la muestra... 3 Estadísticas descriptivas e inferenciales... 4 Alcanzar el objetivo de estadísticas inferenciales: los pasos

Más detalles

Detección de la radiación. Laura C. Damonte 2014

Detección de la radiación. Laura C. Damonte 2014 Detección de la radiación Laura C. Damonte 2014 Detección de partículas alfa Existen varios tipos de detectores para la detección de emisores, como las cámaras de ionización, contadores proporcionales,

Más detalles

ESPECTROSCOPÍA DE ANIQUILACIÓN DE POSITRONES. Autor: Elena Herranz Muelas Directores: J.M. Udías J. del Río

ESPECTROSCOPÍA DE ANIQUILACIÓN DE POSITRONES. Autor: Elena Herranz Muelas Directores: J.M. Udías J. del Río ESPECTROSCOPÍA DE ANIQUILACIÓN DE POSITRONES Autor: Elena Herranz Muelas Directores: J.M. Udías J. del Río PAS: Estudio de la estructura electrónica y defectos en sólidos TÉCNICAS: Sensibilidad de los

Más detalles

TEMA 5 Estadística descriptiva. Análisis de datos

TEMA 5 Estadística descriptiva. Análisis de datos TEMA 5 Estadística descriptiva. Análisis de datos Florence Nightingale (1820-1910) 1. Introducción. Modelos matemáticos 2. Métodos numéricos. Resolución de sistemas lineales y ecuaciones no lineales 3.

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

Tema 4: Variables Aleatorias

Tema 4: Variables Aleatorias Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto

Más detalles

Errores e Incertidumbre. Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret

Errores e Incertidumbre. Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret Errores e Incertidumbre Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret Notación Científica 0 1 2 (1,45 ± 0,05) cm Objetivos: Después de completar este tema,

Más detalles

Laboratorio de Física IV

Laboratorio de Física IV Laboratorio de Física IV FISICA CUANTICA NUCLEOS PARTICULAS (Guía de las Prácticas 4, 5 y 6) Curso 2013-2014 (3º Grado Física) 1 P6: ESTRUCTURA NUCLEAR Y RADIACION GAMMA: EFECTOS FOTOELECTRICO Y COMPTON

Más detalles

SOLUCIONES AL EXAMEN DE SEPTIEMBRE DE ESTADÍSTICA EXAMEN DE MATEMÁTICAS II

SOLUCIONES AL EXAMEN DE SEPTIEMBRE DE ESTADÍSTICA EXAMEN DE MATEMÁTICAS II SOLUCIONES AL EXAMEN DE SEPTIEMBRE DE 4. ESTADÍSTICA EXAMEN DE MATEMÁTICAS II Estadística (primer parcial). Septiembre de 4.- El coeficiente de determinación R nos determina a) el % de la varianza de Y

Más detalles

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 4

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 4 UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 4 DOCENTE: Ing. Patricio Puchaicela ALUMNA: Andrea C. Puchaicela G. CURSO: 4to. Ciclo de Electrónica y Telecomunicaciones AÑO

Más detalles

Selección de distribuciones de probabilidad

Selección de distribuciones de probabilidad Selección de distribuciones de probabilidad Patricia Kisbye FaMAF 6 de mayo, 2010 Análisis estadístico de datos simulados Los sistemas reales tienen fuentes de aleatoriedad: Tipo de sistema Fabricación

Más detalles

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables Pág. N. 1 Índice general Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN 1.1 Diseño 1.2 Descriptiva 1.3 Inferencia Diseño Población Muestra Individuo (Observación, Caso, Sujeto) Variables Ejercicios de Población

Más detalles

Interacción de las Radiaciones con la Materia Medicina Nuclear (1993) Radioterapia y Radiodiagnóstico (2008) Facultad de Ingeniería, UNER

Interacción de las Radiaciones con la Materia Medicina Nuclear (1993) Radioterapia y Radiodiagnóstico (2008) Facultad de Ingeniería, UNER Interacción de las Radiaciones con la Materia Medicina Nuclear (993) Radioterapia y Radiodiagnóstico (008) Facultad de Ingeniería, UNER. Interacción de la radiación ionizante con la materia Cuando la radiación

Más detalles

María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999

María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 En el presente trabajo nos proponemos estimar el valor de la aceleración de la

