Autómatas sobre palabras infinitas
|
|
|
- Sara Castro Ponce
- hace 9 años
- Vistas:
Transcripción
1 Autómts sobre plbrs infinits Mrcelo Arens M. Arens Autómts sobre plbrs infinits 1 / 46
2 Teorí de utómts sobre plbrs infinits Los utómts sobre plbrs infinits son un herrmient fundmentl pr l verificción forml. Un de sus plicciones: Algoritmo de verificción pr LTL. En este cpítulo vmos estudir en detlle estos utómts. Y su conexión con lógics temporles. M. Arens Autómts sobre plbrs infinits 2 / 46
3 Autómts sobre plbrs infinits: Formlizción Ddo: Alfbeto finito Σ. Definición Un plbr infinit w sobre Σ es un secuenci 0 1 2, donde cd i Σ (i 0). Σ ω : Conjunto de tods l plbrs infinits sobre Σ. M. Arens Autómts sobre plbrs infinits 3 / 46
4 Autómts sobre plbrs infinits: Formlizción Definición A = (Q,Σ,Q 0,δ,F) es un utómt de Büchi no-determinist (NB) sobre Σ si: Q es un conjunto finito de estdos; Q 0 Q es un conjunto no vcío de estdos iniciles; δ : Q Σ 2 Q es un función de trnsición; F Q es un conjunto de estdos finles. Si Q 0 = 1 y pr cd (q,) Q Σ se tiene que δ(q,) 1, entonces decimos que A es determinist (DB). M. Arens Autómts sobre plbrs infinits 4 / 46
5 Autómts de Büchi: Condición de ceptción Ddo: A = (Q,Σ,Q 0,δ,F) Un función ρ : N Q es un ejecución de A sobre un plbr w = si ρ(0) Q 0 ; pr cd i 0: ρ(i + 1) δ(ρ(i), i ). Concepto fundmentl: Inf(ρ) = {q Q {i ρ(i) = q} es infinito}. M. Arens Autómts sobre plbrs infinits 5 / 46
6 Autómts de Büchi: Condición de ceptción Ddo: A = (Q,Σ,Q 0,δ,F) Definición A cept un plbr infinit w si existe un ejecución ρ de A sobre w tl que Inf(ρ) F. Lenguje ceptdo por un utómt: L ω (A) = {w Σ ω A cept w}. M. Arens Autómts sobre plbrs infinits 6 / 46
7 Autómt de Büchi: Ejemplo Qué lengujes ceptn los siguientes utómts? b q 0 b q 1, b b q 0 b q 1 M. Arens Autómts sobre plbrs infinits 7 / 46
8 Autómts de Büchi: Propieddes de clusur Vmos determinr si los utómts de Büchi son cerrdos bjo ls siguientes operciones: Unión Intersección Determinizción Complementción Ests operciones son fundmentles pr los lgoritmos de verificción. M. Arens Autómts sobre plbrs infinits 8 / 46
9 Unión de utómts de Büchi Decimos que los utómts de Büchi son cerrdos bjo unión, si pr cd pr de utómts A y B, existe un utómt C tl que: L ω (C) = L ω (A) L ω (B). Ser cerrdo bjo intersección se define de l mism form. Teorem Los utómts de Büchi son cerrdos bjo unión. Ejercicio: Demuestre el teorem. M. Arens Autómts sobre plbrs infinits 9 / 46
10 Intersección de utómts de Büchi Teorem Los utómts de Büchi son cerrdos bjo intersección. Demostrción: Primero vmos mostrr que el producto de utómts no puede ser usdo directmente pr el cso infinito. Considere los siguientes utómts de Büchi sobre el lfbeto Σ = {}: A : 0 1 B : 0 1 M. Arens Autómts sobre plbrs infinits 10 / 46
11 Intersección de utómts de Büchi Se tiene que: L ω (A) = L ω (B) = { ω }. Pero: (0, 0) (1, 1) A B: (0, 1) (1, 0) Por lo que L ω (A B) = L ω (A) L ω (B). M. Arens Autómts sobre plbrs infinits 11 / 46
