ESTRUCTURA DE BANDAS (REPASO)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTRUCTURA DE BANDAS (REPASO)"

Transcripción

1 Problemas de Electrónica Física 1 ESTRUCTURA DE BANDAS (REPASO) 1. En la aproximación del electrón fuertemente ligado se obtiene, para la primera banda de conducción de un sólido con estructura cúbica, la relación de dispersión: E C (k) = E 0 α γ exp(ik ρ m ) donde α y γ son constantes, k es el vector de onda y ρm es el vector de posición del m-vecino más próximo al de referencia, que tendrá posición ρ 0 =0. Teniendo en cuenta esta expresión, representar E(k) para los puntos y direcciones de simetría de un cristal cuyos átomos estén dispuestos según a) una red sc b) una red fcc c) una red bcc. En los tres casos calcular cuánto vale el ancho de banda y la masa efectiva alrededor del mínimo de energía de la banda. m I. PROPIEDADES DE TRANSPORTE: TEORÍA SEMICLÁSICA 2. Imagínese una banda de una estructura cúbica simple de constante a, dada por: E( k r ) = E 0 (cosk x a + cos k y a + cosk z a) r Un electrón, con k=0 sufre la acción de un campo eléctrico constante a partir de t=0. a) hallar la trayectoria en el espacio real b)representar la trayectoria cuando E tiene la dirección (1,2,0) 3. En el silicio y el germanio, cerca del borde de la banda de conducción, la relación de dispersión es, en la aproximación de la masa efectiva: E C ( r k ) = E 0 + h2 (k 2 2m x + k 2 y ) + h2 2 k t 2m z l (las superficies E(k)=cte son elipsoides, con m t y m l las masas efectivas transversal y longitudinal a z respectivamente).se aplica un campo externo magnético, cuya dirección forma un ángulo θ con el eje z e inmerso en el plano k y =0. a) escríbanse las ecuaciones semiclásicas del movimiento de un electrón en la banda de conducción, introduciendo los parámetros ω t = eb ; ω m l = eb. t m l b) Suponiendo que las variables dinámicas varían armónicamente con el tiempo con una frecuencia ω, obténgase la relación entre ω y el ángulo θ y hállese la dependencia de la masa ciclotrónica con θ. 4. En una muestra de Si la movilidad de los electrones es de 1200 cm 2 /Vs y la de los huecos 600 cm 2 /Vs. Si se aplica un campo eléctrico y otro magnético perpendiculares, determinar las concentraciones relativas de los portadores para que no se observe efecto Hall.

2 Problemas de Electrónica Física 2 II. ESTADISTICA DE ELECTRONES Y HUECOS 5. Un semiconductor intrínseco con masas efectivas para electrones y huecos respectivamente de m e =0.2 m 0, m h =2 m 0 tiene un gap de 2 ev a temperatura ambiente y el coeficiente de temperatura del mismo es de ev/k. a) Determínese la posición del nivel de Fermi y la concentración de electrones y huecos a 1000 K b) A qué temperatura alcanzará el nivel de Fermi la banda de conducción? 6. Medidas de efecto Hall en un semiconductor de tipo n han proporcionado la siguiente tabla de datos: T (K) n (10 15 cm -3 ) Calcular la concentración de impurezas dadoras N D presentes en el semiconductor así como su energía respecto al borde de la banda de conducción ΔE D. Para ello representar las magnitudes que se consideren involucradas frente a 1000/T (representación de Arrhenius) indicando qué parte de la gráfica conduce a los resultados requeridos. 7. Calcular el nivel de Fermi y la concentración de electrones en un semiconductor compensado que contiene un nivel de impurezas dador y otro aceptor, tal que N d >N a en la región de temperaturas inferior al comportamiento intrínseco. i) Dar las expresiones aproximadas en las tres regiones de temperatura características antes del comportamiento intrínseco: a) T 0 K b) zona intermedia entre a) y c) (T baja pero no nula) c) T tal que todas las impurezas están ionizadas ii) Estudiar los casos particulares en los que el material de tipo n, con una concentración de dadores N d =10 17 cm -3, está parcialmente compensado con una concentración de impurezas aceptoras de Na=0, 10 13, y cm -3. Suponer: ΔE d =ΔE a =100 mev respecto al mínimo de la banda de conducción y máximo de la banda de valencia, respectivamente; m e =m h =0.5 m 0, E g =1 ev. Representar en los 3 casos el diagrama de Arrhenius de la concentración de portadores. III. TEORIA GENERAL DE LAS PROPIEDADES DE TRANSPORTE 8. En una muestra de Ge tipo p se ha medido el coeficiente de Seebeck (α) en función de la temperatura de la muestra, mediante efecto Seebeck. Los datos obtenidos se presentan en la tabla adjunta.. Cual es la concentración de aceptores en la muestra N a?. Interpretar el cambio de signo observado. Datos: m e =0.54m 0, m h =0.33m 0, E g (300K)=0.678 ev, μ e =(300K)=4000 cm 2 /Vs, μ h =(300K)=1900 cm 2 /Vs. T (ºC) α(mv/k)

3 Problemas de Electrónica Física 3 9. Considérese la experiencia de efecto Hall esquematizada en la figura. Sobre el semiconductor de grosor d se han depositado 5 contactos óhmicos: 1 y 2 sirven para establecer una corriente estacionaria I 0 a lo largo de la muestra, 3 y 4, separados por una distancia b, sirven para medir la caida de potencial resistiva V ρ, y los 3 y 5, separados una distancia a se usan para medir la tensión de Hall V H que aparece al aplicar un campo magnético de intensidad B o y perpendicular a la muestra. Calcular la movilidad de Hall y la concentración de electrones conocidos los parámetros y magnitudes especificadas arriba y que son los que se miden en el laboratorio. Qué significado tendría una variación de V ρ al aplicar el campo magnético?. V H 1 3 I 5 V ρ 4 B 2 A 10. Llevamos a cabo una experiencia de efecto Hall en función de la temperatura, siguiendo la configuración descrita en la figura anterior, en una muestra de GaSe tipo p de 10 μm de espesor. Se hace pasar una corriente I a través de los contactos 2 y 1 y a cada temperatura se mide: (i) la caída de potencial resistiva V ρ (V 4 -V 3 ) y (ii) la tensión de Hall V H (V 3 -V 5 ) al aplicar un campo magnético de intensidad B o =1.2 T perpendicular a la muestra. Los datos obtenidos se presentan en la tabla adjunta. Determinar la dependencia con la temperatura de la movilidad de Hall y de la conductividad de la muestra. Representar el diagrama de Arrhenius de la concentración de portadores. Determinar la concentración de aceptores en la muestra (N a ), su energía de ionización (E a )y el grado de compensación existente (χ=[n a -N d ]/N a ). Datos: m h =0.5m 0. V ρ (V) V H (mv) I(mA) T(K) IV. DISPERSION DE LOS PORTADORES 11. A bajas temperaturas y especialmente en semiconductores no compensados, la proporción de impurezas ionizadas es inferior a la de impurezas neutras y el tiempo de relajación está dominado por la dispersión de los electrones con estas últimas. Calcular el tiempo de relajación en el caso de