Más detalles

PRÁCTICA 4: Ensayo triaxial CD

PRÁCTICA 4: Ensayo triaxial CD PRÁCTICA 4: Ensayo triaxial CD 1. OBJETO DE LA PRACTICA La práctica consiste en la realización de un ensayo triaxial con consolidación previa y rotura drenada sobre una probeta de arena arcillosa. El ensayo

Más detalles

Pasaje de partículas cargadas por la materia. Efecto Cherenkov. Bremsstrahlung Laura C. Damonte 2014

Pasaje de partículas cargadas por la materia. Efecto Cherenkov. Bremsstrahlung Laura C. Damonte 2014 Pasaje de partículas cargadas por la materia. Efecto Cherenkov. Bremsstrahlung Laura C. Damonte 014 Pasaje de partículas cargadas por la materia Cuando una partícula cargada atraviesa materia, alguno o

Más detalles

Mediciones. Errores. Propagación de errores. Estadística. Prof. Arturo S. Vallespi

Mediciones. Errores. Propagación de errores. Estadística. Prof. Arturo S. Vallespi Mediciones. Errores. Propagación de errores. Estadística Prof. Arturo S. Vallespi Incertidumbre estadística: Qué ocurre si cada magnitud de interés en el experimento se mide más de una vez, por ejemplo

Más detalles

Medición de la aceleración de la gravedad mediante plano inclinado

Medición de la aceleración de la gravedad mediante plano inclinado Medición de la aceleración de la gravedad mediante plano inclinado Segunda parte Lopez, Johanna Giselle (gyf_lola@hotmail.com) Martinez Roldan, Antu (antucolomenos@hotmail.com) Viglezzi, Ramiro (ramiro.viglezzi@gmail.com)

Más detalles

GUÍA DE STATGRAPHICS 5.1

GUÍA DE STATGRAPHICS 5.1 UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA UNIVERSITARIA DE ARQUITECTURA TÉCNICA DEPARTAMENTO DE MATEMÁTICA APLICADA A LA ARQUITECTURA TÉCNICA GUÍA DE STATGRAPHICS 5.1 (Versión castellana) GUÍA DE STATGRAPHICS

Más detalles

Ejercicio 1. Ejercicio 2

Ejercicio 1. Ejercicio 2 Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Título: Efecto de la retrodisperción en la medición de emisores Beta

Título: Efecto de la retrodisperción en la medición de emisores Beta CODIGO: LABPR-007 FECHA: / / INSTRUCTOR: Título: Efecto de la retrodisperción en la medición de emisores Beta I. Objetivos: A. Estudiar la relación del factor de retrodispersión con el número atómico y

Más detalles

Cuando la distribución viene dada por una tabla: 2. DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA.

Cuando la distribución viene dada por una tabla: 2. DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. 1. DISTRIBUCIONES ESTADÍSTICAS. El siguiente grafico corresponde a una distribución de frecuencias de variable cuantitativa y discreta pues solo puede tomar valores aislados (0, 1, 2, 3, 10). Se trata

Más detalles

Tema 4: Leyes de la desintegración

Tema 4: Leyes de la desintegración Tema 4: Leyes de la desintegración 1. Ley exponencial 1.1. Constante de desintegración y ley exponencial El proceso de la desintegración es de naturaleza estadística: Imposible predecir el momento de la

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción LABORATORIO No. 0 Cálculo de errores en las mediciones 0.1 Introducción Es bien sabido que la especificación de una magnitud físicamente medible requiere cuando menos de dos elementos: Un número y una

Más detalles

PRÁCTICA: ESTADÍSTICA DESCRIPTIVA CON SPSS 1

PRÁCTICA: ESTADÍSTICA DESCRIPTIVA CON SPSS 1 ESTADÍSTICA CURSO 2012/2013 GRADO EN BIOLOGÍA PRÁCTICA: ESTADÍSTICA DESCRIPTIVA CON SPSS 1 1. Introducción El programa estadístico SPSS está organizado en dos bloques: el editor de datos y el visor de

Más detalles

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua. Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,

Más detalles

MATEMÁTICAS II PROBABILIDAD DISTRIBUCIÓN BINOMIAL DISTRIBUCIÓN NORMAL

MATEMÁTICAS II PROBABILIDAD DISTRIBUCIÓN BINOMIAL DISTRIBUCIÓN NORMAL MATEMÁTICAS II PROBABILIDAD DISTRIBUCIÓN BINOMIAL DISTRIBUCIÓN NORMAL 1) PROBABILIDAD Experimentos aleatorios. Concepto de espacio muestral y de suceso elemental. Operaciones con sucesos. Leyes de De Morgan.

