PLANIFICACIÓN DE TRAYECTORIAS
|
|
|
- Claudia Victoria Calderón Vázquez
- hace 9 años
- Vistas:
Transcripción
1 PLANIFICACIÓN DE TRAYECTORIAS
2 Índce Qué es un ryecor? Tpos de ryecors Puno puno Coordnds Connus Tryecors en el espco rculr: Lnel Cúbc Prbólc A rmos
3 Plnfccón de ryecors Objevo: ddo el puno ncl del robo, qué cmno debe segur pr llegr su poscón fnl? Problem: en odo momeno debe cumplr uns lmcones: Cnemács: rngo de ls rculcones Dnámcs: velocddes y celercones máxms
4 Genercón de ryecors (I).- Dr el puno ncl y fnl de l ryecor (en coordends cresns o generlzds)..- Muesrer l ryecor cresn obenendo un número fno de punos en es ryecor (x, y, z, α, β, γ)..- Ulzndo l rnsformcón nvers, converr cd puno en sus correspondenes coordends rculres (q, q, q, q 4, q 5, q 6 ) 4.- Inerpolr enre los punos rculres obendos, generndo un ryecor en funcón del empo pr cd vrble rculr: q (), que se relzble por los cudores. 5.- S esá ben hecho, es ryecor se proxmrá l desed en el plno cresno.
5 Genercón de ryecors (II) Dos forms de soluconr el problem: Coordends cresns. Venj: movmeno rel en ls res dmensones, puede esblecerse lgdurs del enorno. Desvenj: necesdd de resolver repedmene l rnsformcón homogéne nvers Coordends generlzds. Venj: ls lgdurs dnámcs se plnen en ls vrbles generlzds.
6 Tpos de ryecors (I) Tryecor puno puno: cd rculcón se mueve sn consderr el esdo o evolucón de ls demás rculcones. Movmeno eje eje Cd vez se mueve un eje El empo ol es l sum de los empos de cd rculcón.
7 Tpos de ryecors (II) Movmeno smuláneo de ejes Comenzn smulánemene odos los ejes El empo fnl será el de quell rculcón que rde más empo en fnlzr su movmeno.
8 Tpos de ryecors (III) Tryecors coordnds (sócrons) Se plne un movmeno smuláneo, rlenzndo ls rculcones más rápds, pr que ods rden el msmo empo en cb el movmeno. Tryecors connus Se fj explícmene en coordends cresns el cmno que ene que segur el exremo (nfnos punos) El movmeno de ls rculcones puede precer erráco.
9 Inerpolcón de ryecors (I) Muchs veces es necesro generr ryecors no sólo con un puno ncl y fnl, sno que mbén se mpone que pse por deermndos punos: Cmno connuo Evcón de obsáculos Suvzdo de l ryecor, ec. Solucón: selecconr lgún po de funcón polnómc (splne) cuyos coefcenes se jusn pr psr por los punos desedos (con velocddes y celercones cepbles)
10 Inerpolcón de ryecors (II) Inerpolcón lnel: q() * b Condcones: q( - ) * - b q - q( ) * b q Se despej y b y se obene: Problem: l velocdd cmb bruscmene y l celercón es nfn
11 Inerpolcón de ryecors (III) Pr segurr l connudd en l velocdd se proxm por un funcón cúbc. Condcones (4): poscón y velocdd en el puno ncl y fnl Fórmul de nerpolcón:
12 Inerpolcón de ryecors (IV) Inerpolcón prbólc: el pso por los punos nermedos se plnfc pr evr cmbos bruscos: en vez de psr por el puno se ps n cerc de él como lo perm l celercón máxm. Fórmul de nerpolcón:
13 Inerpolcón de ryecors (V) Condcones de funconmeno: q& (T rmo: q () b* q () q q (T ) b*t q Ecucón: q () q (q q ) / T * rmo: q () b * ( T ) q (T ) q q (T T ) q b *T Ecucón: q () q (q q ) / T * ( T ) rmo: q () b (- (T - τ)) c ( T τ ) τ) b b c (T τ T q& ( T τ ) b b c( T τ T τ ) τ) q q (T τ) q(t τ) q (T τ) T q c ( q ( q q ) b T q ) T ( q q ) T 4TT τ
14 Inerpolcón de ryecors (VI) S se dese sgnr poscones, velocddes y celercones del puno ncl y del puno fnl (6 condcones) > polnomo de orden 5 S se dese psr por punos nermedos, se enen más condcones: Incl: poscón, velocdd y celercón Despegue: poscón Asenmeno: poscón Fnl: Poscón, velocdd y celercón 8 condcones > Polnomo de orden q () 4 4
15 Inerpolcón de ryecors (VI) Pr consegur rnscones suves se necesrín órdenes del polnomo elevdos, pero s el orden es lo se producen compormenos errácos en punos nermedos: Solucón: nerpolcón rmos. Inerpolcón más sencll (--): Trmos de despegue y senmeno máxm celercón Trmo nermedo máxm velocdd Son desebles rnscones suves por lo que suelen usrse en cd segmeno splnes de orden, 4 o 5 Inerpolcón más usd: 4--4 Ors posblddes: --, 5-5-5, -5-, ec.
