ÁNGULO DE ELEVACIÓN Y ÁNGULO DE DEPRESIÓN
|
|
|
- Rosa Fidalgo Iglesias
- hace 9 años
- Vistas:
Transcripción
1 ÁNGULO DE ELEVACIÓN Y ÁNGULO DE DEPRESIÓN INDICADORES DE LOGRO Resolverás problemas con confianza, utilizando el ángulo de elevación. Resolverás problemas con seguridad, utilizando el ángulo de depresión. ÁNGULO DE ELEVACIÓN Es el ángulo que se forma entre la visual de un observador que mira hacia arriba y la horizontal ÁNGULO DE DEPRESIÓN Es el ángulo que se forma entre la visual de un observador que mira hacia abajo y la horizontal. Unidad de Informática Educativa 12
2 NOTA: El ángulo de elevación, siempre es igual al ángulo de depresión, y la visual es la hipotenusa. Calcula el lado que hace falta en el triángulo dado. Es decir la altura x del triángulo rectángulo que se forma entre la piscucha y la horizontal del ángulo de elevación. La razón trigonométrica que usaremos es la tangente, así: tan60 = Despejando x: tan60 = x = 10tan60 Operando x = 10( ) x = Entonces, tienes que la altura a la que se encuentra el cometa es de m a partir de la línea horizontal de la visión del niño. Ejemplo 1 Un hombre observa desde el suelo la torre de un edificio de 23 m de altura. Si el ángulo que forma la visual es de 45º, a qué distancia x del edificio se encuentra el hombre? La razón trigonométrica que usaremos es la tangente, así: tan45 = Despejando x: tan45 = x = 23tan45 Operando x = 23(1) x = 23 El hombre se encuentra a 23 m de distancia del edificio. Ejemplo 2 En un momento dado un avión se encuentra a 4 km al oeste, de un observador y a una determinada altura desde la horizontal. Si el ángulo de elevación es de 26º. Determina la altura del avión en ese momento. Unidad de Informática Educativa 13
3 Solución: Al observar la imagen se tiene dos datos y una incógnita. Como lo que se quiere saber es la altura entonces esto da como resultado un lado del triángulo. Por lo tanto la razón que se debe aplicar es: tan = co ca tan26 = x Despejando x = 4(tan26 ) x = 4( ) x = La altura a la que se encuentra el avión es 1.95 km con respecto al observador. Ejemplos de aplicación: Un piloto de un barco observa al vigía de un faro con un ángulo de elevación de 32º. Si la altura del faro es de 135 m, calcular la distancia del faro al barco, y la visual del piloto. Solución. Al leer el planteamiento del problema y compararlo a la imagen se deduce que la razón trigonométrica que se deberá aplicar es la TANGENTE para calcular la distancia del faro al barco. tan32 = co 135 tan32 = ca x x = La distancia del faro al barco es: m. Despejando x(tan32 ) = 135 m x = 135m tan x = m Al leer el planteamiento del problema y compararlo a la imagen se deduce que la razón trigonométrica que se deberá aplicar es la del (hipotenusa) del piloto con respecto al faro. SENO para calcular la visual sen32 = co h sen m y Despejando y(sen32 ) = 135m y = 135m sen32 y = 135m y = m La visual del piloto con respecto al faro es de: m. Unidad de Informática Educativa 14
4 ÁNGULO DE DEPRESIÓN Ejemplos: De la cima de un faro de 8 m de alto se divisa una lancha con un ángulo de depresión de 30º. Calcula la distancia entre la lancha y el pie del faro. Observa en el dibujo, el ángulo se forma en la parte superior. La información que se muestra en la imagen se puede apreciar que se necesita aplicar la razón trigonométrica llamada TANGENTE. Recuerda que el ángulo se forma en la parte alta o sea en el campo de visión del observador. tan30 = co ca tan30 = 8m x = Despejando x(tan30 ) = 8m x = 8m tan30 x 8m x = 13.86m La distancia entre la lancha y el pie del faro es m Un electricista subido en un poste, observa a su ayudante que está en el piso a 25 metros del pie del poste, con un ángulo de depresión de 40º. Calcular la altura del poste. Unidad de Informática Educativa 15
5 Solución La información que se muestra en la imagen se puede apreciar que se necesita aplicar la razón trigonométrica llamada TANGENTE. Recuerda que el ángulo se forma en la parte alta o sea en el campo de visión del observador. tan40 = co 25m tan40 = Despejando x(tan40 ) = 25m x = 25m ca x tan40 EJERCICIOS x = 25m x = m Por favor resolver en el cuaderno, el proceso para llegar a la respuesta correspondiente en cada ejercicio. 1. El piloto de un avión observa a un hombre en la calle de una ciudad con un ángulo de depresión de 42, como se muestra en la figura: Pregunta 1: Si la visual del piloto es de km, la altura del avión en ese momento es: A km B km C km D km Pregunta 2: La horizontal del piloto (distancia entre el avión y la ciudad) mide aproximadamente: A km B km C m D km Unidad de Informática Educativa 16
6 Ejercicio 2. Un navegante ubica (navega) su barco a 50 m del pie de un faro y observa la torre de éste con un ángulo de elevación de 53, (ver figura) Pregunta 3. La altura aproximada del faro: A. 9,90 m B m C m D m Pregunta 4: La longitud aproximada de la visual del barquero es: A. 90 m B. 83 m C. 59 m D. 24 m Unidad de Informática Educativa 17
NOTA: El ángulo de elevación, siempre es igual al ángulo de depresión, y la visual es la hipotenusa.