Más detalles

ESTADÍSTICA DEL DECAIMIENTO RADIACTIVO

ESTADÍSTICA DEL DECAIMIENTO RADIACTIVO ESTADÍSTICA DEL DECAIMIENTO RADIACTIVO Víctor Bazterra (54-4433-627) y Alberto Camjayi (54-4292-735) Laboratorio 5, Dto. Física, FCEN, UBA -997. Utilizando un analizador multicanal se estudió la naturaleza

Más detalles

DESCARGA DE UN CONDENSADOR

DESCARGA DE UN CONDENSADOR eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

ACTIVIDAD DE UN RADIOELEMENTO

ACTIVIDAD DE UN RADIOELEMENTO PRÁCTICA 8 ACTIVIDAD DE UN RADIOELEMENTO OBJETIVO Determinación de la actividad (número de desintegraciones nucleares por segundo) de una pastilla radioactiva de Cobalto-60. INTRODUCCIÓN Los elementos

Más detalles

TEMA 6. Distribuciones

TEMA 6. Distribuciones TEMA 6. Distribuciones Alicia Nieto Reyes BIOESTADÍSTICA Alicia Nieto Reyes (BIOESTADÍSTICA) TEMA 6. Distribuciones 1 / 16 Probabilidad= Distribución= Distribución de Probabilidad Cuando queremos conocer

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Distribución Gaussiana o normal

Distribución Gaussiana o normal FLUCTUACIONES ESTADÍSTICAS Los postulados fundamentales de la teoría estadística de errores establecen que, dado un conjunto de medidas, todas efectuadas en idénticas condiciones, suficientemente grande

Más detalles

SIN TELÉFONO CELULAR. en que v representa una velocidad, entonces, las dimensiones de la cantidad K, son:

SIN TELÉFONO CELULAR. en que v representa una velocidad, entonces, las dimensiones de la cantidad K, son: FÍSICA 0 CERTAMEN # Forma R 4 de abril de 0 AP. PATERNO AP. MATERNO NOMBRE ROL USM - Si su rol comienza con 9 coloque 009 ESTE CERTAMEN CONSTA DE 0 PREGUNTAS EN 6 PÁGINAS. TIEMPO: 5 MINUTOS SIN CALCULADORA.

Más detalles

VIDA MEDIA DE UN RADIOELEMENTO

VIDA MEDIA DE UN RADIOELEMENTO PRÁCTICA 9 VIDA MEDIA DE UN RADIOELEMENTO OBJETIVO Determinar la vida media del radioelemento Bario-137m. INTRODUCCIÓN El Bario-137m es producido durante la siguiente secuencia de transformaciones radioactivas:

Más detalles

METODOS ESTADÍSTICOS

METODOS ESTADÍSTICOS METODOS ESTADÍSTICOS Introducción. Uno de los objetivos de la asignatura de Hidrología, es mostrar a los alumnos, las herramientas de cálculo utilizadas en Hidrología Aplicada para diseño de Obras Hidráulicas.

Más detalles

DISTRIBUCIONES CONTINUAS INFERENCIA ESTADISTICA LIC. MIGUEL CANO.

DISTRIBUCIONES CONTINUAS INFERENCIA ESTADISTICA LIC. MIGUEL CANO. DISTRIBUCIONES CONTINUAS INFERENCIA ESTADISTICA LIC. MIGUEL CANO. En esta sección se estudian las distribuciones más importantes de las variables aleatorias continuas unidimensionales. Algunas distribuciones

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1º BACHILLERATO

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1º BACHILLERATO DEL CURSO 1. Utilizar los números reales, sus notaciones, operaciones y procedimientos asociados, para presentar e intercambiar información,

Más detalles

Cátedra: Estadística Técnica Facultad de Ingeniería UNCuyo. Índice D. Fernández & M. Guitart TABLA DE CONTENIDOS

Cátedra: Estadística Técnica Facultad de Ingeniería UNCuyo. Índice D. Fernández & M. Guitart TABLA DE CONTENIDOS Cátedra: TABLA DE CONTENIDOS INTRODUCCIÓN Qué es la Probabilidad? Qué es la Estadística? La evolución histórica de la Estadística Algunos conceptos imprescindibles Fuentes de datos Tipos de datos y escalas

Más detalles

DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA LA CONVOCATORIA DE SEPTIEMBRE º BACHILLERATO DE CIENCIAS SOCIALES.

DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA LA CONVOCATORIA DE SEPTIEMBRE º BACHILLERATO DE CIENCIAS SOCIALES. DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA LA CONVOCATORIA DE SEPTIEMBRE 2017 UNIDAD 1.-Matrices. Conceptos: 2º BACHILLERATO DE CIENCIAS SOCIALES. Tipos de matrices. Tipos de matrices cuadradas.

Más detalles

Variables Aleatorias y Principios de Simulación.

Variables Aleatorias y Principios de Simulación. Variables Aleatorias y Principios de Simulación http://humberto-r-alvarez-a.webs.com Conceptos de probabilidad La Teoría de Probabilidad trata fenómenos que pueden ser modelados por experimentos cuyos

Más detalles

CM0244. Suficientable

CM0244. Suficientable IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE

Más detalles

4. Vida media y conversión interna del Ba 137m

4. Vida media y conversión interna del Ba 137m 4. Vida media y conversión interna del Ba 137m Objetivos: Entender el concepto de vida media y el carácter de la desintegración exponencial en función del valor de la constante de desintegración Comprender

Más detalles

Figura 1. Generación de variables aleatorias.

Figura 1. Generación de variables aleatorias. PRÁCTICA 3. Ingeniería Técnica Industrial (2º) - Mecánica. Profesores: Javier Faulín y Francisco Ballestín 1. Generación de variables aleatorias. El programa nos permite generar variables aleatorias especificando

Más detalles

Detección de la Radiación. Laura C. Damonte 2014

Detección de la Radiación. Laura C. Damonte 2014 Detección de la Radiación Laura C. Damonte 2014 Características Generales de los Detectores Fundamentos de la detección: transferencia de parte o toda la energía de la radiación a la masa del detector

Más detalles

Variables aleatorias: El caso continuo. Random variables: The continuous case. Rincón de la Bioestadística

Variables aleatorias: El caso continuo. Random variables: The continuous case. Rincón de la Bioestadística Variables aleatorias: El caso continuo Gabriel Cavada Ch. 1 1 División de Bioestadística, Escuela de Salud Pública, Universidad de Chile. Random variables: The continuous case E l tratamiento de una variable

Más detalles

1 CÁLCULO DE PROBABILIDADES

1 CÁLCULO DE PROBABILIDADES 1 CÁLCULO DE PROBABILIDADES 1.1 EXPERIENCIAS ALEATORIAS. SUCESOS 1.1.1 Definiciones Experiencia aleatoria: experiencia o experimento cuyo resultado depende del azar. Suceso aleatorio: acontecimiento que

Más detalles

Intervalos de confianza con STATGRAPHICS

Intervalos de confianza con STATGRAPHICS Intervalos de confianza con STATGRAPHICS Ficheros empleados: TiempoaccesoWeb.sf3 ; TiempoBucle.sf3; 1. Ejemplo 1: Tiempo de acceso a una página Web Se desean construir intervalos de confianza para la media

Más detalles

DETECTORES DE RADIACIÓN

DETECTORES DE RADIACIÓN DETECTORES DE RADIACIÓN ( I ) - INTERACCIÓN RADIACIÓN-MATERIA CURSO 2012 2013 INTRODUCCIÓN La mayoría de los detectores de radiación presentan un comportamiento similar: 1. La radiación entra en el detector

Más detalles

TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18

TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias: discretas y continuas. 2.2. Variables aleatorias discretas. Diagrama de

Más detalles

Masterclass Aceleradores de partículas

Masterclass Aceleradores de partículas Unidad de Divulgación Científica del Centro Nacional de Aceleradores (CNA) Masterclass Aceleradores de partículas 1. Técnicas experimentales empleadas en el CNA 2. Ley de decaimiento radiactivo y su aplicación