16 Inerpolcón rmos (I) Inerpolcón --: Fórmul de nerpolcón: donde V es l velocdd, y l celercón máxm permd.
17 Inerpolcón rmos (II) Tryecor 4--4 Los segmenos se jusn de form que en los punos de cmbo (despegue y senmeno) no cmbe n l velocdd n l celercón. Prmer segmeno: orden 4 Segundo segmeno: Tercer segmeno: q () h () q () h () 4 4 q () h ()
18 Inerpolcón rmos (III).- Se normlz cd segmeno pr que correspond l nervlo [ ] Tempo: Velocdd: segmeno: Acelercón: segmeno: τ τ τ τ d dh d d d dh d dh q ) ( * ) ( ) ( ) ( τ τ τ τ & ) ( ) ( * ) ( ) ( ) ( d h d d d d h d d h d q τ τ τ τ && 4 4 ) ( q & 4 6 ) ( q &&
19 Inerpolcón rmos (III) Condcones: segmeno:.- h () q.- v () v / > v.- () * / > * / 4.- h () q 4 > 4 q q v / y segmeno: 5.- Connudd en l velocdd: h & ( ) h ( ) & v
20 Inerpolcón rmos (IV) 6.- Connudd en l celercón: 4 6 q &&, () q&, () 4 6 º segmeno: 7.- h () q 8.- h () q > q q er segmeno (cmbo de vrble): [,] > [, ] > 9.- h ( ) q.- v ( ) v / > v.- ( ) / > /
21 Inerpolcón rmos (V) º y er segmeno:.- Connudd en l velocdd: h & ( ) h( ) 44 & Connudd en l celercón q&& () q& 4 ( ) h (-) q 4 - > 4 q q v / 6 v
22 Inerpolcón rmos (V) 4 4 / 6/ 6/ / 4/ / / / / / 6/ / / / 4/ v q q v q q v v q q o Cx y y C x
23 Inerpolcón rmos (VI) Un vez resuelo el problem, en el segmeno debemos deshcer el cmbo de vrble, y susur en l ecucón del ercer segmeno: 4 () 4 q () h 4 () 4( ) ( ) ( ) ( q () h ) 4 () 4( 6 4 ) ( ) ( ) ( h 4 ) h() 4 ( 44 ) ( 64 ) ( 44 ( ) 4 4 )
24 Resumen Qué es un ryecor? Psos segur pr generr un ryecor Tpos de ryecors Cómo se clculn ls ryecors? > depende de ls condcones que nos mpongn Sólo poscón: lnel Poscón y velocdd: cúbc Poscón, velocdd y celercón: ryecor de 5º orden O un ryecor rmos fjndo dos punos nermedos por lo que queremos psr y segurndo connudd en l velocdd (--), s queremos segurr mbén connudd en l celercón: (4--4), (--), (5--5) ec.