ÁNGULO DE ELEVACIÓN Y ÁNGULO DE DEPRESIÓN INDICADORES DE LOGRO Resolverás problemas con confianza, utilizando el ángulo de elevación. Resolverás problemas con seguridad, utilizando el ángulo de depresión.
Módulo 26: Razones trigonométricas
INTERNADO MATEMÁTICA 2016 Guía del estudiante Módulo 26: Razones trigonométricas Objetivo: Conocer y utilizar las razones trigonométricas para resolver situaciones problemáticas. Trigonometría Es la rama
PROBLEMAS DE APLICACIÓN DE LAS RAZONES TRIGONOMÉTRICAS 2
1 PROBLEMAS DE APLICACIÓN DE LAS RAZONES TRIGONOMÉTRICAS 2 EJERCICIOS DE APLICACIÓN 1. Desde un punto en el suelo, un estudiante observa la parte más alta de una catedral con un ángulo de elevación de
La lección de hoy es sobre Ángulos de Elevación y Ángulos de Depresión. El cuál es la expectativa para el aprendizaje de del estudiante T.2.G.
T.2.G.6-Pam Beach-Angles of Elevation and Depression. La lección de hoy es sobre Ángulos de Elevación y Ángulos de Depresión. El cuál es la expectativa para el aprendizaje de del estudiante T.2.G.6 Qué
Ángulos de Elevación y de Depresión
www.matebrunca.com 1 Trigonometría: elevación y depresión Ángulos de Elevación y de Depresión Definición Ángulo de Elevación. Si un objeto esta por encima de la horizontal, se llama ángulo de elevación
Ejemplos ÁNGULOS DE ELEVACIÓN Y ÁNGULOS DE DEPRESIÓN
ÁNGULOS DE ELEVCIÓN Y ÁNGULOS DE DEPRESIÓN Ejemplos 1. La medida del ángulo de depresión desde lo alto de una torre de 34 mde altura hasta un punto K en el suelo es de 80. Calcule la distancia aproimada
Matemática 3 año
Trabajo Práctico N 7: Razones trigonométricas Matemática 3 año - 2016 1) Un arquitecto tiene que hacer la maqueta de una rampa. Para eso comienza dibujando un triángulo rectángulo ABC, que cumple con estas
APLICACIONES DE LAS FUNCIONES TRIGONOMÉTRICAS EN NAVEGACIÓN Y TOPOGRAFÍA
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: Conceptual y ejercitación PERIODO GRADO FECHA
4º E.S.O. OPCIÓN B. Departamento de Matemáticas. I.E.S. Príncipe de Asturias. Lorca
Relación ejercicios trigonometría 1) Halla la altura de un edificio que proyecta una sombra de 6 m. a la misma hora que un árbol de 1 m. proyecta una sombra de 4 m. Sol: 49 m ) En un mapa, la distancia
TRIGONOMETRÍA. c) 315º = d) 320º = 4.- Expresa los siguientes ángulos como suma de un número entero de vueltas y un ángulo menor
TRIGONOMETRÍA 1.- Expresa en grados los siguientes ángulos medidos en radianes: a) b) c) 5π rad = 4 7π rad = 6 4π rad = 3 10π d) rad = 9 e) 0,25 π rad = f) 1,25 π rad = 2.-Expresa en radianes los siguientes
EJERCICIOS DE TRIGONOMETRÍA. 1) Expresa en radianes las medidas de los siguientes ángulos: 2) Expresa en grados sexagesimales los siguientes ángulos:
Colegio María Inmaculada MATEMÁTICAS ACADÉMICAS 4º ESO EJERCICIOS DE TRIGONOMETRÍA 1) Expresa en radianes las medidas de los siguientes ángulos: 2) Expresa en grados sexagesimales los siguientes ángulos:
Ficha Expresa los siguientes ángulos en radianes, dejando el resultado en función de :
Ficha 1 1. Expresa los siguientes ángulos en radianes, dejando el resultado en función de : 2. Expresa los siguientes ángulos en grados sexagesimales y dibuja los ángulos centrales que tienen cada una
UNIDAD 7 FUNCIONES TRIGONOMÉTRICAS
UNIDAD 7 FUNCIONES TRIGONOMÉTRICAS Uso de la calculadora. Calcula, usando calculadora: a) sen 0 b) cos 70 e) cos 89 0 f) tan c) tan 0 0 g) sen 80 7 d) sen 7 0 h) cos 6 8. Encuentra el valor del ángulo
Ejercicios resueltos de trigonometría
Ejercicios resueltos de trigonometría 1) Resuelve los siguientes triángulos: a) 3 b) 1º 0º c) 15 0º 2) Desde lo alto de una torre de 0m se observa, cuando se mira hacia delante, un árbol. Cuando se mira