12 Intersección de utómts de Büchi Vemos como construir un utómt pr l intersección: Supong que A = (Q 1,Σ,Q0,δ 1 1,F 1 ), B = (Q 2,Σ,Q0,δ 2 2,F 2 ). Definimos: C = (Q 1 Q 2 {1,2},Σ,Q 1 0 Q 2 0 {1},δ,F) M. Arens Autómts sobre plbrs infinits 12 / 46
13 Intersección de utómts de Büchi Donde: Pr q 1 F 1, q 2 Q 2 y Σ: δ((q 1,q 2,1),) = δ 1 (q 1,) δ 2 (q 2,) {2}. Pr q 1 Q 1 \ F 1, q 2 Q 2 y Σ: δ((q 1,q 2,1),) = δ 1 (q 1,) δ 2 (q 2,) {1}. Pr q 1 Q 1, q 2 F 2 y Σ: δ((q 1,q 2,2),) = δ 1 (q 1,) δ 2 (q 2,) {1}. Pr q 1 Q 1, q 2 Q 2 \ F 2 y Σ: δ((q 1,q 2,2),) = δ 1 (q 1,) δ 2 (q 2,) {2}. F = F 1 Q 2 {1}. M. Arens Autómts sobre plbrs infinits 13 / 46
14 Determinizción de utómts de Büchi Decimos que un utómt de Büchi A es determinizble si existe un utómt determinist B tl que L ω (A) = L ω (B). Todos los utómts sobre plbrs finits son determinizble. Esto es flso pr el cso infinito! Construcción bsd en subconjuntos de estdos no funcion. Vmos construir un NB A tl que pr todo DB B se tiene que L ω (A) L ω (B). M. Arens Autómts sobre plbrs infinits 14 / 46
15 Determinizción de utómts de Büchi Se Σ = {,b} y:, b b b A : q 0 q 1 Entonces: L ω (A) = {w Σ ω w tiene un número finito de símbolos } Primero vmos mostrr que l construcción bsd en subconjuntos no funcion en este cso. M. Arens Autómts sobre plbrs infinits 15 / 46
16 Determinizción de utómts de Büchi Utilizndo l construcción de subconjuntos genermos el siguiente utómt: b B : {q 0 } {q 0,q 1 } b Qué lenguje cept este utómt? {w Σ ω w tiene un número infinito de símbolos b}. Se tiene que L ω (A) L ω (B). Nótese que esto no implic que A no se determinizble. M. Arens Autómts sobre plbrs infinits 16 / 46
17 Determinizción de utómts de Büchi Supong que A es determinizble: Existe un DB B tl que L ω (A) = L ω (B). Supong que F es el conjunto de estdos finles de B. Como b ω L ω (A), existe i 0 > 0 tl que pr l únic ejecución ρ 0 de B sobre b ω : ρ 0 (i 0 ) F. Como b i 0 b ω L ω (A), existe i 1 > 0 tl que pr l únic ejecución ρ 1 de B sobre b i 0 b ω : ρ 1 (i i 1 ) F. Nótese que ρ 1 (i 0 ) F. Por qué? M. Arens Autómts sobre plbrs infinits 17 / 46
18 Determinizción de utómts de Büchi En generl: Ddo k 1, existen i 0,i 1,...,i k > 0 tles que pr l únic ejecución ρ k de B sobre b i 0 b i 1 b i k 1b ω : ρ k (i i i j ) F, pr todo j [0,k]. Si k > F, existen 0 p < q k tles que ρ k (i i i p ) = ρ k (i i i q ). Por lo tnto: b i 0 b i 1 b ip (b i p+1 b iq ) ω L ω (B). Est plbr tiene un número infinito de símbolos : Tenemos un contrdicción. M. Arens Autómts sobre plbrs infinits 18 / 46
19 Complementción de utómts de Büchi Decimos que un utómt de Büchi A es complementble si existe un utómt de Büchi B tl que L ω (B) = Σ ω \ L ω (A). Teorem Cd utómt de Büchi es complementble. M. Arens Autómts sobre plbrs infinits 19 / 46