4 Problemas de Electrónica Física 4 dispersión de los electrones por impurezas neutras, suponiendo que la difusión es exclusivamente de tipo elástico. Para ello seguir los siguientes pasos: a) Calcular el potencial que describe el átomo neutro suponiendo que los electrones se encuentran en un estado descrito por una función de ondas de tipo s. Se despreciará un eventual potencial de polarización. b) Calcular la sección eficaz diferencial y el tiempo de relajación. Particularizar para el caso en que k o >>k, siendo k o la inversa del radio de Bohr. 12. En cristales semiconductores formados por átomos distintos entre sí y en el que los enlaces son parcialmente iónicos y la celda unidad no contiene un centro de simetría (por ejemplo SiC), los portadores pueden ser dispersados por ondas acústicas longitudinales debidas a lo que se denomina difusión piezoeléctrica: los iones oscilan dando lugar a un momento dipolar. Calcular el tiempo de relajación en el caso en que esté dominado por esta dispersión de los electrones por fonones piezoeléctricos (Seeger, pag. 178). 13. Comparar los distintos mecanismos de dispersión estudiando su efecto sobre la movilidad en los rangos para los que son relevantes. V. PORTADORES FUERA DE EQUILIBRIO 14. Sea un semiconductor homogéneo en el que hay un proceso de generación de portadores. Determínese la concentración en exceso Δn en función del tiempo suponiendo que la tasa de generación de portadores es constante para: a) recombinación lineal, b) recombinación cuadrática. 15. En un semiconductor la movilidad de los electrones es de 1000 cm 2 /Vs y su concentración n=10 16 cm -3. La movilidad de los huecos es de 100 cm 2 /Vs. Suponiendo que ambos tienen el mismo tiempo de vida medio (1 ms) y que la muestra es muy delgada, determínese la variación de la conductividad cuando se ilumina uniformemente con una radiación de intensidad φ=10 16 fotones/cm 2 s, siendo α =10 cm -1. Determínese la longitud de difusión de los portadores. 16. El efecto Dember consiste en la aparición de una diferencia de potencial en una muestra semiconductora con un elevado coeficiente de absorción cuando ésta es iluminada. La luz genera pares electron-hueco fuera de equilibrio que se difunden en el volumen de la muestra. La mayor movilidad de los electrones da lugar a una separación de cargas y por tanto a la instauración de un campo eléctrico E d a) Calcular el campo E suponiendo la existencia de las dos corrientes de los dos tipos de d portadores y sabiendo que la muestra semiconductora es no degenerada y está eléctricamente aislada.

5 Problemas de Electrónica Física 5 b) La diferencia de potencial entre los extremos de la muestra. Comentar el resultado. c) A partir de la expresión anterior, obtener dicha diferencia de potencial en el caso particular en que la intensidad de iluminación sea baja y por lo tanto también lo sea la diferencia de conductividades entre los dos extremos. d) Obtener el resultado numérico en el caso en que φ=5x10 18 fotones/cm 2 s, coeficiente de absorción α=10 6 cm -1, coeficiente de recombinación lineal k=10 6 s -1 (considerar situación estacionaria), T=300 K y con µ n =3900 cm 2 /Vs, µ p =1900 cm 2 /Vs, σ=1 Ω 1 cm -1.

6 Problemas de Electrónica Física 6 VI. EL DIODO PN Y EL DIODO TÚNEL 17. Una unión PN simétrica de GaAs, con una sección A=1 mm 2, tiene una zona p y una zona n dopadas con una concentración de impurezas N a =N d =10 17 cm -3. Las movilidades de los huecos en la zona n y de los electrones en la zona n son,respectivamente µ hn =250 cm 2 V -1 s -1, µ ep =5000 cm 2 V -1 s -1 y la permitividad eléctrica relativa ε=13.2. El diodo está polarizado directamente a 1Volt. Suponiendo un nivel bajo de inyección de portadores, con un coeficiente de recombinación de m 3 s -1, calcular a 300 K la corriente de difusión debida a los portadores minoritarios suponiendo recombinación directa en las zonas neutras. Asímismo, estimar la componente de la corriente debida a la recombinación en la zona de agotamiento. DATOS: E gap =1.42 ev, m e *=0.067 m o, m lh *=0.08 m o, m hh *=0.45 m o ). 18. Suponer un dispositivo formado por una unión PN en la que la diferencia entre concentraciones de aceptores y dadores varíe linealmente a lo largo de la zona de agotamiento con un gradiente de impurezas que llamaremos a, siendo la concentración nula en el punto medio de dicha zona. Calcular el campo, potencial, potencial de difusión y longitud de la zona de agotamiento. Si se aplica una f.e.m. externa al dispositivo (directa o inversa), como varía la zona de agotamiento? Cuál sería la capacidad del dispositivo?. 19. Las gráficas que aparecen a continuación son el resultado de una medida de la capacidad de dos diodos distintos en función de la tensión de polarización (inversa). Determinad la tensión de la barrera de potencial y la concentración relativa de portadores en ambos casos, teniendo en cuenta que la superficie es de 1 mm 2 y que la permitividad eléctrica relativa es de 12. 0,9 0,95 0,8 díodo 1 0,9 diodo 2 C (nf) 0,7 0,6 C(nF) 0,85 0,8 0,5 0,75 0, V(volt) 0, V(volt) 20. Estimar la probabilidad de transmisión por efecto túnel para distintos semiconductores (Ge, Si, GaAs, etc...) suponiendo una barrera triangular. Así mismo, estimar la densidad de corriente máxima a que dicha transmitancia da lugar.

7 Problemas de Electrónica Física 7 VII. DISPOSITIVOS ELECTRÓNICOS 21. En base a la gráfica I(V) de un diodo Schottky W-Si que aparece abajo, y al modelo de emisión termoiónica, calcular la altura de barrera, el potencial interno y la anchura de la zona de carga espacial si la concentración de dadores del semiconductor es de cm -3 y que se encuentra a 300K de temperatura. Determinar la altura de la barrera a partir de los datos experimentales de capacidad de otro diodo similar y comparar con la estimación precedente. 22. Calcular el campo eléctrico que se debe aplicar a una muestra de GaAs a 300 K para que el porcentaje de electrones en el mínimo L de la banda de conducción sea del 50%. Calcular la velocidad de deriva y determinar si se encuentra en el régimen de resistencia negativa. Dicha muestra es de tipo n, con una concentración de impurezas dadoras de cm -2 y tiene un grosor de 10 µm se cumple la condición para que se forme un dominio de carga espacial?, cual será la frecuencia de la radiación que se emita, suponiendo que el dispositivo no se encuentre conectado a un circuito resonante?. 23. Consideremos un dispositivo MOS formado por un semiconductor de p-si (μ e =1500 cm 2 /Vs) de anchura A=10 μm y longitud L=100 μm sobre el que se ha depositado una capa de SiO 2 (ε r =3.9) de espesor d=200 Å y sobre ésta última una superficie metálica. Entre los extremos del dispositivo se establece un potencial V G =10V que provoca la formación de un canal tipo n en la