1. Trigonometría 4º ESO-B. Cuaderno de ejercicios. Matemáticas JRM. Nombre y apellidos... INTRODUCCIÓN A LA TRIGONOMETRÍA Página 1
1. Trigonometría 4º ESO-B Cuaderno de ejercicios Matemáticas JRM Nombre y apellidos... INTRODUCCIÓN A LA TRIGONOMETRÍA Página 1 RESUMEN DE OBJETIVOS 1. Razones trigonométricas de un ángulo agudo. OBJETIVO
7. RAZONES TRIGONOMÉTRICAS
7. RAZONES TRIGONOMÉTRICAS 1. El papá de Pablo tiene una escalera que distando el pie de la escalera 1, 6m de la pared alcanza una atura sobre la pared de m. Entonces la dimensión de la escalera del papá
Ejercicios resueltos de trigonometría
Ejercicios resueltos de trigonometría 1) Resuelve los siguientes triángulos: 9m 40º 10m 120º 2) Desde lo alto de una torre, mirando hacia la izquierda, se ve un árbol que está a 10 metros de la base, y
EJERCICIOS DE REPASO. TRIGONOMETRÍA I (Tomado de internet. Autor: Alfonso Sánchez Marín)
EJERCICIOS DE REPASO TRIGONOMETRÍA I (Tomado de internet. Autor: Alfonso Sánchez Marín) 1º.- Desde el puente de mando de un barco se observa un acantilado próimo con un ángulo de 40º. Si la distancia a
Capítulo 4: Triángulos Oblicuángulos
Capítulo 4: Triángulos Oblicuángulos Los triángulos oblicuángulos son aquellos que no tienen un ángulo recto. Para conocer estos triángulos se necesita conocer tres elementos de los seis, uno de los cuales
3.5 cm. 4.2 cm. a. sen(α) = 9. b. sen(α) = 9 2. c. cot(α) = cm
COMPLEJO EDUCATIVO CANTON TUTULTEPEQUE GUIA DE TRABAJO Profesor Responsable: Santos Jonathan Tzun Meléndez. Grado: º Bachillerato. Asignatura: Matemática I Periodo: Fecha de Entrega: UNIDAD. UTILICEMOS
Razones trigonométricas DE un ángulo agudo de un triángulo
RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO RAZONAMIENTO Y DEMOSTRACIÓN Calcula razones trigonométricas en un triángulo rectángulo. Demuestra identidades trigonométricas elementales Demuestra identidades
RELACIÓN DE TRIGONOMETRÍA
RELACIÓN DE TRIGONOMETRÍA ) Resuelve el triángulo ABC rectángulo en A del que se sabe que: a cm y ˆB 7º0' La hipotenusa mide 7 m y un cateto 8 m. Un cateto mide 0 cm, y su ángulo opuesto 0º. ) De un triángulo
UTILIZAMOS LA TRIGONOMETRÍA.
UTILIZAMOS LA TRIGONOMETRÍA. RAZONAMIENTO Y DEMOSTRACIÓN Determina las demás razones trigonométricas a través de un dato. Aplica las definiciones de razones trigonométricas en la solución de ejercicios
Funciones Trigonométricas Básicas, Teorema del Seno y del Coseno
Trigonometría Básica Funciones Trigonométricas Básicas, Teorema del Seno y del Coseno Introducción a la Trigonometría Rama de la matemática que estudia las relaciones métricas entre los lados y los ángulos
TEMA 4: Trigonometría. 1.- Calcula las restantes razones trigonométricas de cada ángulo, si son conocidas:
Matemáticas Curso 011/1 º E.S.O. TEMA : Trigonometría. 1.- Calcula las restantes razones trigonométricas de cada ángulo, si son conocidas: a) = ¼ está situado en el primer cuadrante b) cotg = - π/ π c)
CUADERNILLO DE TRIGONOMETRÍA I.- SUBRAYE EL INCISO CORRESPONDIENTE A LA RESPUESTA CORRECTA
CUADERNILLO DE TRIGONOMETRÍA I.- SUBRAYE EL INCISO CORRESPONDIENTE A LA RESPUESTA CORRECTA 1.- CIENCIA QUE ESTUDIA LAS RELACIONES EXISTENTES ENTRE LOS ÁNGULOS Y LOS LADOS DE UN TRIÁNGULO: A) GEOMETRÍA
TRABAJO PARA LA TERCERA EVALUACION PARCIAL DE TRIGONOMETRIA Profra. Dulce Estrella Hernández Hernández.
NEXA A LA NORMAL DE NAUCALPAN TRABAJO PARA LA TERCERA EVALUACION PARCIAL DE TRIGONOMETRIA Profra. Dulce Estrella Hernández Hernández. Contesta a mano en hojas blancas, incluye todos los procedimientos.