20 Complementción de utómts de Büchi Cómo podemos demostrr el teorem? No podemos usr l técnic usul de complementción porque los utómt de Büchi no son determinizble. Ni siquier pr DBs es posible usr l técnic usul de complementción. Ejercicio: Suponiendo que Σ = {}, construy el complemento de A : 0 1 Este es el problem más difícil que vmos estudir en este cpítulo. M. Arens Autómts sobre plbrs infinits 20 / 46
21 Autómts de Muller Pr resolver el problem de l complementción vmos introducir otros dos modelos de utómt sobre plbrs infinits. Definición A = (Q,Σ,Q 0,δ, F) es un utómt de Muller no-determinist (NM) sobre Σ si: Q es un conjunto finito de estdos; Q 0 Q es un conjunto no vcío de estdos iniciles; δ : Q Σ 2 Q es un función de trnsición; F 2 Q es un colección de subconjuntos de Q. Si Q 0 = 1 y pr cd (q,) Q Σ se tiene que δ(q,) 1, entonces decimos que A es determinist (DM). M. Arens Autómts sobre plbrs infinits 21 / 46
22 Autómts de Muller: Condición de ceptción Ddo: Autómt de Muller A = (Q,Σ,Q 0,δ, F) Definición A cept un plbr infinit w si existe un ejecución ρ de A sobre w tl que Inf(ρ) F. Ejercicio: Construy un DM que cepte el lenguje: {w {,b} ω w tiene un número finito de símbolos }. M. Arens Autómts sobre plbrs infinits 22 / 46
23 Autómts de Muller: Alguns propieddes básics Teorem Pr cd NB A, existe un NM B tl que L ω (A) = L ω (B). Ejercicio: Demuestre el teorem. Proposición Pr cd DM A, existe un DM B tl que L ω (B) = Σ ω \ L ω (A). Ejercicio: Demuestre l proposición. M. Arens Autómts sobre plbrs infinits 23 / 46
AUTÓMATAS DE PILA. Dpto. de Informática (ATC, CCIA y LSI). Univiersidad de Valladolid.
Dpto. de Informátic (ATC, CCIA y SI). Univiersidd de Vlldolid. TEORÍA DE AUTÓMATAS Y ENGUAJES FORMAES II Ingenierí Técnic en Informátic de Sistems. Curso 20-2 AUTÓMATAS DE PIA. Dd l siguiente grmátic independiente
Determinización: Construcción de Safra
Determinizción: Construcción de Sfr Ddo: Autómt de Büchi A = (Q,Σ,Q 0,δ,F) Supong que Q = {q 1,...,q n }. Vmos construir un utómt de Rin determinist B tl que L ω (A) = L ω (B), donde B está compuesto por:
Minimización de AFDs, método y problemas
Minimizción de Fs, método y prolems Elvir Myordomo, Universidd de Zrgoz 8 de octure de. Resultdos sore utómts determinists mínimos El F mínimo existe y es único, es decir Teorem. do unf M = (Q,Σ,δ,q,F),
Exámenes de Teoría de Autómatas y Lenguajes Formales. David Castro Esteban
Exámenes de Teorí de Autómts y Lengujes Formles Dvid Cstro Esten Teorí de Autómts y Lengujes Formles Ingenierí Técnic en Informátic de Sistems Ferero 24 Prolem (2 ptos.) Otener expresiones regulres pr
2 Contents. 8. Formas normales Autómatas de Pila 118. Chapter 3. Máquinas de Turing Definición y termininología
Contents Chpter 1. Autómt finito 5 1. Alfbetos y lengujes 5 2. Operciones 7 3. Operciones con lengujes 9 4. Numerbilidd 16 5. Lengujes Regulres y Expresiones Regulres 19 6. Autómts finitos determinists
Procesadores del Lenguaje I. Antonio Falcó
Procesdores del Lenguje I Antonio Flcó 2 Índice generl I Preliminres 5 1. Alfbetos y Lengujes 7 1.1. Cdens y Lengujes.............................. 7 1.2. Operciones con lengujes...........................