8 Problemas de Electrónica Física 8 interfase Si/SiO 2 (modo de inversión fuerte). Hallar la capacidad del dispositivo, la concentración de electrones en la superficie del semiconductor y la resistencia del canal n. 24. Calculad la tensión umbral (tensión para la que se produce la inversión) de los siguientes dispositivos MOS: a) p-si (N A = cm -3 ) con puerta de polisilicio n +, óxido de silicio de grosor t=500 Å y carga superficial de cm -2. b) p-si (N A =10 14 cm -3 ) con puerta de aluminio, óxido de silicio de grosor t=500 Å y carga superficial de cm En la figura de la derecha aparecen las características corriente-tensión bajo iluminación (con una lámpara halógena de 75 W ) de un dispositivo fotovoltaico de silicio, de 4 mm de lado. Las distintas gráficas se corresponden con distancias diferentes respecto a la fuente luminosa. a) determinar la corriente de saturación y el parámetro η que indica el grado de idealidad del diodo. b) Para la característica a d=10 cm, calcular el factor de llenado y el rendimiento. Para ello, tener en cuenta que una lámpara de 150 W a 5 cm del dispositivo proporciona el flujo luminoso correspondiente a una AM1. c) Comparando la potencia teórica correspondiente a un diodo ideal con los valores experimentales para d=10 cm, estimar el valor de la resistencia en serie de este dispositivo. I(mA) 0,2 0-0,2 d=20 cm d=15 cm -0,4 d=12 cm -0,6 d=10 cm -0,8 0 0,1 0,2 0,3 0,4 0,5 0,6 V(V)

9 Problemas de Electrónica Física 9 VIII. DISPOSITIVOS OPTOELECTRÓNICOS 26. Un bolómetro de Ge opera a una temperatura de 2.15 K con una resistencia R s =12 kω, un coeficiente térmico de resistencia ß=-2 K -1 y una capacidad calorífica c p = T 3 mj/k. Se conecta a un conductor térmico de conductancia térmica G=183 µw/k. Si la resistencia de carga del circuito es R l =500 kω y el voltaje de operación es 30 V, calcular la constante de tiempo del bolómetro. 27. Para un sistema óptico de telecomunicaciones con un laser de GaAs (E gap = 1.42 ev) se quiere utilizar un detector de Ge. Calcular el grosor del detector necesario para poder absorber un 90% de la señal óptica que llegue al mismo. Y si el detector fuera de Si? (considérese que hay una capa antireflectante). 28. Considérese un fotoconductor de GaAs con una longitud de 25 µm y un área de 10-6 cm 2. Si se aplica una diferencia de potencial de 5V, calcular la ganancia del dispositivo, usando un modelo de movilidad constante (ver figura adjunta) con µ n =7500 cm 2 /Vs y µ p =1000 cm 2 /Vs. El tiempo de recombinación es τ= 10-7 s.

10 Problemas de Electrónica Física En un fotodiodo de p-n de Si el tiempo de vida de los portadores minoritarios es de 0.1 ns. Si la resistencia del fotodiodo (R L ) es de R L =50 Ω, calcular la tensión de polarización mínima que habría que aplicar y la superficie máxima que debería tener el fotodiodo para que ni el tiempo de tránsito (τ t ) ni el de circuito (τ c ) limiten su respuesta temporal. (μ e =1200 cm 2 /Vs. N a =5x10 14 cm -3. N d =1x10 18 cm -3. T=300K. m* e /m o =0.33. m* h /m o =0.89. E g (Si)=1.12 ev. ε r =12 ε o ). 30. Se tiene un láser semiconductor de Al α Ga 1-α As cuya emisión a diferentes corrientes viene dada por la Fig. 1. Se pide: A) Estimar la temperatura a la cual está operando este dispositivo. B) Corresponde la 1ª región activa a una capa de GaAs puro?. Calcúlese en su caso la concentración de Al. c) Calcular la longitud de la cavidad del láser a partir de la separación entre modos longitudinales teniendo en cuenta las curvas de dispersión de índice de la fig. 2.

11 Problemas de Electrónica Física 11

ESTRUCTURA DE BANDAS (REPASO)

ESTRUCTURA DE BANDAS (REPASO) Problemas de Electrónica Física 1 ESTRUCTURA DE BANDAS (REPASO) 1. En la aproximación del electrón fuertemente ligado se obtiene, para la primera banda de conducción de un sólido con estructura cúbica,

Más detalles

ESTRUCTURA DEL ÁTOMO

ESTRUCTURA DEL ÁTOMO ESTRUCTURA DEL ÁTOMO BANDAS DE VALENCIA Y DE CONDUCCIÓN MECANISMOS DE CONDUCCIÓN EN UN SEMICONDUCTOR SEMICONDUCTORES *Semiconductor *Cristal de silicio *Enlaces covalentes. Banda de valencia *Semiconductor

Más detalles

Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas

Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B.4. Detección de luz e imágenes 1. Un detector de Ge debe ser usado en un sistema de comunicaciones

Más detalles

El Diodo TEMA 3. ÍNDICE 3.1. LA UNIÓN P-N EN EQUILIBRIO 3.2. POLARIZACIÓN DIRECTA E INVERSA 3.3. ECUACIÓN DEL DIODO IDEAL

El Diodo TEMA 3. ÍNDICE 3.1. LA UNIÓN P-N EN EQUILIBRIO 3.2. POLARIZACIÓN DIRECTA E INVERSA 3.3. ECUACIÓN DEL DIODO IDEAL TEMA 3 El Diodo El Diodo ÍNDICE 3.1. LA UNIÓN P-N EN EQUILIBRIO 3.2. POLARIZACIÓN DIRECTA E INVERSA 3.3. ECUACIÓN DEL DIODO IDEAL 3.4. FENÓMENOS DE AVALANCHA Y ZENER 3.5. OTROS TIPOS DE DIODOS. MODELOS

Más detalles

Resultado: V (Volt) I (A)

Resultado: V (Volt) I (A) Ejercicios relativos al diodo de unión pn 1. Una unión pn abrupta de germanio tiene las siguientes concentraciones de impurezas: N A = 5 10 14 cm -3. N D = 10 16 cm -3 ε r = 16.3 ε 0 = 8.854 10-12 F m

Más detalles

Guía de Ejercicios N o 4: Transistor MOS

Guía de Ejercicios N o 4: Transistor MOS Guía de Ejercicios N o 4: Transistor MOS Datos generales: ε 0 = 8,85 10 12 F/m, ε r (Si) = 11,7, ε r (SiO 2 ) = 3,9, n i = 10 10 /cm 3, φ(n, p = n i ) = 0 V. 1. En un transistor n-mosfet, a) La corriente

Más detalles

Relación de Ejercicios Propuestos FÍSICA DEL ESTADO SÓLIDO II

Relación de Ejercicios Propuestos FÍSICA DEL ESTADO SÓLIDO II Relación de Ejercicios Propuestos FÍSICA DEL ESTADO SÓLIDO II 7 Entregable 1.- Considerar una cadena monoatómica lineal de constante de red a, cuya relación de dispersión viene dada por: C [1 cos(ka)]

Más detalles

Semiconductores. La característica común a todos ellos es que son tetravalentes

Semiconductores. La característica común a todos ellos es que son tetravalentes Semiconductores Un semiconductor es un dispositivo que se comporta como conductor o como aislante dependiendo del campo eléctrico en el que se encuentre. Elemento Grupo Electrones en la última capa Cd

Más detalles

Ecuación Característica del diodo

Ecuación Característica del diodo Ecuación Característica del diodo La ecuación característica del diodo de acuerdo al modelo Shockley es: ( ) con ; k = Constante de Boltzmann, q = Carga del electrón y T = temperatura. En este documento

Más detalles

Universidad de Carabobo Facultad de Ingeniería Departamento de Electrónica y Comunicaciones Electrónica I Prof. César Martínez Reinoso

Universidad de Carabobo Facultad de Ingeniería Departamento de Electrónica y Comunicaciones Electrónica I Prof. César Martínez Reinoso Guía de Ejercicios Parte II. Unión PN y Diodos 1. Una unión P-N tiene un dopado de átomos aceptantes de 10 17 cm -3 en el material tipo P y un dopado de impurezas donantes de 5*10 15 cm -3 en el lado N.