25 Bblogrfí Brrenos: explc ls ryecors, los pos de ryecors y los polnomos pero sn deducrles. Torres: hbl de l nerpolcón cúbc, y l nerpolcón lnel con juse prbólco > deducen los vlores de cd prámero y pone ejemplos Fu: explc con delle ls ecucones de l ryecor 4--4, l -5- y l ----
Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos
Curso 26/7 Economería II Tema 9: Modelos con reardos dsrbudos (I) 1. Análss de los efecos dnámcos en un modelo de reardos dsrbudos 2. La dsrbucón de reardos Tema 9 1 9.1. Análss de los efecos dnámcos en
Estadística de Precios de Vivienda
Esadísca de recos de Vvenda Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal
CURSO CERO DE FÍSICA CINEMÁTICA DEL PUNTO
CURSO CERO DE FÍSICA Ángel Muño Csellnos Depmeno de Físc CONTENIDO Momeno undmensonl Poscón, elocdd, celecón Momeno eclíneo unfome Momeno eclíneo unfomemene celedo Momeno en el espco Vecoes poscón, elocdd
EJERCICIOS: Análisis de circuitos en el dominio del tiempo
EJEIIOS: Análss de crcuos en el domno del empo. égmen ransoro y permanene. En cada uno de los sguenes crcuos el nerrupor ha esado abero largo empo. Se cerra en. Deermnar o I, dbujar la onda correspondene
EJERCICIOS DE DINÁMICA
EJERCICIOS DE DIÁMICA 1. Dd un cuerd cpz de oporr un fuerz áx de 00, cuál erá l celercón áx que e podrá councr con ell un de 10 kg cundo e encuenr obre un plno horzonl n rozeno? Sol: ) 0. En un plno horzonl
+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D
PROBEMAS E IRUITOS ON TRANSISTORES Problema : eermnar los punos de funconameno de los dsposvos semconducores de los sguenes crcuos: +2V +2V +2V β= β= K β= β= (a) (b) (c) (d) Problema 2: eermnar el puno
9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC
9. IUITOS DE SEGUNDO ODEN Y 9.. INTODUIÓN En el capíulo aneror mos como los crcuos ressos con capacancas o los crcuos ressos con nducancas enen arables que son calculadas medane ecuacones dferencales de
EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE)
EL METODO PERT (PROGRM EVLUTION ND REVIEW TECHNIQUE) METODO DE PROGRMCION Y CONTROL DE PROYECTOS Desarrollado en 1958, para coordnar y conrolar la consruccón de submarnos Polars. El méodo PERT se basa
Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores
1 Físc Genel I Plelos 5. Pofeso RodgoVeg R 11) Repso de Vectoes 1) Repso de Opecones Vectoles Us l sum ectol, usndo l egl del tángulo l del plelogmo. Clcul l mgntud deccón de l sum usndo teoem del seno
Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida
Análss de supervvenca Alber Sorrbas Grup de Boesadísca I Bomaemàca Deparamen de Cènces Mèdques Bàsques Unversa de Lleda Esquema general Inroduccón al análss de supervvenca Tpos de esudos El concepo de
Cu +2 + Zn Cu + Zn +2
Termodnámc. Tem 16 Sstems electroquímcos 1. Defncones Electrodo. Metl en contcto con un electrolto (Sstem físco donde se produce un semreccón redox) Un sstem electródco está consttudo por un conductor
Introducción al Cálculo Integral
Inroduccón l Cálculo Inegrl José Lus Alejndre Mrco An Isel Alluev Pnll José Mguel González Sános Deprmeno de Memác Aplcd Unversdd de Zrgoz versón dgl sd en el lro "Inroduccón l Cálculo Inegrl" ISBN 8-77-5-6,
Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden
Tema 5. Análss Transoro de Crcuos de Prmer y egundo Orden 5.1 Inroduccón 5.2 Crcuos C sn fuenes 5.3 Crcuos C con fuenes 5.4 Crcuos L 5.5 Crcuos LC sn fuenes v() 5.6 Crcuos LC con fuenes () C () C v( )
TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS
TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS 3 39 Ssema de generacón elécrca con pla de combusble de óxdo sóldo almenado con resduos foresales y su opmzacón medane algormos basados
MICROTÚBULOS, FUNCIONES CEREBRALES Y LA MECÁNICA CUÁNTICA
MICROTÚBULOS, FUNCIONES CEREBRALES Y LA MECÁNICA CUÁNTICA Dr. José A. Peñlbert Unversdd de Puerto Rco en Croln Deprtmento de Cencs Nturles Introduccón Hn surgdo un sere de teorís sobre el funconnmento
CICLO BASICO DE INGENIERIA. Aplicar los conceptos fundamentales relacionados con el algebra matricial y calculo de determinantes.