7.1. Definición de integral impropia y primeras propiedades
Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,
Tema 4. Integración de Funciones de Variable Compleja
Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores
Autómatas Finitos. Programación II Margarita Álvarez 0,1 0,1. q 3
Autómts Finitos 0,1 0,1 q 0 0 q 1 0 q 2 1 q 3 1 Progrmción II Mrgrit Álvrez Autómts Dispositivo mecánico cpz símolos. de procesr cdens de Ddo un lenguje L definido sore un lfeto A y un cden x ritrri, determin
Semánticas de procesos y aplicaciones
Semántics de procesos y plicciones Clse 06: Puntos Fijos Qué vimos hst hor? cciones: multicciones: α 3 operdores sobre multicciones: α \ β, α β y α operdor de elección: + operdor de secuenci:. operdor
Tema 2: Lenguajes regulares
Tem : Lengujes regulres Ide de utómt Autómts finitos y grmátis regulres Autómts finitos determinists Autómts finitos no determinists Grmátis regulres (y lineles) l dereh Exresiones regulres Exresiones
En la definición clásica [85], los autómatas a pila son considerados tuplas. movimientos o transiciones válidos del autómata.
Cpítulo 5 Autómts pil Los utómts pil son máquins bstrcts que reconocen exctmente l clse de los lengujes independientes del contexto. En este cpítulo introducimos este tipo de utómts, que servirán de bse
Clase Auxiliar 5. Aútomatas Finitos Determinísticos (Diagramas de Estado)
CC2A Computción II Auxilir 5 Iván Bustmnte Clse Auxilir 5 Aútomts Finitos Determinísticos (Digrms de Estdo) Un utómt finito determinístico es un modelo de un sistem que tiene un cntidd finit de estdos
Los Números Racionales
Cpítulo 12 Los Números Rcionles El conjunto de los números rcionles constituyen un extesión de los números enteros, en el sentido de que incluyen frcciones que permiten resolver ecuciones del tipo x =
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición
Integrales impropias
Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección
CURSO DE MATEMÁTICA 1. Facultad de Ciencias
CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl
AUTOMATAS FINITOS Traductores
Universidd de Morón Lengujes Formles y Autómts AUTOMATAS FINITOS Trductores AUTOMATAS FINITOS Un utómt finito es un modelo mtemático que posee entrds y slids. Un utomát finito recie los elementos tester
A modo de repaso. Preliminares
UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos
Curvas en el plano y en el espacio
Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que
June 24, 2011 DSIC - UPV. Autómatas Finitos. U.D. Computación. Autómata Finito Determinista. Autómata Finito no Determinista
s s no s s s DSIC - UPV June 24, 2011 (DSIC - UPV) s s June 24, 2011 1 / 41 (AFD) s s no s (AFD) Un (AFD) es un 5-tupl de l siguiente form: A = (Q,Σ,δ, q 0, F), siendo: Q un conjunto finito de estdos Σ
GRAMATICAS REGULARES - EXPRESIONES REGULARES
CIENCIAS DE LA COMPUTACION I 29 GRAMATICAS REGULARES - EXPRESIONES REGULARES Grmátis Ls grmátis formles definen un lenguje desriiendo ómo se pueden generr ls dens del lenguje. Un grmáti forml es un udrupl
Presentación Axiomática de los Números Reales
Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 1 Prte I Presentción Axiomátic de los Números Reles 1. Axioms de los Números Reles 1.1. Axioms de Cuerpo Aceptremos l existenci de un conjunto R cuyos elementos
Fundamentos de Informática I. ITI Sistemas - (C) César Llamas, UVA, Representación. funcionamiento. funcionamiento.