TALLER DE RAZONES TRIGONOMÉTRICAS Y TRIÁNGULO RECTANGULO LEY DE SENOS Y COSENOS.
TALLER DE RAZONES TRIGONOMÉTRICAS Y TRIÁNGULO RECTANGULO LEY DE SENOS Y COSENOS. Encuentra el valor numérico de las siguientes expresiones sin usar calculadora: Resuelve los siguientes problemas: 21. En
UNIDAD II. FUNCIONES TRIGONOMÉTRICAS. Tema. Funciones trigonométricas
UNIDAD II. FUNCIONES TRIGONOMÉTRICAS Tema. Funciones trigonométricas FUNCIONES TRIGONOMÉTRICAS Introducción: Las funciones trigonométricas surgen de una forma natural al estudiar el triángulo rectángulo
Guía - 3 de Funciones y Procesos Infinitos: Trigonometría
Centro Educacional San Carlos de Aragón. Coordinación Académica Enseñanza Media. Prof.: Ximena Gallegos H. Guía - de Funciones y Procesos Infinitos: Trigonometría Nombre(s): Curso: Fecha. Contenido: Trigonometría.
PLAN DE CLASE #18 INSTITUCION EDUCATIVA: DOCENTE TITULAR: FECHA: GRADO: JORNADA:
PLAN DE CLASE #18 INSTITUCION EDUCATIVA: MADRE AMALIA DOCENTE TITULAR: JAIRO CASTRO ACOSTA FECHA: 13 DE JUNIO DEL 2012 GRADO: 10 JORNADA: MATINAL HORA: lunes; 7:40-9:30, martes; 6:45-8:35 NUMERO DE HORAS:
GUIA DE TRIGONOMETRÍA
GUIA DE TRIGONOMETRÍA Los ángulos se pueden medir en gos sexagesimales y ianes Un ángulo de 1 ián es aquel cuyo arco tiene longitud igual al io - 60º = ianes (una vuelta completa) - Un ángulo recto mide
Las funciones trigonométricas
Funciones trigonométricas de ángulos Las funciones trigonométricas Las funciones trigonométricas de ángulos se originaron de triángulos rectángulos que son los que tienen dos ángulos agudos y uno recto.
RAZONES TRIGONOMÉTRICAS
RAZONES TRIGONOMÉTRICAS Las Razones trigonométricas se definen comúnmente como el cociente entre dos lados de un triangulo rectángulo asociado a sus ángulos. SENO, COSENO Y TANGENTE Recordarás que eisten
TRABAJO PRÁCTICO Nº 4
TRIGONOMETRÍA TRABAJO PRÁCTICO Nº 4 Objetivos: Utilizar correctamente el sistema sexagesimal y radial, realizar el pasaje de un ángulo expresado en un sistema a otro. Aprehender las definiciones de las
UNIVERSIDAD PONTIFICIA BOLIVARIANA FACULTAD DE INGENIERÍA INGENIERÍA ADMINISTRATIVA
UNIVERSIDAD PONTIFICIA BOLIVARIANA FACULTAD DE INGENIERÍA INGENIERÍA ADMINISTRATIVA GUIA DE TRIGONOMETRÍA (Tomado de: wwwsectormatematicacl//nm_trigonometria_doc) Los ángulos se pueden medir en grados
1. Ejercicios propuestos
Coordinación de Matemática I (MAT01 1 er Semestre de 015 Semana 3: Guía de Ejercicios de Complementos, lunes 3 viernes 7 de Marzo Contenidos Clase 1: Teorema del seno y coseno. Resolución de triángulos.
6.- En un puerto de montaña aparece una señal de tráfico que señala una pendiente del 12 %. Cuál sería ese desnivel en grados?