REPÚLI OLIVRIN DE VENEZUEL MINISTERIO DEL PODER POPULR PR L DEFENS UNIVERSIDD NIONL EPERIMENTL DE L FUERZ RMD NÚLEO ZULI DIVISIÓN DE SERETRÍ RRER: SIGNTUR: MT - NOMRE DEL PROFESOR: ILO SIO DE INGENIERI
Sistemas de Control. Control de Sistemas Dinámicos
Sstems de Control Control de Sstems Dnámcos ISA-UMH Lus M. Jménez 1 Defncón n de Control Mnpulr ls mgntudes de un sstem (plnt) pr consegur uns especfccones de comportmento desedo El dspostvo que relz est
Si el rédito anual de valoración, constante a lo largo de toda la operación, es del 9%, determínese:
EJERIIOS DE OPERAIONES DE AMORTIZAIÓN Eercco Se concede un réstmo ersonl de 8.000 euros mortzble en 0 ños mednte térmnos mortztvos semestrles, donde ls cuots de mortzcón son déntcs en todos y cd uno de
SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS
SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS Ejercicio nº.- Pon un ejemplo, cundo se posible, de un sisem de dos ecuciones con res incógnis que se: ) Compible deermindo Compible indeermindo c) Incompible
EJERCICIOS DE RAÍCES
EJERCICIOS DE RAÍCES º ESO RECORDAR: Definición de ríz n-ésim: n x x Equivlenci con un potenci de exponente frccionrio: n m x Simplificción de rdicles/índice común: Propieddes de ls ríces: x m/n n n b
3.-AMORTIZACIÓN DE PRÉSTAMOS
.-MORTZÓ DE PRÉSTMOS..- Un prson solc un présmo. pr morzrlo n ños mn nuls consns pospgbls y un po nrés fcvo nul l 8%. Trnscurros ños y hbno bono l nul l rcr ño, curn uor y cror pr morzr l u pnn ls sguns
SISTEMA DE COORDENADAS CARTESIANAS
SISTEMA DE COORDENADAS CARTESIANAS Definición El siste de coordends crtesins en el plno está constituido por dos rects perpendiculres que se intersecn en un punto O l que se le ll el origen. Un de ls rects
INTERPOLACIÓN DE LA SUPERFICIE DE VOLATILIDADES
www.qun-rng.o ITERPOLACIÓ DE LA SUPERFICIE DE VOLATILIDADES Hemos menono en nuesros oumenos que l voll mplí es un me ulz pr omprr opones on erenes srkes y venmenos. De heho en vros meros ls opones se ozn
Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z )
Cpítulo III. Álgebr vectoril Objetivo: El lumno plicrá el álgebr vectoril en l resolución de problems geométricos. Contenido: 3.1 Sistem crtesino en tres dimensiones. Simetrí de puntos. 3. Cntiddes esclres
Lenguaje humano. Representación de la información. Utiliza un conjunto de símbolos alfanuméricos. Puede representar Información
Leguje humo Represetcó de l formcó Utlz u cojuto de símbolos lfumércos Crcteres lfbétcos:, B, C,.Z,, b, c,...z Símbolos umércos 9 sgos de putucó... Puede represetr Iformcó umérc lfumérc Leguje del ordedor
CAPITULO II FUNCIONES VECTORIALES
CAPITULO II FUNCIONES VECTORIALES En el cpíulo nerior, cundo describimos l rec en el espcio, uilizmos un prámero en ls ecuciones pr enconrr ls coordends de los punos que conformn es rec. ecuciones prmérics
Mecanismos de palanca. Apuntes.
Mecansmos de palanca. Apunes. Oreses González Qunero Deparameno de Ingenería Mecánca Faculad de de Ingenerías Químca y Mecánca 2007 1 1.- Inroduccón. El análss de los mecansmos y máqunas ene por objevo
UTN - FRBA Ing. en Sistemas de Información
Modelo Relconl UTN - FRBA Ing. en Sstems de Informcón Gestón de Dtos Prof.: Ing. Jun Zffron Gestón de Dtos Ing. Jun Zffron / Ing. Mrí Crstn Chhn Modelo Relconl - 1 Concepto Propuesto por el Dr. E.F. Codd
FORMULACIÓN Y SOLUCIÓN DE ECUACIONES LINEALES EN DIFERENCIAS CON COEFICIENTES CONSTANTES EN EL CONTEXTO DEL ANÁLISIS DE SERIES TEMPORALES (*)
FORMULCIÓN Y SOLUCIÓN DE ECUCIONES LINELES EN DIFERENCIS CON COEFICIENTES CONSTNTES EN EL CONTEXTO DEL NÁLISIS DE SERIES TEMPORLES * Rmón Mhí Juno 998. * Ese documeno form re de l Tess Docorl enmrcd en
i = 0,08 Co n i C6 C3 C'6 C'3 7.000 6 0,08 11108,1203 8817,984 7560 7.000
. Nos conceden un préstmo de. l 8% de nterés. S l durcón del msmo es de ños, clculr cuánto tendremos que pgr trnscurrdos ños y l reserv o sldo l prncpo del curto ño. S se mortz el préstmo mednte reembolso
ACTIVIDADES INICIALES
Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)
CAPÍTULO 8 INTRODUCCIÓN A LA RESISTENCIA DE MATERIALES
CAPÍTULO 8 INTRODUCCIÓN A LA RESISTENCIA DE ATERIALES CONCEPTO DE PIEZA PRISÁTICA Centro de grvedd Directriz o eje G C Sección trnsversl ADERTENCIA: Eisten otrs rms de l ecánic de edios Continuos en ls
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.