Más detalles

Física del Estado Sólido Práctico 8 Estructura Electrónica de Bandas y Semiconductores

Física del Estado Sólido Práctico 8 Estructura Electrónica de Bandas y Semiconductores Física del Estado Sólido Práctico 8 Estructura Electrónica de Bandas y Semiconductores 1. Origen de las Bandas de Energía Considere un potencial cristalino unidimensional y sinusoidal U(x) = U 0 cos( π

Más detalles

T( K) >500 N ioi /N* n i (cm -3 ) 0 1E5 7E7 7E7 7E7 7E7 1E10 6E12 3E14 1E19

T( K) >500 N ioi /N* n i (cm -3 ) 0 1E5 7E7 7E7 7E7 7E7 1E10 6E12 3E14 1E19 Ejercicios relativos al semiconductor 1. Se dispone de una muestra de material semiconductor del que se conocen los siguientes datos a temperatura ambiente: kt = 0,025 ev n i = 1,5 10 10 cm -3 N A = 10

Más detalles

Sesión 7 Fundamentos de dispositivos semiconductores

Sesión 7 Fundamentos de dispositivos semiconductores Sesión 7 Fundamentos de dispositivos semiconductores Componentes y Circuitos Electrónicos Isabel Pérez / José A García Souto www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/isabelperez

Más detalles

SEMICONDUCTORES. Silicio intrínseco

SEMICONDUCTORES. Silicio intrínseco Tema 3: El Diodo 0 SEMICONDUCTORES Silicio intrínseco 1 SEMICONDUCTORES Conducción por Huecos A medida que los electrones se desplazan a la izquierda para llenar un hueco, el hueco se desplaza a la derecha.

Más detalles

Dispositivos Semiconductores Última actualización: 1 er Cuatrimestre de 2018

Dispositivos Semiconductores  Última actualización: 1 er Cuatrimestre de 2018 Guía de Ejercicios N o 5: Diodo PN Datos generales: ε 0 = 8.85 10 12 F/m, ε r (Si) = 11.7, ε r (SiO 2 ) = 3.9, n i = 10 10 cm 3, φ(n, p = n i ) = 0. Principio de funcionamiento y polarización 1. Dado un

Más detalles

TECNOLOGIA Y COMPONENTES ELECTRONICOS Y FOTONICOS PROBLEMAS DE SEMICONDUCTORES

TECNOLOGIA Y COMPONENTES ELECTRONICOS Y FOTONICOS PROBLEMAS DE SEMICONDUCTORES 1 er CURSO I. T. TLCOMUNICACIÓN CURSO 29-21 TCNOLOGIA Y COMPONNTS LCTRONICOS Y FOTONICOS PROBLMAS D SMICONDUCTORS 1.- Para un semiconductor especial a T=3 K, se sabe que G =1,45 e, N C =1, 1 18 cm -3,

Más detalles

ELECTRONICA GENERAL. Tema 2. Teoría del Diodo.

ELECTRONICA GENERAL. Tema 2. Teoría del Diodo. Tema 2. Teoría del Diodo. 1.- En un diodo polarizado, casi toda la tensión externa aplicada aparece en a) únicamente en los contactos metálicos b) en los contactos metálicos y en las zonas p y n c) la

Más detalles

Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo

Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo 1. La densidad específica del tungsteno es de 18,8 g/cm 3 y su peso atómico es 184. La concentración de electrones libres es 1,23 x 10 23 /cm 3.Calcular el número de electrones libres por átomo. 2. Dadas

Más detalles

INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N

INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N INDICE Prologo V I. Semiconductores 1.1. clasificación de los materiales desde el punto de vista eléctrico 1 1.2. Estructura electrónica de los materiales sólidos 3 1.3. conductores, semiconductores y

Más detalles

LA UNIÓN P-N. La unión p-n en circuito abierto. Diapositiva 1 FUNDAMENTOS DE DISPOSITIVOS ELECTRONICOS SEMICONDUCTORES

LA UNIÓN P-N. La unión p-n en circuito abierto. Diapositiva 1 FUNDAMENTOS DE DISPOSITIVOS ELECTRONICOS SEMICONDUCTORES Diapositiva 1 LA UNÓN PN La unión pn en circuito abierto FUNDAMENTOS DE DSPOSTOS ELECTRONCOS SEMCONDUCTORES A K Zona de deplexión Unión p n Contacto óhmico ones de impurezas dadoras ones de impurezas aceptoras

Más detalles

Dispositivos Electrónicos

Dispositivos Electrónicos Dispositivos Electrónicos AÑO: 2010 TEMA 3: PROBLEMAS Rafael de Jesús Navas González Fernando Vidal Verdú E.T.S. de Ingeniería Informática Ingeniero Técnico en Informática de Sistemas: Curso 1º Grupo

Más detalles

4.- PROPIEDADES ELÉCTRICAS DE LOS SÓLIDOS FÍSICA DEL ESTADO SÓLIDO II

4.- PROPIEDADES ELÉCTRICAS DE LOS SÓLIDOS FÍSICA DEL ESTADO SÓLIDO II 4.- DE LOS SÓLIDOS FÍSICA DEL ESTADO SÓLIDO II 4. Propiedades eléctricas de los sólidos Conductividad eléctrica. Metales, semiconductores y aislantes. Semiconductores intrínsecos y extrínsecos. Dieléctricos.