TRIGONOMETRÍA 1.- En un triángulo rectángulo, la hipotenusa mide 8 dm y tgα 1' 43, siendo α uno de los ángulos agudos. Halla la medida de los catetos..- Si cos α 0' 46 y 180º α 70º, calcula las restantes
Trigonometría. 5. Calcula el valor de las siguientes expresiones, sin utilizar la calculadora: a) b) c) d)
Trigonometría 1. Razones trigonométricas de un ángulo agudo 1.1. Definiciones de seno de, coseno de y tangente de. 1.2. Relaciones entre las razones trigonométricas de un ángulo. 1.3. Razones trigonométricas
RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS
RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS ESTE TRIANGULO SERA EL MISMO PARA TODA LA EXPLICACIÓN RELACIÓN ENTRE LAS FUNCIONES
El coseno del ángulo agudo Ĉ es la razón entre la longitud del cateto contiguo y de la. hipotenusa a 1. Razones trigonométricas inversas Secante de Ĉ
.- MEDIDA DE ÁNGULOS. El grado sexagesimal (º) es cada una de las 60 partes iguales en las que se divide la circunferencia (submúltiplos: el minuto y el segundo). El radián (rad) es la medida del ángulo
EJERCICIOS DE RELACIONES TRIGONOMÉTRICAS (TEMA 1)
Colegio Diocesano Asunción de Nuestra Señora Ávila Tema EJERCICIOS DE RELACIONES TRIGONOMÉTRICAS (TEMA ).- Dados los ángulos = º y = 7º, calcula: a) + b) c) d).- Dados los ángulos = º 7 y = 7º, calcula:
1. Al convertir 135º a radianes se obtiene: a) b) c) d) 2. Al convertir a grados se obtiene:
1. Al convertir 135º a radianes se obtiene: a) b) c) d) 2. Al convertir a grados se obtiene: a) 36º b) 86º c) 120º d) 60º 7. Un dirigible que está volando a 800 m de altura, distingue un pueblo con un
17. Trigonometría, parte I
Matemáticas II, 2012-II La definición de las funciones trigonométricas Dos triángulos rectángulos que tienen otro ángulo igual tienen los tres lados iguales. Por ello son triángulos semejantes. La siguiente
Razones trigonométricas en triangulo rectángulo EJEMPLO Nº 1 Solución: Se tienen los siguientes datos:
Razones trigonométricas en triangulo rectángulo La trigonometría, enfocada en sus inicios solo al estudio de los triángulos, se utilizó durante siglos en topografía, navegación y astronomía. Esta rama
Guía - 2 de Funciones: Trigonometría
Centro Educacional San Carlos de Aragón. Coordinación Académica Enseñanza Media. Sector: Matemática. Nivel: NM 4 Prof.: Ximena Gallegos H. Guía - de Funciones: Trigonometría Nombre(s): Curso: Fecha. Contenido:
Curso RELACIÓN DE PROBLEMAS Y CUESTIONES DE TRIGONOMETRÍA PARA 4º DE ESO OPCIÓN B (CPM) GRADO 1
Curso 12-13 RELACIÓN DE PROBLEMAS Y CUESTIONES DE TRIGONOMETRÍA PARA 4º DE ESO OPCIÓN B (CPM) Graduados según su dificultad siendo Grado 1: Muy fácil Grado 5: Muy difícil GRADO 1 1. Prueba que en un triángulo
Tutorial MT-b9. Matemática Tutorial Nivel Básico. Trigonometría en triángulo rectángulo
45678904567890 M ate m ática Tutorial MT-b9 Matemática 006 Tutorial Nivel Básico Trigonometría en triángulo rectángulo Matemática 006 Tutorial Trigonometría en triangulo rectángulo.un poco de historia:
TRIGONOMETRÍA. d) 0,71 rad. 5.- Calcula las diagonales de un rombo sabiendo que sus ángulos son 60º y 120º y que sus lados miden 6cm.
TRIGONOMETRÍA 1.- Pasa de grados a radianes y viceversa: a) 1º b) 1º c) π rad 4 d) 0,71 rad.- Calcula las razones trigonométricas del ángulo A del siguiente triángulo rectángulo..- Calcula las razones
ESTUDIANTE: 4 de marzo 2010
LICEO CANADIENSE SUR 3RO. BASICO SECCIÓN JORNADA MATEMÁTICA REPASO DE ANGULOS Y TRIÁNGULOS ESTUDIANTE: 4 de marzo 2010 Observaciones: 1 1. Ángulos: Este ángulo se llama porque 1 1 Este ángulo se llama
EJERCICIOS DE TRIÁNGULOS CON SOLUCIÓN
EJERCICIOS DE TRIÁNGULOS CON SOLUCIÓN 1. Uno de los catetos de un triángulo rectángulo mide 4,8 cm y el ángulo opuesto a este cateto mide 54º. Halla la medida del resto de los lados y de los ángulos del
GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS
GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS Para el estudio de la Trigonometría es importante tomar en cuenta conocimientos básicos sobre: concepto de triángulo, su clasificación, conceptos de ángulos
TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS
IES IGNACIO ALDECOA 19 TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS 4.1 Medida de ángulos. Equivalencias. Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas
INSTITUCION EDUCATIVA MANUELA BELTRAN APROBADA SEGÚN RESOLUCION DE FUSION CON NUMERO 2049 DE SEPTIEMBRE DE 2002 y 2487 DE NOVIEMBRE DEL 2010
Versión: 02 Fecha: 01-01-2012 Página 1 de 7 Área: MATEMATICA Asignatura: TRIGONOMETRIA Curso(s): DECIMO Docente: ERNESTO CUADROS Período 2 : 1 de abril- 23 de junio /2013 Objetivos: (uno general y varios
GUÍA DE TRABAJO INDEPENDIENTE O CON ACOMPAÑAMIENTO
NOMBRE DEL ACADÉMICO DOCENTE: ASIGNATURA: TRABAJO INDEPENDIENTE Gloria Esperanza Puetaman Guerrero MBX14 TRABAJO CON TEMA O CONCEPTO: APLICACIONES TRIGONOMETRIA. COMPETENCIA (S) Utilizar adecuadamente
Ángulos y razones trigonométricas
Departamento Matemáticas TEMAS 3 y 4. Trigonometría Nombre CURSO: 1 BACH CCNN 1 Ángulos y razones trigonométricas 1. Hallar las razones trigonométricas de los ángulos agudos del siguiente triángulo rectángulos.