Autómts Fundmentos de Informátic I. ITI Sistems - (C) Césr Llms, UVA, 24 Autómts Introducción Representción AF determinist y lengujes funcionmiento δ - mplid AF no determinist no determinismo funcionmiento
Tema 4: Integrales Impropias
Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem
La Integral de Riemann
Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función
TEMA 3 MECANISMOS REGULARES. LEXICOGRAFÍA
TEMA 3 MECANISMOS REGULARES. LEXICOGRAFÍA 3.1.- Lenguje regulr Un lenguje regulr es un lenguje forml que puede ser definido por medio de un mecnismo regulr, son mecnismos regulres: ls expresiones regulres,
INTEGRACIÓN. CÁLCULO DE
Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo
TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo
TEMA 6. INTEGRAL DE RIEMANN 6.1 INTEGRAL DE RIEMANN 6.1.1 Prtición de un intervlo Se f :, y fx K x,. Definición: Un prtición de, es un conjunto ordendo y finito de números reles y distintos P x 0,...,x
El Autómata con Pila
El Autómata con Pila Una Generalización del Autómata Finito Universidad de Cantabria Esquema 1 2 3 4 Los autómatas son abstracciones de maquinas de calcular, como hemos visto. Los más sencillos no tienen
Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida
Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de
3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m
LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener
Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida
Tem 6 El lenguje eptdo por un FA Funión de trnsiión δ p j p l Dr. Luis A. Pined ISBN: 970-32-2972-7 Σ Q p i p k n Pr todo en Q & Σ, δ(, ) = p Funión de trnsiión etendid δ permite moverse the un estdo otro
Problemas de Lenguajes y Autómatas
Trjo VIII Semestre A2005 Prolems Prolems de Lengujes y Autómts 1. Pr los lengujes ddos sore Σ = {, } construir un expresión regulr de él y un Autómt Finito que lo cepte: ) L = {w w tiene un numero pr de
CORTADURAS DE DEDEKIND
CORTDURS DE DEDEKIND En l evolución de est teorí se distinguen tres etps: l primer prece influid por l ide del número rel como un objeto preexistente: cd número rel produce un cortdur; l cortdur define
TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL
TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde
El Teorema Fundamental del Cálculo
del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su
NÚMEROS COMPLEJOS. Números reales Intervalos El conjunto R 2 Discos Números complejos Teorema fundamental del Álgebra
NÚMEROS COMPLEJOS Números reles Intervlos El conjunto R 2 Discos Números complejos Teorem fundmentl del Álgebr NÚMEROS REALES Números nturles, enteros rcionles e irrcionles En mtemátics son importntes
7.1. Definición de la Integral de Riemann
Cpítulo 7 Integrl de Riemnn 71 Definición de l Integrl de Riemnn En este cpítulo supondremos, menos que se indique lo contrrio, que < b y f : [, b] R es un función cotd Definición 71 Un prtición del intervlo
Lenguajes y Autómatas finitos
Trjo VII Semestre A2005 Teorí Lengujes y Autómts finitos 1. Lengujes. Conceptos fundmentles Se Σ un colección finit de símolos. Este conjunto de símolos se denomin lfeto y los elementos letrs. Un plr sore
1. Indicar el lenguaje aceptado por los siguientes autómatas :
Universidd Rey Jun Crlos Grdo en Ingenierí de Computdores Máquins Secuenciles, Autómts y Lengujes Hoj de Prolems: Autómts Finitos Determinists Nivel del ejercicio : ( ) ásico, ( ) medio, ( ) vnzdo.. Indicr
Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo
Autómatas Mínimos Encontrar el autómata mínimo. Universidad de Cantabria Introducción Dado un lenguaje regular sabemos encontrar un autómata finito. Pero, hay autómatas más sencillos que aceptan el mismo
El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales.