Más detalles

MATERIALES ELECTRICOS JUNTURA PN

MATERIALES ELECTRICOS JUNTURA PN MATERIALES ELECTRICOS JUNTURA PN Consideremos por separado un Semiconductor Tipo N y un semiconductor tipo P. Analicemos el Diagrama de Bandas de cada uno por separado. El semiconductor Tipo N tendrá una

Más detalles

TEMA 1.1 SEMICONDUCTORES TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA

TEMA 1.1 SEMICONDUCTORES TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA TEMA 1.1 SEMICONDUCTORES TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA 17 de febrero de 2015 TEMA 1.1 SEMICONDUCTORES Introducción. Metales, aislantes y semiconductores Modelo enlace covalente

Más detalles

Tema 3: COMPONENTES NO LINEALES: DIODOS

Tema 3: COMPONENTES NO LINEALES: DIODOS Tema 3: COMPOETES O LIEALES: DIODOS Mª del Carmen Coya Párraga Fundamentos de Electrónica 1 Índice: 3.1) Introducción a los elementos de circuitos no lineales: Propiedades básicas. Análisis gráfico con

Más detalles

Dispositivos Electrónicos

Dispositivos Electrónicos Dispositivos Electrónicos AÑO: 010 TEMA 3: CONCEPTOS BÁSICOS DE SECONDUCORES Rafael de Jesús Navas González Fernando Vidal Verdú 1/15 TEMA 3: CONCEPTOS BÁSICOS DE SEMICONDUCTORES 3.1. Estructura de los

Más detalles

Distribución y Transporte de Portadores de Carga

Distribución y Transporte de Portadores de Carga Distribución y Transporte de Portadores de Carga Lección 01.2 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Distribución

Más detalles

Tema 1: Electrones, energía, átomos y sólidos

Tema 1: Electrones, energía, átomos y sólidos Tema 1: Electrones, energía, átomos y sólidos K. Kano: cap. 1 y cap. El modelo de Bohr Mecánica cuántica. Dualidad onda corpúsculo. Ecuación de Schrödinger en un átomo hidrogenoide. Números cuánticos Formación

Más detalles

Distribución y Transporte de Portadores de Carga

Distribución y Transporte de Portadores de Carga Distribución y Transporte de Portadores de Carga Lección 01.2 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge

Más detalles

Sistemas de comunicaciones vía Fibra Óptica II

Sistemas de comunicaciones vía Fibra Óptica II Sistemas de comunicaciones vía Fibra Óptica II UNIVERSIDAD TECNOLOGICAS DE LA MIXTECA INGENIERÍA EN ELECTRÓNICA NOVENO SEMESTRE DICIEMBRE 2005 M.C. MARIBEL TELLO BELLO TRANSMISORES DE FIBRA ÓPTICA TRANSMISORES

Más detalles

Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor.

Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor. Electrónica Tema 1 Semiconductores Contenido Consideraciones previas: Fuentes de corriente Teorema de Thevenin Teorema de Norton Conductores y Semiconductores Unión p-n Fundamentos del diodo 2 Fuente de

Más detalles

La ecuación de Boltzmann

La ecuación de Boltzmann La ecuación de Boltzmann El movimiento de un portador en un metal o semiconductor está condicionado por un lado por presencia de campos externos (eléctricos, magnéticos), gradientes de temperatura y por

Más detalles

UD6.- TEORIA DE SEMICONDUCTORES EL DIODO

UD6.- TEORIA DE SEMICONDUCTORES EL DIODO UD6. TEORIA DE SEMICONDUCTORES EL DIODO Centro CFP/ES CONSTITUCIÓN INTERNA DE LA MATERIA Moléculas y Átomos 1 CONSTITUCIÓN INTERNA DE LA MATERIA Clasificación de los cuerpos CONSTITUCIÓN INTERNA DE LA

Más detalles

DIODO DE UNIÓN P N TECNOLOGÍA ELECTRÓNICA (2009/2010) BRÉGAINS, JULIO IGLESIA, DANIEL LAMAS, JOSÉ TE (09/10). TEMA 2: DIODO DE UNIÓN PN.

DIODO DE UNIÓN P N TECNOLOGÍA ELECTRÓNICA (2009/2010) BRÉGAINS, JULIO IGLESIA, DANIEL LAMAS, JOSÉ TE (09/10). TEMA 2: DIODO DE UNIÓN PN. DIODO DE UNIÓN P N TECNOLOGÍELECTRÓNIC(2009/2010) BRÉGAINS, JULIO IGLESIA, DANIEL LAMAS, JOSÉ DEPARTAMENTO DE ELECTRÓNICA Y SISTEMAS SÍMBOLO Y ESTRUCTURAS DEL DIODO PN 2 DE 30 CIRCUITO ABIERTO UNIÓN P

Más detalles

Ejercicios propuestos

Ejercicios propuestos Curso de Fotomultiplicadores de Silicio: fundamentos y aplicaciones Ejercicios propuestos Alumno: Elena Pastuschuk Estepa Número de ejercicios: 6 Fecha límite de entrega: 11 de junio de 2013 NOTA. Al final

Más detalles

CELDAS FOTOVOLTAICAS. Juntura p-n (cont.) Corriente

CELDAS FOTOVOLTAICAS. Juntura p-n (cont.) Corriente Juntura p-n (cont.) Corriente Los portadores minoritarios pueden generarse térmicamente o por efecto fotoeléctrico. Una vez generados en la zona de vaciamiento (o en sus inmediaciones y alcanzan dicha

Más detalles

3.1. Conceptos básicos sobre semiconductores

3.1. Conceptos básicos sobre semiconductores 1 3.1. Conceptos básicos sobre semiconductores Estructura interna de los dispositivos electrónicos La mayoría de los sistemas electrónicos se basan en dispositivos semiconductores Resistencia: R=ρL/S Materiales

Más detalles

TEMA 1.2 UNIÓN PN. DIODO. TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA

TEMA 1.2 UNIÓN PN. DIODO. TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA TEMA 1.2 UNIÓN PN. DIODO. TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA 09 de octubre de 2014 TEMA 1.2 UNIÓN PN. DIODO. Introducción. Unión PN en equilibrio térmico Unión PN polarizada Modelos

Más detalles

TEMA 3 TEORIA DE SEMICONDUCTORES

TEMA 3 TEORIA DE SEMICONDUCTORES TEMA 3 TEORIA DE SEMICONDUCTORES (Guía de clases) Asignatura: Dispositivos Electrónicos I Dpto. Tecnología Electrónica CONTENIDO PARTÍCULAS CARGADAS Átomo Electrón Ión Hueco TEORÍA DE LAS BANDAS DE ENERGÍA

Más detalles

Dpto de Física UNS Electromagnetismo, Física B y Física II Prof. C Carletti

Dpto de Física UNS Electromagnetismo, Física B y Física II Prof. C Carletti Problema 1. Un voltaje de corriente continua de 6[V], aplicado a los extremos de un alambre conductor de 1[Km] de longitud y 0.5 [mm] de radio, produce una corriente de 1/6A. Determine: a) La conductividad

Más detalles

UNIDADES RADIOMETRICAS Y FOTOMETRICAS. Electromagnetic_spectrum-es.svg (Imagen SVG, nominalmente pixels, tamaño de archivo: 231 KB)

UNIDADES RADIOMETRICAS Y FOTOMETRICAS. Electromagnetic_spectrum-es.svg (Imagen SVG, nominalmente pixels, tamaño de archivo: 231 KB) OPTOELECTRÓNICA OPTOELECTRÓNICA Tratamiento de la radiación electromagnética en el rango de las frecuencias ópticas y su conversión en señales eléctricas y viceversa. El rango del espectro electromagnético

Más detalles

Guía de Ejercicios N o 2 FI2A2

Guía de Ejercicios N o 2 FI2A2 Guía de Ejercicios N o 2 FI2A2 Prof. Auxiliar: Felipe L. Benavides Problema 1 Continuidad de la Corriente y Evolución Temporal de Cargas Libres Considere un sistema formado por dos placas conductoras conectadas

Más detalles

Introducción a la Electrónica

Introducción a la Electrónica Física de los Semiconductores Estructura atómica De acuerdo al modelo mecanocuántico del átomo, existen niveles energéticos discretos en los cuales pueden residir los electrones. Cada uno de estos niveles

Más detalles

Fundamentos del transitor MOSFET

Fundamentos del transitor MOSFET Fundamentos del transitor MOSFET Lección 04.1 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez

Más detalles

PROBLEMAS DE ELECTROMAGNETISMO I Hoja 1. función vectorial con componentes cuyas derivadas segundas sean también continuas.