a a Nota: Como norma general se usan tantos decimales como los que lleven los datos
1. Sea ABC un triángulo rectángulo en A, si sen B 1/3 y que el lado AC es igual a cm. Calcular los otros lados de este triángulo. Mediante la definición de sen Bˆ, se calcula el lado c. b b sen Bˆ a 30
Problemas de trigonometría 4º de ESO
Problemas de trigonometría 4º de ESO 1. Halla la longitud de los vientos que sujetan la tienda de campaña y la longitud del lado x. 2. Una cinta transportadora de 8 m de longitud y una inclinación de 50º
Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas
Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Algebra y Trigonometría Taller 8: Funciones trigonométricas Dado el ángulo α, halla la medida exacta del ángulo en radianes o en grados
5.5 LÍNEAS TRIGONOMÉTRICAS
5.5 LÍNES TRIGONOMÉTRIS Sea (O, ) una circunferencia con centro en el origen de coordenadas O(0, 0) radio la unidad. Si se construe un ángulo con vértice en el origen sentido positivo podemos obtener las
II. TRIGONOMETRÍA. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que existe ebtre dos líneas que se cortan.
II. TRIGONOMETRÍA La trigonometría se encarga del estudio de la medida de los triángulos, es decir de la medida de sus ángulos y sus lados. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que eiste ebtre
GRADO: GRUPO ALUMNO(A)
COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel. 5604-3628, 5605-1509 MATEMATICAS TERCER GRADO SECCIÓN SECUNDARIA TRABAJO ESPECIAL DE REPASO ALUMNO(A) GRADO: GRUPO
TEOREMA DE PITÁGORAS
TEOREMA DE PITÁGORAS 1. Triángulos rectángulos. Teorema de Pitágoras.. Demostraciones visuales del Teorema de Pitágoras. 3. Ternas pitagóricas. 4. Aplicaciones del teorema de Pitágoras. 4.1.Conocidos los
PÁGINA 76. sen 34 = BC AB = = 0,56. cos 34 = AC AB = = 0,82. tg 34 = BC AC = = 0,68. Pág mm. 35 mm. 51 mm
Soluciones a las actividades de cada epígrafe PÁGIN 76 Pág. 1 1 Dibuja sobre un ángulo como el anterior, 34, un triánguo rectángulo mucho más grande. Halla sus razones trigonométricas y observa que obtienes,
EJERCICIOS RESOLUCIÓN DE TRIÁNGULOS Y RAZONES TRIGONOMÉTRICAS 1º BACH
1. Para calcular la anchura AB de un río se elige un punto C que está en la misma orilla que A y se toman las siguientes medidas: AC=67 m; BAC=99º; ACB=20º Cuál es la distancia entre A y B? 2. Un pasillo
Serie de ejercicios para el examen de Matemáticas II PAE-Periodo
Serie de ejercicios para el examen de Matemáticas II PAE-Periodo 016-1 1- Se desea cercar un terreno de forma cuadrada que tiene una superficie de 400 m. Cuántos metros de tela de alambre se necesitan?
3.- Calcula los ángulos de un rombo cuyas diagonales miden 12 y 8 m.
Departamento de Matemáticas 1.- Sabiendo que tga = 4, calcula sena, cosa y a. 2.- Sabiendo que sena = -0 4, calcula tga, cosa y a. 3.- Calcula los ángulos de un rombo cuyas diagonales miden 12 y 8 m. 4.-
ω C) tan θ C) 1 se n θ cos θ tan θ B) sec θ D) sen θ E) 1 csc θ C) senx sen ω + cosω sen ω + + es igual a: csc x sec + D) 1 E) 0
Sesión Unidad II Funciones trigonométricas. D. Identidades trigonométricas..- La expresión sin( x) es igual a: Sec(x) ) Tan(x) C) Csc(x) D) Cot(x) E) Cos(x).- sin ( x ) equivale a: Cos (x) ) + sin( x )
EJERCICIOS DE TRIGONOMETRÍA
-Calcula las restantes razones trigonométricas del ángulo α en los siguientes casos: a) α I cuadrante; tg α=/4 b) α IV cuadrante; cos α=4/5 c) α I cuadrante; sen α=/5 d) α II cuadrante; cos α=-/ e) α III
RESOLUCIÓN DE TRIÁNGULOS
RESOLUCIÓN DE TRIÁNGULOS Triángulos rectángulos, isósceles o equiláteros 1.- Resuelve los triángulos rectángulos, en los que A=90º: a) b=3, c=3; b) a=5; B=37º; c) c=15, b=8. Sol: a) B=45º, C=45º, b=3 2
EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos:
Seminario Universitario Matemática EJERCICIOS MÓDULO 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: a) 5 b ) 170 c ) 0 d ) 75 e) 10 f ) 50 g ) 0 h ) 87 i ) 08 j ) 700 k
Edificio y árbol, qué altura tienen?