El conjunto de los números reles (R) El conjunto de los números reles se form medinte l unión del conjunto de los números rcionles y el conjunto de los números irrcionles. Propieddes del conjunto R R =
Tema 25. AP con dos pilas. Más allá del autómata de pila. No-LLC. Máquina de Turing, Problema del paro y Tesis de Church
Tem 25 Máquin de Turing, Prolem del pro y Tesis de Church No-LLC LLC no-miguos LLC-Det LR Pl mrk Pl i i c i Dr. Luis A. Pined ISBN: 970-32-2972-7 LLC Proceso de i i c i : AP con dos pils Push tods ls s
CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte
CÁLCULO Primer curso de Ingeniero de Telecomunicción Exmen, 7 de Septiembre de 24 Primer prte Ejercicio. Clculr ls coordends de los puntos P y Q de l prábol y x 2, tles que el triángulo formdo por el eje
Autómatas finitos AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES REGULARES Y AUTÓMATAS FINITOS. Ejemplo 2. Ejemplo 1
Autómts Lengujes regulres Autómts no determinists Cerrdur Autómts finitos AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES REGULARES Y AUTÓMATAS FINITOS Frncisco Hernández Quiroz Deprtmento de Mtemátics Fcultd
Equivalencia Entre PDA y CFL
Equivalencia Entre PDA y CFL El Lenguaje aceptado por un Autómata con Pila Universidad de Cantabria Esquema 1 Introducción 2 3 Lenguaje Aceptado por un Autómata Como en los autómatas finitos, se puede
MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A
MTRICES. Determinr l mtriz trnspuest de cd un de ls siguientes;,, C 8. Efectú l siguiente operción con mtrices y clcul. Sen 8, y C determinr: ) t C ) (-C) t t c) -C( t -) d) - t -(C). Dds ls siguientes
Resumen Segundo Parcial, MM-502
Resumen Segundo Prcil, MM-502 Jose Alvreng 18 de febrero de 2015 1. Integrles de líne ) Definición Se r(t) = f(t)i + g(t)j un función vectoril con dominio D, y L un vector. Decimos que r tiene limite L
El Autómata con Pila: Transiciones
El Autómata con Pila: Transiciones El Espacio de Configuraciones Universidad de Cantabria Esquema Introducción 1 Introducción 2 3 Transiciones Necesitamos ahora definir, paso por paso, como se comporta
Gramáticas independientes del contexto AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES INDEPENDIENTES DEL CONTEXTO Y AUTÓMATAS DE PILA. Otras definiciones I
Gramáticas independientes del contexto UTÓMTS Y LENGUJES FORMLES LENGUJES INDEPENDIENTES DEL CONTEXTO Y UTÓMTS DE PIL Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNM E-mail:
Estabilidad de los sistemas en tiempo discreto
Estbilidd de los sistems en tiempo discreto En tiempo discreto tmbién se puede hblr de estbilidd de estdo y de estbilidd de entrd slid de form similr l empled pr los sistems en tiempo continuo. Podemos
Formalización de los Números Reales. M. en I. Gerardo Avilés Rosas
Formlizción de los Números Reles M. en I. Gerrdo Avilés Ross Agosto de 016 Tem Formlizción de los Números Reles Objetivo: El lumno plicrá ls propieddes de los números reles y sus subconjuntos, pr demostrr
DIVERSIFICACIÓN CURRICULAR
ECUACIÓN DE PRIMER GRADO Se llmn ecuciones igulddes en ls que precen número y letrs (incógnits) relciondos medinte operciones mtemátics. Por ejemplo: - y = + Son ecuciones con un incógnit cundo prece un
7. Integrales Impropias
Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Bsdo en el punte del curso Cálculo (2d semestre), de Roerto Cominetti, Mrtín Mtml y Jorge
2. Cálculo de primitivas
5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv
El conjunto de los números naturales tiene las siguientes características
CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que
Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.