PROBLEMAS DE ELECTROMAGNETISMO I Hoja 1. función vectorial con componentes cuyas derivadas segundas sean también continuas. PROBLEMAS DE ELECTROMAGNETISMO I Hoja 1 r 1. Para un vector a arbitrario y constante, demostrar que ( a r ) = a, donde es el vector de posición.. Sea φ una función espacial escalar con derivadas segundas

Más detalles

Hoja de Problemas 6. Moléculas y Sólidos.

Hoja de Problemas 6. Moléculas y Sólidos. Hoja de Problemas 6. Moléculas y Sólidos. Fundamentos de Física III. Grado en Física. Curso 2015/2016. Grupo 516. UAM. 13-04-2016 Problema 1 La separación de equilibrio de los iones de K + y Cl en el KCl

Más detalles

CAPITULO II. DISPOSITIVOS SEMICONDUCTORES.

CAPITULO II. DISPOSITIVOS SEMICONDUCTORES. CAPITULO II. DISPOSITIVOS SEMICONDUCTORES. Tema 4. SEMICONDUCTORES. Las características físicas que permiten distinguir entre un aislante, un semiconductor y un metal, están determinadas por la estructura

Más detalles

EFECTO HALL. (1) donde d es la anchura de la placa conductora

EFECTO HALL. (1) donde d es la anchura de la placa conductora EFECTO ALL 1. OBJETIVO En esta práctica se estudia el efecto all en dos semiconductores de germanio para conocer el tipo de portadores de carga, la concentración de los mismos y su movilidad. 2.- FUNDAMENTOS

Más detalles

SEMICONDUCTORES. Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos.

SEMICONDUCTORES. Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos. Diapositiva 1 Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos. Característica: n p n ii Clasificación: Tipo-n Tipo-p Diapositiva 2

Más detalles

Medios materiales y desarrollo multipolar.

Medios materiales y desarrollo multipolar. Física Teórica 1 Guia 3 - Medios materiales y multipolos 1 cuat. 2014 Medios materiales y desarrollo multipolar. Medios materiales. 1. Una esfera de radio a está uniformemente magnetizada con densidad

Más detalles

Problemas de Dispositivos Electrónicos

Problemas de Dispositivos Electrónicos Problemas de Dispositivos lectrónicos.t.s.i.t. Universidad de Las Palmas de Gran Canaria Benito González Pérez Antonio Hernández Ballester Javier García García PROBLMAS D DISPOSITIVOS LCTRÓNICOS. 3º TSIT

Más detalles

Incidencia de Anestesia General en Operación Cesárea: Registro de Tres Años. Castillo Alvarado, Frencisco Miguel. CAPÍTULO III

Incidencia de Anestesia General en Operación Cesárea: Registro de Tres Años. Castillo Alvarado, Frencisco Miguel. CAPÍTULO III CAPÍTULO III ESTADÍSTICA DE LOS PORTADORES DE CARGA DEL SEMICONDUCTOR 1. Introducción. Cada material suele presentar varias bandas, tanto de conducción (BC) como de valencia (BV), pero las más importantes

Más detalles

TEMA2: Fundamentos de Semiconductores

TEMA2: Fundamentos de Semiconductores TEMA2: Fundamentos de Semiconductores Contenidos del tema: Modelos de enlace y de bandas de energía en sólidos: tipos de materiales Portadores de carga en semiconductores Concentración de portadores Procesos

Más detalles

Tema 4º. Corriente eléctrica

Tema 4º. Corriente eléctrica Tema 4º Corriente eléctrica Programa Corriente y densidad de corriente eléctrica. La ecuación de continuidad. Corriente de conducción. Ley de Ohm. Propiedades de conducción en los materiales: Conductores,

Más detalles

Introducción a la Electrónica de Dispositivos

Introducción a la Electrónica de Dispositivos Universidad de Oviedo Área de Tecnología Electrónica Introducción a la Electrónica de Dispositivos Materiales semiconductores La unión PN y los diodos semiconductores Transistores Departamento de Ingeniería

Más detalles

Diodo. Materiales Eléctricos. Definición: Símbolo y Convenciones V - I: 10/06/2015

Diodo. Materiales Eléctricos. Definición: Símbolo y Convenciones V - I: 10/06/2015 Materiales Eléctricos Diodo Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido Símbolo y Convenciones V - I: V F - - V R I F I R 1 Relación

Más detalles

V T V GS V DS =3V =V GS

V T V GS V DS =3V =V GS Guía de Ejercicios Nº4 Transistor MOS Datos generales: ε o = 8.85 x 10-12 F/m, ε r(si) = 11.7, ε r(sio 2) = 3.9 1) En un transistor n-mosfet, a) La corriente entre Source y Drain es de huecos o de electrones?

Más detalles

AMPLIFICADOR DIFERENCIAL BÁSICO CON EL AMPLIFICADOR OPERACIONAL IDEAL

AMPLIFICADOR DIFERENCIAL BÁSICO CON EL AMPLIFICADOR OPERACIONAL IDEAL AMPLIFICADOR DIFERENCIAL BÁSICO CON EL AMPLIFICADOR OPERACIONAL IDEAL Vo = A( v + i vi ) Realimentación negativa Con A =, el voltaje de salida distinto de cero implica v i + = vi = vi Entonces: V 2 v i

Más detalles

DIODO. Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido

DIODO. Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido DIODO Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido Símbolo y convenciones V - I: V F - - V R I F I R DIODO Ideal vs. Semiconductor DIODO

Más detalles

Semiconductores. Lección Ing. Jorge Castro-Godínez

Semiconductores. Lección Ing. Jorge Castro-Godínez Semiconductores Lección 01.1 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez Semiconductores

Más detalles

Apuntes sobre la capacitancia del diodo

Apuntes sobre la capacitancia del diodo Apuntes sobre la capacitancia del diodo Considérese un material de silicio dopado tipo N que posee aproimadamente N D electrones libres/cm moviéndose en forma aleatoria en la capa de conducción en diferentes

Más detalles

LASER Conceptos Básicos

LASER Conceptos Básicos LASER Conceptos Básicos Laser - Light Amplification by Stimulate Emission of Radiation Amplificación de Luz por Emisión Estimulada de Radiación Como Funciona? Usa a emisión estimulada para desencadenar

Más detalles

Propiedades características de un metal o donde. estábamos en 1900

Propiedades características de un metal o donde. estábamos en 1900 Propiedades características de un metal o donde ρ estábamos en 1900 Los metales son buenos conductores de la electricidad. Podemos caracterizar esta propiedad introduciendo la resistividad eléctrica ρ

Más detalles

Operación y Modelado del Transistor MOS para el Diseño Analógico

Operación y Modelado del Transistor MOS para el Diseño Analógico Operación y Modelado del Transistor MOS para el Diseño Analógico Rev. 1.2 Curso CMOS AD. Fernando Silveira Instituto de Ingeniería Eléctrica F. Silveira Univ. de la República, Montevideo, Uruguay Curso

Más detalles

Semiconductores. Lección Ing. Jorge Castro-Godínez. II Semestre Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica

Semiconductores. Lección Ing. Jorge Castro-Godínez. II Semestre Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica Semiconductores Lección 01.1 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Semiconductores 1 / 54 Contenido Semiconductores

Más detalles

1. Identificar los electrodos de un diodo (de Silicio o de Germanio).

1. Identificar los electrodos de un diodo (de Silicio o de Germanio). EL DIODO SEMICONDUCTOR Objetivos 1. Identificar los electrodos de un diodo (de Silicio o de Germanio). 2. Probar el estado de un diodo utilizando un ohmetro. 3. Obtener curvas características de un diodo.