Nivel: 3.º medio Subsector: Matemática Unidad temática: Edificio y árbol, qué altura tienen? Joaquín es un joven inquieto, y entre muchas cosas que le llaman la atención es que cada vez que él camina,
TEMA 3. TRIGONOMETRÍA
TEMA 3. TRIGONOMETRÍA Definiciones: 0 30 45 60 90 180 270 360 Seno 0 1 0-1 0 Coseno 1 0-1 0 1 Tangente 0 1 0 0 Teorema del seno: Teorema del coseno: Fórmulas elementales: FÓRMULAS TRIGONOMÉTRICAS. Suma
SOLUCIÓN DE PROBLEMAS
TERCER PERIODO TALLER PEDAGÓGICO: Solución problemas - de triángulos rectángulos sencillos y compuestos. Docente: Esp. Manuel Quiroga Herrera. LOGRO: Solucionar problemas de aplicación con el teorema de
FUNCIONES TRIGONOMÉTRICAS
FUNIONES TRIGONOMÉTRIS 1. Determina los valores faltantes en la siguiente tabla aplicando el teorema de Pitágoras y/o funciones trigonométricas: Funciones trigonométricas Lados Ángulos a b c 10 1 7 13
4, halla sen x y tg x. 5
TRIGONOMETRÍA 1º.- Sabiendo que 90 º < x < 70 º y que 4, halla sen x y tg x. 5 a) sen x? ; de la fórmula fundamental sen x + cos x 1 se obtiene sen x 1 - cos x. 9 5 de donde sen x 5 3, solución positiva
(determinación de dominio, imagen y ceros) de las gráficas de las funciones seno, coseno y tangente. º 135º 120º 240º 300º 315º 270º
TRABAJO PRÁCTICO Nº 5 FUNCIONES TRIGONOMÉTRICAS En este eje continuaremos con la competencia básica de Resolución de Problemas y además las siguientes competencias específicas 1. Analizar una función o
RESOLUCIÓN DE SITUACIONES PROBLEMA APLICANDO LOS TEOREMAS DEL SENO Y DEL COSENO REFUERZO Y RECUPERACIÓN
RESOLUCIÓN DE SITUACIONES PROBLEMA APLICANDO LOS TEOREMAS DEL SENO Y DEL COSENO REFUERZO Y RECUPERACIÓN Institución Educativa Eduardo Fernández Botero - Amalfi Diseñado por: MARÍA CRISTINA MARÍN VALDÉS
UNIDAD III TRIGONOMETRIA
UNIDAD III TRIGONOMETRIA 1 UNIDAD III TRIGONOMETRIA TEMARIO. 1. Relación del par ordenado en un plano bidimensional. 1.1. El plano coordenado 1.2. Localización de puntos en los cuatro cuadrantes 2. Ángulos
MATEMÁTICA Trigonometría Guía Nº 5
MATEMÁTICA Trigonometría Guía Nº 5 APELLIDO: Prof. Karina G. Rizzo 2. Consideremos el triángulo abc rectángulo en b. c a) completa: la es ac los s son ab y bc a b b) teniendo en cuenta el ángulo a, tacha
Los Modelos Trigonométricos
Los Modelos Trigonométricos Eliseo Martínez, Manuel Barahona 1. Introducción Normalmente, por motivos históricos, y de acuerdo al itinerario seguido por la humanidad en la invención de la trigonometría,
Trigonometría Resolución de triángulos.
1. Dada la notación habitual, resuelve los siguientes triángulos: Trigonometría Resolución de triángulos. a) a=10cm b=(t. Seno) 10 sen(0º)/sen(15º) = 4,18 cm c=(t. Seno) 10 sen(5º)/sen(15º) = 7 cm Â= -(0º+5º)=15º
FACTORIZACIÓN DE EXPRESIONES CUADRÁTICAS
FACTORIZACIÓN DE EXPRESIONES CUADRÁTICAS 4.1.1 4.1.4 En las Lecciones 4.1.1 a 4.1.4, los alumnos factorizarán epresiones cuadráticas. Esto los prepara para resolver ecuaciones cuadráticas en el Capítulo
TEOREMA DE PITÁGORAS. INTRODUCCIÓN
TEOREMA DE PITÁGORAS. INTRODUCCIÓN Pitágoras es muy conocido, a pesar de que no publicó ningún escrito durante su vida. Lo que sabemos de Pitágoras ha llegado a través de otros filósofos e historiadores.