PRUES DE CCESO L UNVERSDD L.O.G.S.E. CURSO 2001-2002 - CONVOCTOR: JUNO ELECTROTECN EL LUMNO ELEGRÁ UNO DE LOS DOS MODELOS Crteros e clfccón.- Expresón clr y precs entro el lenguje técnco y gráfco s fuer
Puntos, rectas y planos en el espacio
Maemáicas II Geomeía del espacio Punos, ecas planos en el espacio Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad.. La eca coa a los es planos coodenados
NÚMEROS COMPLEJOS. r φ. (0,0) a
Educgu.com NÚMEROS COMPLEJOS DEFINICIÓN Se llm númeo complejo un p odendo de númeos eles (,b). Los númeos eles y b se llmn componentes del númeo complejo. A l componente se le desgn pte el y l componente
Modulo II: Ondas. 1. Introducción a las Ondas 2. Ondas en cuerdas 3. Ondas sonoras y acústica
. Inoduccón a las Ondas. Ondas en cuedas 3. Ondas sonoas acúsca Modulo II: Ondas. Ecuacón de ondas en una cueda ensa. Enegía de una onda en una cueda.3 Aenuacón.4 Refleón ansmsón de ondas.5 Supeposcón
ÍNDICE Capítulo 1. INTRODUCCIÓN A SHAZAM PROFESSIONAL 1. Capítulo 2. MANEJO Y ANÁLISIS DE DATOS 18
ÍNDICE Cpíulo. INTRODUCCIÓN A SHAZAM PROFESSIONAL.. Presencón de Shzm Professonl.. Inco de un sesón de rbjo.3. Prncples Venns.3.. Venn Prncpl o Venn del Progrm 4.3.. Pnel Projec-Resources 5.3... Venn Proyeco
X obtener las relaciones que deben
odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint
Consideraciones generales sobre dinámica estructural
Capíulo Consderacones generales sobre dnámca esrucural Inroduccón El obeo de la dnámca esrucural es el análss de esrucuras bao cargas dnámcas, es decr cargas que varían en el empo. Aunque la mayoría de
Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura).