Más detalles

Laboratorio 5 - Dpto. de Física - FCEyN - UBA Diciembre 2000

Laboratorio 5 - Dpto. de Física - FCEyN - UBA Diciembre 2000 Medición del ancho de banda en Si y Ge mediante un método óptico Martín G. Bellino E-mail : colquide@starmedia.com.ar y bellino@cnea.gov.ar Práctica especial Laboratorio 5 - Dpto. de Física - FCEyN - UBA

Más detalles

Materiales Eléctricos. Semiconductores 06/05/2016. Repaso valores de Resistividad. Material ρωm (/α)/ C Plata 1,62*10-8 4,1*10-3 PTC

Materiales Eléctricos. Semiconductores 06/05/2016. Repaso valores de Resistividad. Material ρωm (/α)/ C Plata 1,62*10-8 4,1*10-3 PTC 06/05/016 Materiales Eléctricos Repaso valores de Resistividad Material ρωm (/α)/ C Plata 1,6*10-8 4,1*10 - PTC Cobre 1,69*10-8 4,*10 - PTC Aluminio,75*10-8 4,4*10 - PTC Platino 10,6*10-8,9*10 - PTC Hierro

Más detalles

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser Ley de Ohm La resistencia se define como la razón entre la caída de tensión, entre los dos extremos de una resistencia, y la corriente que circula por ésta, tal que 1 Teniendo en cuenta que si el voltaje

Más detalles

REAL SOCIEDAD ESPAÑOLA DE FÍSICA REAL SOCIEDAD ESPAÑOLA DE FÍSICA. XX Olimpiada FASE LOCAL DE LA RIOJA. 27 de febrero de 2009.

REAL SOCIEDAD ESPAÑOLA DE FÍSICA REAL SOCIEDAD ESPAÑOLA DE FÍSICA. XX Olimpiada FASE LOCAL DE LA RIOJA. 27 de febrero de 2009. XX Olimpiada ESPAÑOLA DE FÍSICA FASE LOCAL DE LA RIOJA 7 de febrero de 009 ª Parte P y P Esta prueba consiste en la resolución de dos problemas. Razona siempre tus planteamientos No olvides poner tus apellidos,

Más detalles

Práctica 1 del DIODOS. Objetivos Identificar y btener la curva característica del diodo

Práctica 1 del DIODOS. Objetivos Identificar y btener la curva característica del diodo Práctica 1 del DIODOS. Objetivos Identificar y btener la curva característica del diodo Material y equipo Diodo 1N4148, Protoboard, fuente de voltaje DC, Manual ECG, Volmetro Marco Teórico 1. TEORIA DEL

Más detalles

Física de semiconductores

Física de semiconductores Física de semiconductores Clasificación de los materiales En función de su conductividad se clasifican en: Conductores Semiconductores Aislantes Sin embargo la conductividad está sujeta a la influencia

Más detalles

GUÍA DOCENTE. Física de Semiconductores. Grado en Física. Cuarto Curso

GUÍA DOCENTE. Física de Semiconductores. Grado en Física. Cuarto Curso GUÍA DOCENTE Física de Semiconductores Grado en Física Cuarto Curso 1 I.- DATOS INICIALES DE IDENTIFICACIÓN Nombre de la asignatura: FÍSICA DE SEMICONDUCTORES Nombre de la materia: COMPLEMENTOS DE FÍSICA

Más detalles

GUÍA DOCENTE. Física de Semiconductores. Grado en Física. Cuarto Curso

GUÍA DOCENTE. Física de Semiconductores. Grado en Física. Cuarto Curso GUÍA DOCENTE Física de Semiconductores Grado en Física Cuarto Curso 1 I.- DATOS INICIALES DE IDENTIFICACIÓN Nombre de la asignatura: FÍSICA DE SEMICONDUCTORES Nombre de la materia: COMPLEMENTOS DE FÍSICA

Más detalles

1º Escuela Técnica Superior de Ingeniería de Telecomunicación TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS. PROBLEMAS de transistores MOS

1º Escuela Técnica Superior de Ingeniería de Telecomunicación TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS. PROBLEMAS de transistores MOS 1º Escuela écnica Superior de Ingeniería de elecomunicación ECNOLOGÍA Y COMPONENES ELECRÓNICOS Y FOÓNICOS 4 PROBLEMAS de transistores MOS EJERCICIOS de diodos: ECNOLOGÍA Y COMPONENES ELECRÓNICOS Y FOÓNICOS

Más detalles

Transporte de Portadores Marzo de Movimiento térmico de portadores 2. Arrastre de portadores 3. Difusión de portadores

Transporte de Portadores Marzo de Movimiento térmico de portadores 2. Arrastre de portadores 3. Difusión de portadores 86.03/66.25 - Dispositivos Semiconductores Clase 3-1 Clase 3 1 - Física de semiconductores (II) Transporte de Portadores Marzo de 2017 Contenido: 1. Movimiento térmico de portadores 2. Arrastre de portadores

Más detalles

C. Trallero-Giner CINVESTAV-DF (2010) IV. - Dispersión Raman. Interpretación macroscópica Dinámica de la luz dispersada Sección eficaz

C. Trallero-Giner CINVESTAV-DF (2010) IV. - Dispersión Raman. Interpretación macroscópica Dinámica de la luz dispersada Sección eficaz Dispersión Raman en Sólidos C. Trallero-Giner CINVESTAV-DF (2010) IV. - Dispersión Raman. Interpretación macroscópica Dinámica de la luz dispersada Sección eficaz Reglas de selección Dinámica de la luz

Más detalles

EJERCICIO 1 EJERCICIO 2

EJERCICIO 1 EJERCICIO 2 EJERCICIO 1 Se miden 0 Volt. en los terminales del diodo de la fig. siguiente, la tensión de la fuente indica +5 Volt. respecto de masa. Qué está mal en el circuito? EJERCICIO 2 En la fig. siguiente la

Más detalles

Práctica Nº 4 DIODOS Y APLICACIONES

Práctica Nº 4 DIODOS Y APLICACIONES Práctica Nº 4 DIODOS Y APLICACIONES 1.- INTRODUCCION El objetivo Los elementos que conforman un circuito se pueden caracterizar por ser o no lineales, según como sea la relación entre voltaje y corriente

Más detalles

Campo eléctrico. Fig. 1. Problema número 1.