MATEMÁTICAS I Pendientes 1ª Parte
MATEMÁTCAS Pendientes ª Parte Calcula: ) ( ) ( ) ) d a bi a b ab d i ) a b ab RADCALES -6 ) ab a b a b ) ( ) a a a 6) b c 6 a a b b c 6 8 7) a bc 9 a bc 8) 7 8 8 9) 80 80 0 0) 8 0 6 ) 7 7 ) 7 8 0 6 ) 7
PROGRAMA DE MATEMÁTICAS PRE Y POST PRUEBA TRIGONOMETRÍA: MATE TRIGONOMETRÍA AVANZADA : MATE Prof. Puntuación:
PROGRAMA DE MATEMÁTICAS PRE Y POST PRUEBA TRIGONOMETRÍA: MATE 11-166 TRIGONOMETRÍA AVANZADA : MATE 11-167 PRE PRUEBA: Nombre: POST PRUEBA: Fecha: Prof. Puntuación: Instrucciones Generales Lee cuidadosamente
Propiedad fundamental de las proporciones: En toda proporción, el producto de los extremos es igual al producto de los medios:
UNIDAD TEMATICA III Razones y proporciones Temario: Razón, proporción. Propiedades. Uso de razones y proporciones. Teorema de Thales. Razones trigonométricas: definición. Teorema de Pitágoras. Resolución
EJERCICIOS de TRIGONOMETRÍA
EJERCICIOS de TRIGONOMETRÍA GRADOS Y RADIANES: 1. Pasar los siguientes ángulos a radianes: a) b) 45º c) 60º d) 90º e) 180º f) 270º g) 360º ) 135º i) 235º j) 75º 2. Pasar los siguientes ángulos, epresados
RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS (NO RECTÁNGULOS).
INSTITUION EDUTIV L PRESENTION NOMRE LUMN: RE : MTEMÁTIS SIGNTUR: MTEMÁTIS DOENTE: JOSÉ IGNIO DE JESÚS FRNO RESTREPO TIPO DE GUI: onceptual y ejercitación PERIODO GRDO N FEH DURION 3 10 8 gosto 8 DE 2016
Unidad I Triángulos rectángulos
Unidad I Triángulos rectángulos Última revisión: 07-Enero-2010 Elaboró: Ing. Víctor H. Alcalá-Octaviano Página 1 Tema 1. Teorema de Pitágoras Matemáticas II El Teorema de Pitágoras lleva este nombre porque
= + = 1+ Cuarta relación fundamental
1.- Determina las razones trigonométricas de los siguientes ángulos, relacionándolos con algunos ángulos notables (0º, 0º,, 60º, 90º, 180º, 70º, 60º), indicando en qué cuadrante se encuentran: a) 40º b)
COMPLEJO EDUCATIVO CANTON TUTULTEPEQUE GUION DE CLASE. Profesor Responsable: Santos Jonathan Tzun Meléndez.
COMPLEJO EDUCATIVO CANTON TUTULTEPEQUE GUION DE CLASE Profesor Responsable: Santos Jonathan Tzun Meléndez. Grado: 1º año de bachillerato Asignatura: Matemática Tiempo: Periodo: UNIDAD 1. UTILICEMOS LAS
REPASO EXAMEN SEGUNDO PARCIAL PARTE 2. 1) Determina el valor de cada incógnita C. x 2
REPASO EXAMEN SEGUNDO PARCIAL PARTE TEMA 1: SEMEJANZA DE TRIÁNGULOS Y TEOREMA DE THALES 1) Determina el valor de cada incógnita A B C 3x 6 x 1 x 3 7 3 x 1 4 x 1 1 15 D E F 3 x 3 x 3 5 x 11 4 5 4x 5 7 3x
Matemáticas NOMBRE DEL ESTUDIANTE: TEOREMA DEL SENO. La ley de los senos se aplica cuando los datos que se conocen son:
COLEGIO JUAN LUIS LONDOÑO IED ÁREA: Matemáticas NOMBRE DEL PROFESOR: David Melo Leguizamón ASIGNATURA: Matemáticas CUESTIONARIO TRIMESTRE 2 NOMBRE DEL ESTUDIANTE: TEOREMA DEL SENO CURSO: Decimo L-GE-13
Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Departamento de Matemáticas
Facultad de Ciencias Exactas y Naturales Departamento de Matemáticas Algebra y Trigonometría Taller 7: Funciones Trigonométricas de Números Reales Encuentre el ángulo complementario de α. 1) α = 7 39 58
TREBALL D ESTIU MATEMATIQUES 4t ESO
Pàgina 1 de 7 Alumnes suspesos: fer tot el treball obligatòriament. Altres alumnes: Es recomana que realitzeu aquells apartats on heu tingut més dificultats durant el curs. 1.- Efectúa las siguientes operaciones
; b) Calcular el resultado de las siguientes operaciones lo más simplificado posible: ; b) 2
MATEMÁTICAS - SEPTIEMBRE TAREA DE VERANO 4º E.S.O.-B 4 1. Simplificar potencias: a) 4 ( ) 5 5 81 9 ; b) 4 0 5 9 5 4 ; c) 4 0 15 5 5 4 ; d) 9000 0'000000006 6000000 0'0007. Calcular el resultado de las
Aplicaciones de la Trigonometría
Aplicaciones de la Trigonometría José Antonio Salgueiro González Departamento de Matemáticas IES Bajo Guadalquivir Lebrija - Sevilla dpto mates [email protected] 23 de marzo de 2007 José Antonio Salgueiro González
Teorema del Seno. Teorema del Coseno
Para ver una explicación de cada Teorema y algunos ejemplos de solución de triángulos y problemas de aplicación, haga Click sobre el nombre: Teorema del Seno Teorema del Coseno Teorema del Seno Para aclarar