TEOREMA E GAU. 15. Hllr el flujo del cmpo i + j + z k trvés de l superficie z 1 +, z 1. ) irectmente. b) Aplicndo el teorem de Guss. olución Llmremos l superficie dd su proección sobre el plno XY (ver
Calcular el equivalente Thevenin y Norton entre los puntos a y b en el circuito de la figura
Ejemplos de cálculo de crcutos equlentes. Aplccón de los teorems de Theenn y Norton Clculr el equlente Theenn y Norton entre los puntos y en el crcuto de l fgur Ω 4Ω 3 6Ω L Ω 5Ω V L Pr clculr el equlente
INDICE DE COSTES DE LA CONSTRUCCIÓN
INDICE DE COSTES DE LA CONSTRUCCIÓN. INTRODUCCION Y OBJETIVOS El índce de coses de la consruccón es un ndcador coyunural que elabora el Mnsero de Fomeno y que ene como objevo medr la evolucón, en érmnos
CRÉDITO AGRICOLA. Consideraciones del producto:
Versón: CA-5.04. CRÉDITO AGRICOLA Consderacones del produco: Son crédos que se oorgan para fnancameno de acvdades agropecuaras y se basan en la capacdad de pago de los clenes y su hsoral credco. Se conceden
Tema 5. Trigonometría y geometría del plano
1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene
Si v y w son ambos vectores, entonces el resultado de las operaciones v + w y v w son. Dichas operaciones cumplen con propiedades conmutativas y
Crso nzdo d Fnómnos d Trnsport Dr. Jn Cros Frro Gonzáz Dprtmnto d Ingnrí Qímc Insttto Tcnoógco d Cy Oprcons con Vctors Adcón y sbstrccón d ctors S y w son mbos ctors, ntoncs rstdo d s oprcons w y w son
Modelo 5 de sobrantes de Opción A
Ejercicio. [ puntos] Se f : R l función dd por Modelo de sobrntes de 6 - Opción. Ln f siendo Ln l función logrito neperino. Estudi l eistenci de síntot horiontl pr l gráfic de est función. En cso de que
RAÍCES COMPLEJAS DE LAS FUNCIONES CUADRÁTICAS: INTERPRETACIÓN GRÁFICA
RAÍCES COMPLEJAS DE LAS FUNCIONES CUADRÁTICAS: INTERPRETACIÓN GRÁFICA Hydeé Blnco Insttuto Superor del Profesordo "Dr. Joquín V. González" Buenos Ares (Argentn) RESUMEN En este rtículo se present un form
1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)
Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv
PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO
PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este
4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos
4o. Encuenro. Maemácas en odo y para odos. Uso de las dsrbucones de probabldad en la smulacón de ssemas producvos Leopoldo Eduardo Cárdenas Barrón [email protected] Deparameno de Ingenería Indusral y de
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos
IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l
IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar:
IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni OPCIÓN E.- Dd l unión ( ), s pid drminr: ) El dominio, los punos d or on los js y ls sínos ( puno) ) Los inrvlos d rimino y drimino, y
Determinización: Construcción de Safra
Determinizción: Construcción de Sfr Ddo: Autómt de Büchi A = (Q,Σ,Q 0,δ,F) Supong que Q = {q 1,...,q n }. Vmos construir un utómt de Rin determinist B tl que L ω (A) = L ω (B), donde B está compuesto por:
Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores
Semn 2 2 Repso de vectores Repso de vectores Empecemos! Estimdo prticipnte, en est sesión tendrás l oportunidd de refrescr tus seres en cunto l tem de vectores, los cules tienen como principl plicción
Problema 5.154. w A. 24 kn 30 kn. 0.3 m. 1.8 m
Problem 5.54 A w A 4 kn 0 kn.8 m 0. m w L vig A soport dos crgs concentrds y descns sobre el suelo el cul ejerce un crg linelmente distribuid hci rrib como se muestr. Determine ) l distnci pr l cul w A
MATRICES Y DETERMINANTES.
punes de. Cbñó MTRICES Y DETERMINNTES. CONTENIDOS: Definición y erminologí básic. Operciones con mrices: sum y produco. Produco de un mriz por un esclr. Mriz opues. Mriz invers. Epresión mricil de un sisem
Φ i. Φ i. di dt. Φ i = Φ. El Transformador Monofásico. Inductancia Propia e Inductancia Mutua. Inductancia Propia e Inductancia Mutua
nuctnc Prop e nuctnc Mutu El Trnsformor Monofásco Trnsformores y Máquns Eléctrcs u ( t) e( t) t Flujos socos los onos nuctnc Prop e nuctnc Mutu m spersón M En el ono Cuso por l corrente spersón egún l
Movimiento Rectilíneo Uniformemente Acelerado (MRUA)
7. Movmeno Reclíneo Unorme Acelerado Movmeno Reclíneo Unormemene Acelerado (MRUA) elocdad Meda o elocdad promedo: La velocdad meda represena la relacón enre el desplazameno oal hecho por un móvl y el empo
Introducción a la Teoría de Inventarios
Clase # 4 Las organzacones esán consanemene vendo como camba el nvel de sus nvenaros en el empo. Inroduccón a la Teoría de Invenaros El ener un nvel bajo de nvenaros mplca resgos para no sasacer la demanda
6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS
TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo
Tema 4. Condensadores y Bobinas
Tema 4. ondensadores y Bobnas 4. Inroduccón 4. ondensadores 4.3 Energía almacenada en un condensador 4.4 Asocacón de condensadores 4.5 Bobnas 4.6 Energía almacenada en una bobna 4.7 Asocacón de bobnas
SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I
Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.