Campo eléctrico. Fig. 1. Problema número 1. Campo eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

INDICE 1. Sistemas de Coordenadas e Integrales 2. Gradiente, Divergente y Rotacional 3. Campos Electrostáticos

INDICE 1. Sistemas de Coordenadas e Integrales 2. Gradiente, Divergente y Rotacional 3. Campos Electrostáticos INDICE Prefacio XVII 1. Sistemas de Coordenadas e Integrales 1 1.1. Conceptos generales 1 1.2. Coordenadas de un punto 2 1.3. Los campos escalares y cómo se transforman 4 1.4. Campos vectoriales y cómo

Más detalles

Movilidad en semiconductores extrínsecos

Movilidad en semiconductores extrínsecos Movilidad en semiconductores etrínsecos µ (Movilidad) f(concentracion de Impurezas) f(tipo de Impurezas) μ = μ min + μ MAX μ min 1 + N N r α 1 µ (Movilidad) Dispersión de los portadores en la red Xtalina

Más detalles

Conductividad eléctrica

Conductividad eléctrica Propiedades eléctricas La conductividad eléctrica (σ) es una propiedad física intrínseca de los materiales que proporciona información sobre la cantidad de carga que se conduce a través de un conductor.

Más detalles

4.- PROPIEDADES ELÉCTRICAS DE LOS SÓLIDOS FÍSICA DEL ESTADO SÓLIDO II

4.- PROPIEDADES ELÉCTRICAS DE LOS SÓLIDOS FÍSICA DEL ESTADO SÓLIDO II 4.- DE LOS SÓLIDOS FÍSICA DEL ESTADO SÓLIDO II 4. Propiedades eléctricas de los sólidos Semiconductores extrínsecos. Dieléctricos. Ferroelectricidad. Piezoelectricidad. Semiconductores Extrínsecos Semiconductores

Más detalles

Sistemas eléctricos, de seguridad y confortabilidad

Sistemas eléctricos, de seguridad y confortabilidad Sistemas eléctricos, de seguridad y confortabilidad Tema 4. Fundamentos de Electrónica 4.1 Introducción 4.2 Componentes básicos. Verificación y aplicaciones 4.3 Rectificadores Definición de electrónica

Más detalles

Problemas de Electromagnetismo

Problemas de Electromagnetismo Problemas de Electromagnetismo 1.- El potencial medio temporal de un átomo de H2 neutro, en el estado fundamental viene dado por e Φ (r) = ( a + 1) exp ( -2r/a) 4πε 0a r siendo e la carga del electrón,

Más detalles

B.4. Detección de luz e imágenes

B.4. Detección de luz e imágenes B.4. Detección de luz e imágenes B.4.1. Introducción En este tema vamos a estudiar como la interacción entre la luz y los electrones en un material produce una serie de efectos físicos que nosotros aprovecharemos

Más detalles

TEORÍA DEL DIODO. Tema Unión p-n. Diodo sin polarizar 2.- Polarización del diodo Polarización inversa Polarización directa.

TEORÍA DEL DIODO. Tema Unión p-n. Diodo sin polarizar 2.- Polarización del diodo Polarización inversa Polarización directa. Tema 2 TEORÍA DEL DIODO. 1.- Unión p-n. Diodo sin polarizar 2.- Polarización del diodo. 2.1.- Polarización inversa. 2.2.- Polarización directa. 3.- Curva característica del diodo. 4.- El diodo como elemento

Más detalles

Contactos metal-semiconductor

Contactos metal-semiconductor Contactos metal-semiconductor Lección 02.1 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez

Más detalles

Dispositivos semiconductores 2da Clase

Dispositivos semiconductores 2da Clase Introducción a la Electrónica Dispositivos semiconductores 2da Clase Semiconductores: Silicio Estructura ra cristalina La distribución espacial de los átomos dentro de un material determina sus propiedades.

Más detalles

TEMA 3: Diodos de Unión

TEMA 3: Diodos de Unión TEMA 3: Diodos de Unión Contenidos del tema: Unión PN abrupta: condiciones de equilibrio Diodo PN de unión: Electrostática Análisis en DC o estacionario del diodo PN Desviaciones de la característica ideal

Más detalles

Materiales Semiconductores

Materiales Semiconductores Materiales Semiconductores Estructura de Bandas BC BV E g Banda de Conducción vacía a 0 K Banda Prohibida 1 ev Banda de Valencia llena a 0 K Los materiales semiconductores a 0 K tienen la banda de conducción

Más detalles

UNIVERSIDAD DE LEON. Departamento de Ingeniería Eléctrica y Electrónica TEMA 1 TEORÍA GENERAL DE SEMICONDUCTORES

UNIVERSIDAD DE LEON. Departamento de Ingeniería Eléctrica y Electrónica TEMA 1 TEORÍA GENERAL DE SEMICONDUCTORES UNIVERSIDAD DE LEON Departamento de Ingeniería Eléctrica y Electrónica TEMA 1 TEORÍA GENERAL DE SEMICONDUCTORES Electrónica Básica, Industrial e Informática Luis Ángel Esquibel Tomillo Introducción Para

Más detalles

TEMA 6: SEMICONDUCTORES

TEMA 6: SEMICONDUCTORES 6.3 Semiconductores extrínsecos Aquel semiconductor sin defectos cristalinos pero con impurezas añadidas (semiconductor dopado) Tipos de impurezas: Dadoras: Aquellas impurezas con 1 electrón de más en

Más detalles

EC 1113 CIRCUITOS ELECTRÓNICOS

EC 1113 CIRCUITOS ELECTRÓNICOS EC 1113 CIRCUITOS ELECTRÓNICOS PRESENTACIÓN PERSONAL SECCIÓN 1 Prof. María Isabel Giménez de Guzmán Correo electrónico: mgimenez@usb.ve HORARIO Y UBICACIÓN SECCIÓN Martes: 9:30 a 11:30 am ELE 218 Jueves:

Más detalles

La gran mayoría de los dispositivos de estado sólido que actualmente hay en el mercado, se fabrican con un tipo de materiales conocido como

La gran mayoría de los dispositivos de estado sólido que actualmente hay en el mercado, se fabrican con un tipo de materiales conocido como 1.- Introducción 2.- Clasificación de los materiales. 3.- Semiconductores intrínsecos. Estructura cristalina. 4.- Semiconductores extrínsecos. Impurezas donadoras y aceptadoras. 4.1.- Semiconductores tipo

Más detalles

1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE

1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE Ejercicios relativos al transistor bipolar Problemas de transistores BJT en estática 1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IC IB VC VB

Más detalles

Sensores generadores SENSORES GENERADORES

Sensores generadores SENSORES GENERADORES Sensores generadores SENSORES GENERADORES Definición: Sensores generadores son aquellos que generan una señal eléctrica a partir de la magnitud que miden, sin necesidad de una alimentación eléctrica. Tipos:

Más detalles

LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES

LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES M.Sc. Abner Velazco Dr. Abel Gutarra abnervelazco@yahoo.com Laboratorio de Materiales Nanoestructurados Facultad de ciencias Universidad Nacional

Más detalles