Integrción indefinid y definid. Aplicciones de l integrl: vlor medio de un función continu. Jun Ruiz 1 Mrcos Mrvá 1 1 Deprtmento de Mtemátics. Universidd de Alclá de Henres. Contenidos Introducción 1 Introducción
POTENCIAS Y LOGARITMOS DE NÚMEROS REALES
www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (
1. Cuales son los números naturales?
Guí de mtemátics. Héctor. de bril de 015 1. Cules son los números nturles? Los números nturles son usdos pr contr (por ejemplo, hy cinco moneds en l mes ) o pr imponer un orden (por ejemplo,. Es t es l
Estructuras Algebraicas. UCR ECCI CI-1204 Matemática Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides
UCR ECCI CI-204 Mtemátic Discrets Prof. M.Sc. Krysci Dvin Rmírez Benvides Se E un conjunto no vcío, un función f f : E E E se llm ley de composición intern (operción) sobre E. Además, l imgen f(,b) se
TEMA 1 EL NÚMERO REAL
Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8
Autómatas de Pila y Lenguajes Incontextuales
Autómatas de Pila y Lenguajes Incontextuales Elvira Mayordomo Universidad de Zaragoza 5 de noviembre de 2012 Contenido de este tema 1. Introducción a los autómatas de pila 2. Definiciones 3. Equivalencia
R 1 R 2. Ángulos diedros: Axioma de división del espacio: Todo plano del espacio determina en éste dos regiones tales que:
Axiom de división del espcio: Todo plno del espcio determin en éste dos regiones tles que: - Cd punto del espcio pertenece un de ls dos regiones o l plno - Dos puntos de un mism región determinn un segmento
Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales.
UNIVERSIDAD DE JAÉN ESCUEA POITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 009/10 PRÁCTICA Nº9 Espcios vectoriles y Aplicciones ineles I: Bses y coordends. Aplicciones lineles. Recordemos
Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.
UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN
Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3
Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd
Factorización de polinomios. Sandra Schmidt Q. [email protected] Escuela de Matemática Instituto Tecnológico de Costa Rica
Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. [email protected] Escuel
CAPÍTULO 2 NOCIONES BÁSICAS DE TEORÍA DE CONJUNTOS
CAPÍTULO 2 NOCIONES BÁSICAS DE TEORÍA DE CONJUNTOS 2.1. NOCIONES PRIMITIVAS Consideraremos tres nociones primitivas: Conjunto, Elemento y Pertenencia. Conjunto Podemos entender al conjunto como, colección,
Terminaremos el capítulo con una breve referencia a la teoría de cardinales.
TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto
Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica
Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 1: Fundamentos:
1. INTEGRALES DEFINIDAS E IMPROPIAS
. INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m
1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre
5. INTEGRAL DE LÍNEA. 5.1 Introducción. 5.2 Curvas
5. INTEGRAL DE LÍNEA 5.1 Introducción Nos proponemos mplir l noción de integrl, que y conocemos pr el cso de funciones de un vrile rel, cmpos de vris vriles. Cundo se definí l integrl definid pr un función
5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones
1 Curso Básico de Computación 5 Autómatas de pila 5.1 Descripción informal Un autómata de pila es esencialmente un autómata finito que controla una cinta de entrada provista de una cabeza de lectura y
AX = B. X es la matriz columna de las variables:
ÁLGEBR MTRICIL PRO. MRIEL SRMIENTO SESIÓN 9: METODO DE ELIMINCIÓN GUSSIN En est sesión, resolvemos sistems de ecuciones lineles de orden x y x. Pr ello escribimos el sistem en término de mtrices, por ejemplo:
2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.
. Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )
Dos conjuntos son iguales si tienen los mismos elementos. A B x A x B. A= B x A x. (con otra notación; A B A By A
TEM 0: PRELIMINRES. CONJUNTOS Un conjunto es un reunión en un todo de determindos objetos bien deinidos y dierentes entre sí. estos distintos objetos se les denominn elementos. Con el in de evitr contrdicciones,
Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).
64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls
Funciones de Variable Compleja - Clase 27-28/08/2012 ( ) 4) Acotación del módulo de la integral. Demostrar
Funciones de Vrile omplej - lse 7-8/08/01 [ ] ω : I =, R t I ω Donde : ω = u + iv( y) L derivd de ω se define como: [ ] ω : I =, R t I ω Donde : ω = u + iv L integrl definid de funciones ω sore t, se define
Aplicaciones de la integral indefinida
Aplicciones_de_l_integrl.n Aplicciones de l integrl indefinid Práctic de Cálculo, E.U.A.T,Grupos ºA y ºB, 2005 Est práctic muestr cómo clculr lguns áres y volúmenes utilizndo integrles. En cd cso dremos
Espacios conexos. Capítulo Conexidad
Capítulo 5 Espacios conexos 1. Conexidad En este capítulo exploraremos el concepto de conexidad en un espacio métrico, y estudiaremos algunas de sus aplicaciones. Definición 5.1. Decimos que el espacio
Espacios topológicos. 3.1 Espacio topológico
Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes
Tema 1.3: Concepto de derivada. Ecuaciones de Cauchy-Riemann. De nición y primeras propiedades de las funciones holomorfas
Tem 1.3: Concepto de derivd. Ecuciones de Cuchy-Riemnn. De nición y primers propieddes de ls funciones holomorfs Fcultd de Ciencis Experimentles, Curso 2008-09 E. de Amo L estructur de cuerpo pr C tiene
Lenguajes Regulares. Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza. Última revisión: Feb.
Lengujes Regulres Deprtmento de Informátic e Ingenierí de Sistems C.P.S. Universidd de Zrgoz Últim revisión: Fe. 2003 LengujesRegulres..ppt 27/03/2006 1 Índice Prolem de especificción de lengujes Lengujes
Matemáticas Discretas
Matemáticas Discretas Conjuntos (11) Curso Propedéutico 2009 Maestría en Ciencias Computacionales, INAOE Conjuntos (2) Dr Luis Enrique Sucar Succar [email protected] Dra Angélica Muñoz Meléndez [email protected]
Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores
Semn 2 2 Repso de vectores Repso de vectores Empecemos! Estimdo prticipnte, en est sesión tendrás l oportunidd de refrescr tus seres en cunto l tem de vectores, los cules tienen como principl plicción
Autómatas de Pila. Descripciones instantáneas o IDs. El Lenguaje de PDA. Equivalencia entre PDAs y CFGs INAOE (INAOE) 1 / 50
INAOE (INAOE) 1 / 50 Contenido 1 2 3 4 (INAOE) 2 / 50 Pushdown Automata Las gramáticas libres de contexto tienen un tipo de autómata que las define llamado pushdown automata. Un pushdown automata (PDA)
6.1 Sumas de Riemann e integral definida
Tem 6 Integrción Definid 6.1 Sums de Riemnn e integrl definid Supongmos que estmos interesdos en clculr el áre que se encuentr bjo un curv y = f(x) en un intervlo [, b] (pr simplificr, consideremos el
2.1 Ecuaciones de la recta en 2.2 Posiciones relativas.
. Ecuciones de l rect en. Posiciones reltivs. R Objetivos. Se persigue que el estudinte: Encuentre ecuciones de rects Determine si dos rects son coincidentes, prlels o si son intersecntes Encuentre punto
Laboratorio N 7, Asíntotas de funciones.
Universidd Diego Portles Fcultd de Ingenierí. Instituto de Ciencis Básics Asigntur: Cálculo I Lortorio N 7, Asíntots de funciones. Introducción. Ls síntots de un función son rects que seprn ls regiones