Más detalles

Centro de Investigaciones Nucleares TECNOLOGÍA DE LA PROTECCIÓN RADIOLÓGICA

Centro de Investigaciones Nucleares TECNOLOGÍA DE LA PROTECCIÓN RADIOLÓGICA Centro de Investigaciones Nucleares TECNOLOGÍA DE LA PROTECCIÓN RADIOLÓGICA Tipos de exposición a la radiación Interna Ingestión o inhalación de radionucleídos Externa Fuentes radiactivas o equipos generadores

Más detalles

Interacción de la radiación con la materia. Laura C. Damonte 2014

Interacción de la radiación con la materia. Laura C. Damonte 2014 Interacción de la radiación con la materia Laura C. Damonte 2014 Mecanismos Básicos Fotones: interactúan con los electrones del medio mediante dos procesos fundamentales, en un caso son absorbidos por

Más detalles

Laboratorio 5 - UBA Primer Cuatrimestre de 1999

Laboratorio 5 - UBA Primer Cuatrimestre de 1999 Laboratorio 5 - UBA Primer Cuatrimestre de 1999 ATENUACIÓN DE RAYOS GAMMA EN MATERIALES Graciana Puentes y Matías Ison Resumen: Se determinó el coeficiente de atenuación µ para el cobre en un rango de

Más detalles

Representación gráfica de esta función de densidad

Representación gráfica de esta función de densidad Distribución normal La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. Se ha usado en una gran variedad de aplicaciones prácticas en las

Más detalles

TH. DE CHEBYSHEV DISTRIB. NORMAL.

TH. DE CHEBYSHEV DISTRIB. NORMAL. f ( x) 1 2 2 ( x) e 2 2 TH. DE CHEBYSHEV DISTRIB. NORMAL El Desvío Estándar y el Teorema de Chebyshev Es conocida en el área de la probabilidad y estadística, la desigualdad de Chebyshev, matemático Ruso

Más detalles

U3: Procesos Poisson. Probabilidad e Introducción a los Procesos Estocásticos. Mgs. Nora Arnesi

U3: Procesos Poisson. Probabilidad e Introducción a los Procesos Estocásticos. Mgs. Nora Arnesi U3: Procesos Poisson Probabilidad e Introducción a los Procesos Estocásticos. Mgs. Nora Arnesi Analizar el siguiente proceso estocástico: Una fuente radioactiva emite partículas y sea X t : número de partículas

Más detalles

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011 NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011 CÓMO CARACTERIZAR UNA SERIE DE DATOS? POSICIÓN- dividen un conjunto ordenado de datos en grupos con la misma cantidad de individuos CENTRALIZACIÓN-

Más detalles

GUIÓN 5. CAMPO ELÉCTRICO EN LÁMINAS DÉBILMENTE CONDUCTORAS. - la dependencia entre voltaje aplicado e intensidad en láminas de papel mojado,

GUIÓN 5. CAMPO ELÉCTRICO EN LÁMINAS DÉBILMENTE CONDUCTORAS. - la dependencia entre voltaje aplicado e intensidad en láminas de papel mojado, GUIÓN 5. CAMPO ELÉCTRICO EN LÁMINAS DÉBILMENTE CONDUCTORAS Objetivos En esta práctica se analiza el comportamiento del campo eléctrico en medios débilmente conductores. En particular se estudia experimentalmente:

Más detalles

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación

Más detalles

ESTADÍSTICA 3º CC. AMBIENTALES PRÁCTICA 1: Introducción al SPSS

ESTADÍSTICA 3º CC. AMBIENTALES PRÁCTICA 1: Introducción al SPSS ESTADÍSTICA 3º CC. AMBIENTALES PRÁCTICA 1: Introducción al SPSS Experimento y datos: Supongamos que estamos interesados en analizar la influencia del tipo de suelos sobre la abundancia de romeros (Rosmarinus

Más detalles

Qué es? Primer paso Representación en un sistema de coordenadas. numéricos Cada punto muestra el valor de cada pareja de datos (X e Y)

Qué es? Primer paso Representación en un sistema de coordenadas. numéricos Cada punto muestra el valor de cada pareja de datos (X e Y) Gráfico de dispersión Qué es? Primer paso Representación en un sistema de coordenadas cartesianas de los datos numéricos Cada punto muestra el valor de cada pareja de datos (X e Y) Gráfico de dispersión

Más detalles