Aplicaciones de la integral indefinida
Aplicciones_de_l_integrl.n Aplicciones de l integrl indefinid Práctic de Cálculo, E.U.A.T,Grupos ºA y ºB, 2005 Est práctic muestr cómo clculr lguns áres y volúmenes utilizndo integrles. En cd cso dremos
INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA
INSTITUT DE FÍSIC MECÁNIC NEWTNIN Cuso 009 áctco I Cnemátc de l tícul y Movmento eltvo NT: Los sguentes eeccos están odendos po tem y, dento de cd tem, en un oden cecente de dfcultd lgunos eeccos se encuentn
E.T.S. Minas: Métodos Matemáticos
E... Mins: Métodos Mtemáticos Resumen y ejemplos em 6: Integrción numéric Frncisco Plcios Escuel Politécnic uperior de Ingenierí de Mnres Universidd Politécnic de Ctluñ Octubre 8, Versión.5 Contenido.
TEMA: EXPRESIONES ALGEBRAICAS
TEMA: EXPRESIONES ALGEBRAICAS CONCEPTO Son quells epresones en ls que ls opercones que se usn son sólo ls de dcón, sustrccón, multplccón, dvsón, potenccón, rdccón entre sus vrbles en un número lmtdo de
TEORÍA DE CIRCUITOS - 2 LEYES DE KIRCHHOFF. - Variables relacionadas. v(t) = v 1 (t) - v 2 (t) i(t) = i 1 (t) = i 2 (t) v(t)
TOÍ D UTOS /24 TOÍ D UTOS 2/24 UTO LÉTO DSPOSTOS LÉTOS Y LTÓNOS UTO LÉTO L LS ONDUTOS DSPOSTOS LÉTOS O LTÓNOS UTO LÉTO: DFNONS M NUDOS NO NUDO (ONXÓN N S) 2 3 N 4 ONXÓN N PLLO N2 5 6 MODLO D UTO LÉTO L
POTENCIAS Y LOGARITMOS DE NÚMEROS REALES
www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (
A LA SOMBRA DE LOS GRUPOS FINITOS
A LA SOMBRA DE LOS GRUPOS FINITOS L Teorí de los Gruos Fntos recbe l nfluenc drect tnto del Algebr Lnel, como de l Coomologí y l Teorí de Módulos, roducendo nnumerbles lccones tnto sobre l msm Teorí de
Integrales impropias
Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección
Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales
Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles
EJERCICIOS DE GEOMETRÍA
VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3
Medida de los radios de curvatura de un espejo cóncavo y otro convexo. Medida de la focal de una lente convergente y otra divergente.
TÉCNICAS EXPERIMENTALES II. MÓDULO DE ÓPTICA PRÁCTICA I: BANCO ÓPTICO. OBJETIVO DE LA PRÁCTICA Medda de los rados de curvaura de un espejo cóncavo y oro convexo. Medda de la focal de una lene convergene
Cristal. Estado Sólido. Estructura Cristalina. Red. Celdas. Red
Estdo Sólido Estructurs Cristlins Cristl Un cristl es un rreglo periódico de átomos o grupos de átomos que es construido por l repetición infinit de estructurs unitris idéntics en el espcio. L estructur
E-mail: [email protected] 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619
1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del
Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa.
Qué es el movimiento rectilíneo uniformemente vrido? Es un movimiento mecánico que experiment un móvil donde l tryectori es rectilíne y l celerción es constnte. Qué es l celerción? Es un mgnitud vectoril
La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.
INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.
GRAMATICAS REGULARES - EXPRESIONES REGULARES
CIENCIAS DE LA COMPUTACION I 29 GRAMATICAS REGULARES - EXPRESIONES REGULARES Grmátis Ls grmátis formles definen un lenguje desriiendo ómo se pueden generr ls dens del lenguje. Un grmáti forml es un udrupl
1. MODELOS DE SERIES TEMPORALES UNIECUACIONALES
oro hasco rgoyen, Dpo. Economía Aplcada, UAM. EJEMPLO DE MODELOS EONOMÉTROS Ver el aso 9 (pag. 55 y ss.) del lbro de A. Puldo y A. López (999), Predccón y Smulacón aplcada a la economía y gesón de empresas.
Fugacidad. Mezcla de gases ideales
Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar
1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre
