UNIDAD 7 FUNCIONES TRIGONOMÉTRICAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIDAD 7 FUNCIONES TRIGONOMÉTRICAS"

Transcripción

1 UNIDAD 7 FUNCIONES TRIGONOMÉTRICAS Uso de la calculadora. Calcula, usando calculadora: a) sen 0 b) cos 70 e) cos 89 0 f) tan c) tan 0 0 g) sen 80 7 d) sen 7 0 h) cos 6 8. Encuentra el valor del ángulo para cada valor dado de la función trigonométrica: a) sen C = b) tan B = 0. c) cos X = d) cos A = e) sen B = g) sen Y = f) tan =. 9 h) cos = 0. 7 Triángulos Especiales. Calcula, sin utilizar tablas o calculadora, especiales dados: a) sen 60 b) sec 0 e) csc f) sen 80 i) tan 0 j) cot las funciones trigonométricas de los ángulos c) g) k) cos 90 tan 70 sec 0 d) h) l) cot 0 cos csc 60. Sin utilizar tablas ni calculadora, calcula y simplifica: a) sen cos = b) sen + 8 cos = cos 60 cos 0 csc 0 sen c) Solución de triángulos rectángulos, ángulos de depresión. Considera el ABC, en donde el vértice del ángulo recto es C. Resuelve el triángulo ABC con los datos dados en cada inciso: b) a = 7, b = a) c =, c) a =, b =, c = 6. Encuentra los valores que se piden en cada ejercicio de acuerdo con los datos dados en la figura correspondiente: a) Hallar x, y, z, w b) Si ST = unidades, encontrar US y RV S D z U w E A R T y 0 0 x 9 C V

2 7. Resuelve cada uno de los siguientes problemas sobre triángulos rectángulos: a) La longitud de un hilo que sostiene un papalote es de 0 m y su ángulo de elevación es de 0. Hallar la altura a que se encuentra el papalote suponiendo que el hilo que la sostiene se mantiene recto. b) Desde la parte superior de una torre de 0 m de altura, se observa que el ángulo de depresión de un objeto que está a nivel con la base de la torre es de 7. Cuáles son las distancias del objeto a la punta y a la base de la torre? c) Cuál es el ángulo de elevación de un plano inclinado si se eleva m en una distancia de 0 cm? d) Un poste de 0 m de longitud proyecta una sombra de 8. 9 m. Hallar el ángulo de elevación del sol. e) Un árbol se ha partido al caerle un rayo, en un punto situado a m del suelo, pero no se encuentra completamente roto; el extremo descansa sobre el suelo formando con él un ángulo de 0. Qué altura tenía el árbol? f) De un faro que está a 00 m sobre el nivel del mar, un observador ve dos botes, P y Q, en línea recta. Si los ángulos de depresión medidos por el observador son de 6 y respectivamente, hallar la distancia entre los dos botes. g) Con los datos que se dan en la figura, calcular la altura,, del edificio. h) Calcular la altura del edificio con los datos de la figura: h 0 8 a 0 m i) Cuando cierto rascacielos se ve desde arriba de un edificio de 0 m de altura, el ángulo de elevación es de 9. Cuando se ve desde la acera, al pie del edificio pequeño, el ángulo de elevación es de 6. Calcule la altura del rascacielos y la distancia entre los edificios. j) Una cabaña con forma de triángulo isósceles, tiene 7 m de altura en el centro y m de ancho en la base. Calcule el ángulo que forma el techo con el piso.

3 k) Desde la cumbre de una montaña se observa que los ángulos de depresión de la parte superior e inferior de una torre de 97 m de altura son y, respectivamente. Qué altura sobrepasa la montaña a la torre? UNIDAD 8 FUNCIONES TRIGONOMÉTRICAS DE CUALQUIER ÁNGULO Definir grados y radianes, conversiones de un sistema a otro c) Convierte el ángulo dado, de grados sexagesimales a radianes o de radianes a grados sexagesimales, según se indique: a) b). c). d) 8 e) 70 f) 08 g). rad h).7 rad rad i) j) 7 rad 6 k) rad l) rad Ángulos en posición normal 8. Traza en posición normal los ángulos cuyos lados terminales pasan por el punto dado. Designe por el ángulo positivo y por el ángulo negativo. Indica el cuadrante de cada ángulo: a) (,) b) (0, ) c) ( 7, ) d) (, ) f) (,) g) ( 7, 9) h) (, 0 ) e) (, ) 9. Dibuja los siguientes ángulos en posición normal, indicando mediante una flecha la amplitud y el sentido de rotación: a) 90 c) 60 d) 80 b) e) 87 f) 80 g) 60 h) Dada una función trigonométrica de un ángulo agudo de un triángulo rectángulo, halla las demás funciones: c) csc 7 a) sen d) cot b) cos e) tan 0 h) tan f) sec 7 g) sen 9. Calcula lo que se pide en cada inciso: ( a ) Si cos, hallar sen cos ( b ) Si sen y, hallar tan x. Hallar las funciones trigonométricas del ángulo que satisface las condiciones dadas: (a) sen en el II cte. (b) cos en el III cte. (c) tan en el IV cte.

4 ( d ) cot en el IVcte. ( e ) sec en el I cte. ( f ) csc en el IIcte.. Halla el valor de sen, si cos y tan es positiva. Ángulos reducidos. Previa reducción al primer cuadrante, calcula el valor del ángulo, en cada caso: ( a ) sen = 0. ( b ) cot =. ( c ) tan = ( d ) sen = 0. ( e ) sec =. 8 ( f ) cos = 0. UNIDAD 0 TRIÁNGULOS OBLICUÁNGULOS. En cada uno de los ejercicios siguientes, resuelve el triángulo oblicuángulo que corresponde a los datos dados y calcula su área: a) a = 7, b = 9, c = b) a = 6, c = 0, B = 6 c) B = 9, b =., C = d) a = 7, B = 8, C = 0 e) a =, B, A = 86 f) b =, c =, A = 67 g) c =, B = 8, C = 78 8 h) c =., C = 6 6, a =. 7 i) a =, b = 7, c = 9 j) A =, B = 6, a = k) b =., C =, B = 9 l) B = 8, C = 8, a =. 7 m) a = 0, c = 0, B = 0 n) A = 7 0, B = 0, a =. 6. Resuelve cada uno de los siguientes problemas sobre triángulos: a) Desde los puntos A y B, distanciados 00 m uno del otro, sobre una playa, se observa un barco C, en donde se tiene que CAB = 70 y CBA =. Cuál es la distancia del barco al punto A?. A qué distancia está el barco de la playa representada por AB? b) Calcular la distancia entre dos puntos A y B, separados por un obstáculo. Se ha elegido un punto de referencia C y se han obtenido las medidas CA = 6 m, CB =. m y C = 68. Cuál es la distancia AB?

5 c) Se va a construir un túnel atravesando una montaña, como se muestra en la figura. Si se tienen las medidas ACB = 79., AC = 8 m y BC = 8 m, calcular la longitud del túnel AB y la altura h de la montaña. d) La ruta más rápida entre dos ciudades A y B, separadas por un valle es viajando por dos caminos rectos de. 6 km y de. 9 km que se cruzan formando un ángulo de 0. Si se construyera un puente sobre el valle y se hiciera el camino recto, cuántos kilómetros se ahorrarían? e) Dos observadores militares que están a una distancia de km uno del otro sobre una llanura horizontal, determinan que los ángulos de elevación de un avión que está sobre la recta que los une miden, respectivamente, 0 y 60. Hallar la distancia del avión a cada uno de los observadores y la altura a que se encuentra el avión sobre el nivel de la llanura. f) Un faro está situado a 0 km al noroeste de un muelle. Un barco parte del muelle a las 9:00 a. m., y navega hacia el oeste a una velocidad constante de km / h. A qué hora se encontrará a 8 km del faro? g) Determinar el valor de CD, a partir de los datos de la figura siguiente: C D 0 B 00 m A

6 UNIDAD IDENTIDADES TRIGONOMÉTRICAS Identidades trigonométricas recíprocas, pitagóricas, cociente Haciendo uso de las identidades de la tabla que se da enseguida, demuestra cada una de las identidades que se piden: FUNCIONES RECIPROCAS IDENTIDADES PITAGORICAS IDENTIDADES POR COCIENTE csc sec cot sen cos tan sen cot cos tan sec csc sen cos cos sen tan cot. cos sen cos. cos ( sen )( sen ). tan sec sec sen cos. cos sec sec csc. sec 6. sen cos sen sen tan cot 7. sen cos tan sec tan 8. sec tan cos sen tan 9. cos x sen x sen y sen x cos x 0. cot y csc y tan x cot x cos y sec x csc x tan x cot x tan ( cot ). tan x. tan x tan cot. tan csc A. csc A sec A csc A cos A cos A sen A tan A. sen cos sen cos sen x tan x 6. sen x tan x csc x cot x 7. cos sen cos A sen A sen A 8. cot A cos A cos cos sen A 9. sec sec tan A sen A 0. sec A cos A sec tan csc A cot A csc A cot A 6

7 . sec tan sec tan cot xcos x csc x( sen x) sen x sec tan. sen x sen y cos y sec y sen y sec x tan x. sen x sen y tan y. csc A cot A csc A csc A 6. cos A cos A sen A 7. cot x sec x csc x( sen x) tan x Identidades trigonométricas, ángulos dobles y mitad Haciendo uso de la siguiente tabla de identidades para ángulos dobles y mitad, demostrar las identidades que se dan en cada caso: FORMULAS DE DESARROLLO ANGULOS DOBLES ANGULOS MITAD sen ( ) sen cos cos sen sen ( ) sen cos cos sen cos( ) cos cos sen sen sen sen cos cos cos cos sen sen sen cos cos cos cos( ) cos cos sen sen tan tan tan( ) tan tan tan tan tan( ) tan tan tan tan tan tan cos cos cos sen sen cos. sen ( ) sen. cos ( ) cos. sen cos. tan sen cos. sen sen sen 6. sen cos sen tan cos sen A sen A tan A tan sen cos A cos A 7

8 sen x 9. cot x sec x csc x sen x tan x sen x 0. tan x sen x. sen x sen x sec x sen x sec x cos x sen x. csc x sen x cos x. cos A sec sec A A sec x sec y. csc( x y ) tan x tan y sen A cos A sen( x y). sec A 6. tan x tan y sen A cos A cos x cos y tan( ) tan 8. tan tan tan sec 7. tan tan( ) tan 9. tan x cos x cos x 0. cos ( x y) cos( x y) cos x sen y cos. sen sen cos sen cos. cot tan sen cos tan. tan( º ) tan. tan cot csc 7. cos cos cos. sen ( x y) sen ( x y) cos y cos x 6. cos cos sen sen sen tan tan tan 8. tan tan tan 9.. secx csc csc x x sen ( x 7º ) cos ( x 7º ) cos ( x 7º ) sen ( x 7º ) sen x. cos x sen x 0. sen ( x y) sen ( x y) sen x sen y 8

9 UNIDAD ECUACIONES TRIGONOMÉTRICAS Resuelva las siguientes ecuaciones trigonométricas en el intervalo 0,. sen x 0 Sol. x, 6 6. sen x 0 Sol. x,. sec x 0 7 Sol. x,,, 7. sen sen cos 0 Sol. 0,,, 9. sec cos sec 0 7 Sol.,. tan sec 7 Sol.,,, cos sen Sol.,. sen cos Sol. 0, 7. sen csc 7 Sol.,, tan cot sec Sol., 6 6. sen sen 0 Sol.. cos cos 0 Sol.,. sen x cos x 0 Sol. x 0,,,. cos x 0 Sol. x,,, 6. csc 0 7 Sol.,,, cos cos Sol.,,, 0. sen cos cos 0 7 Sol.,,, 6 6. sec tan Sol. 0,,,. cos sen Sol., 6. tan tan 0 Sol., 8. cos sen Sol. 0, 0. tan cot 7 Sol.,,, 6 6. sen sen 0 7 Sol.,, 6 6. tan ( ) tan Sol.,,, 9

10 . sen cos 0 6. tan 9 0 Sol., 7 Sol.,,,,, sen cos cos Sol.,,,,,,,,, cos sec cos 9. sen cos 0 7 Sol.,,,,, Sol.,,, sen Sol.,,,,, cos 0. sen cos 7 9 Sol. 0 Sol.,,,. cos sen Sol.,,,,,,, ,, 6 0

TRABAJO PARA LA TERCERA EVALUACION PARCIAL DE TRIGONOMETRIA Profra. Dulce Estrella Hernández Hernández.

TRABAJO PARA LA TERCERA EVALUACION PARCIAL DE TRIGONOMETRIA Profra. Dulce Estrella Hernández Hernández. NEXA A LA NORMAL DE NAUCALPAN TRABAJO PARA LA TERCERA EVALUACION PARCIAL DE TRIGONOMETRIA Profra. Dulce Estrella Hernández Hernández. Contesta a mano en hojas blancas, incluye todos los procedimientos.

Más detalles

GUÍA PARA EL EXAMEN EXTRAORDINARIO DE TRIGONOMETRÍA 1ra. parte Profra. Citlalli A. García García.

GUÍA PARA EL EXAMEN EXTRAORDINARIO DE TRIGONOMETRÍA 1ra. parte Profra. Citlalli A. García García. GUÍA PARA EL EXAMEN EXTRAORDINARIO DE TRIGONOMETRÍA 1ra. parte Profra. Citlalli A. García García. 1) Define los siguientes conceptos: a) punto b) línea c) recta d) plano e) segmento f) rayo g) ángulo 2)

Más detalles

EJERCICIOS DE TRIGONOMETRÍA. 1) Expresa en radianes las medidas de los siguientes ángulos: 2) Expresa en grados sexagesimales los siguientes ángulos:

EJERCICIOS DE TRIGONOMETRÍA. 1) Expresa en radianes las medidas de los siguientes ángulos: 2) Expresa en grados sexagesimales los siguientes ángulos: Colegio María Inmaculada MATEMÁTICAS ACADÉMICAS 4º ESO EJERCICIOS DE TRIGONOMETRÍA 1) Expresa en radianes las medidas de los siguientes ángulos: 2) Expresa en grados sexagesimales los siguientes ángulos:

Más detalles

TRIGONOMETRÍA. c) 315º = d) 320º = 4.- Expresa los siguientes ángulos como suma de un número entero de vueltas y un ángulo menor

TRIGONOMETRÍA. c) 315º = d) 320º = 4.- Expresa los siguientes ángulos como suma de un número entero de vueltas y un ángulo menor TRIGONOMETRÍA 1.- Expresa en grados los siguientes ángulos medidos en radianes: a) b) c) 5π rad = 4 7π rad = 6 4π rad = 3 10π d) rad = 9 e) 0,25 π rad = f) 1,25 π rad = 2.-Expresa en radianes los siguientes

Más detalles

Pre-PAES 2016 Teorema de Pitágoras y Razones Trigonométrica

Pre-PAES 2016 Teorema de Pitágoras y Razones Trigonométrica Pre-PAES 2016 Teorema de Pitágoras y Razones Trigonométrica Nombre: Sección: Un ángulo es la abertura formada entre dos semirectas o rayos, unidas en un punto común llamado vértice. Los lados del ángulo

Más detalles

Ficha Expresa los siguientes ángulos en radianes, dejando el resultado en función de :

Ficha Expresa los siguientes ángulos en radianes, dejando el resultado en función de : Ficha 1 1. Expresa los siguientes ángulos en radianes, dejando el resultado en función de : 2. Expresa los siguientes ángulos en grados sexagesimales y dibuja los ángulos centrales que tienen cada una

Más detalles

EJERCICIOS DE RELACIONES TRIGONOMÉTRICAS (TEMA 1)

EJERCICIOS DE RELACIONES TRIGONOMÉTRICAS (TEMA 1) Colegio Diocesano Asunción de Nuestra Señora Ávila Tema EJERCICIOS DE RELACIONES TRIGONOMÉTRICAS (TEMA ).- Dados los ángulos = º y = 7º, calcula: a) + b) c) d).- Dados los ángulos = º 7 y = 7º, calcula:

Más detalles

UNIDAD III TRIGONOMETRIA

UNIDAD III TRIGONOMETRIA UNIDAD III TRIGONOMETRIA 1 UNIDAD III TRIGONOMETRIA TEMARIO. 1. Relación del par ordenado en un plano bidimensional. 1.1. El plano coordenado 1.2. Localización de puntos en los cuatro cuadrantes 2. Ángulos

Más detalles

RELACIÓN DE TRIGONOMETRÍA

RELACIÓN DE TRIGONOMETRÍA RELACIÓN DE TRIGONOMETRÍA ) Resuelve el triángulo ABC rectángulo en A del que se sabe que: a cm y ˆB 7º0' La hipotenusa mide 7 m y un cateto 8 m. Un cateto mide 0 cm, y su ángulo opuesto 0º. ) De un triángulo

Más detalles

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUCIÓN DE TRIÁNGULOS Triángulos rectángulos, isósceles o equiláteros 1.- Resuelve los triángulos rectángulos, en los que A=90º: a) b=3, c=3; b) a=5; B=37º; c) c=15, b=8. Sol: a) B=45º, C=45º, b=3 2

Más detalles

TEMA 4: Trigonometría. 1.- Calcula las restantes razones trigonométricas de cada ángulo, si son conocidas:

TEMA 4: Trigonometría. 1.- Calcula las restantes razones trigonométricas de cada ángulo, si son conocidas: Matemáticas Curso 011/1 º E.S.O. TEMA : Trigonometría. 1.- Calcula las restantes razones trigonométricas de cada ángulo, si son conocidas: a) = ¼ está situado en el primer cuadrante b) cotg = - π/ π c)

Más detalles

1. Determina la medida en radianes de los siguientes ángulos o viceversa.

1. Determina la medida en radianes de los siguientes ángulos o viceversa. EJERCICIOS. 1. Determina la medida en radianes de los siguientes ángulos o viceversa. a) 150º b) rd c) 10º d) 3 rd e) 135º f) 3 4 rd g) 60º h) 4 5 rd i) 450º j) 7 4 rd k) 360º l) 5 rd. Calcula todas las

Más detalles

1. Trigonometría 4º ESO-B. Cuaderno de ejercicios. Matemáticas JRM. Nombre y apellidos... INTRODUCCIÓN A LA TRIGONOMETRÍA Página 1

1. Trigonometría 4º ESO-B. Cuaderno de ejercicios. Matemáticas JRM. Nombre y apellidos... INTRODUCCIÓN A LA TRIGONOMETRÍA Página 1 1. Trigonometría 4º ESO-B Cuaderno de ejercicios Matemáticas JRM Nombre y apellidos... INTRODUCCIÓN A LA TRIGONOMETRÍA Página 1 RESUMEN DE OBJETIVOS 1. Razones trigonométricas de un ángulo agudo. OBJETIVO

Más detalles

Razones trigonométricas DE un ángulo agudo de un triángulo

Razones trigonométricas DE un ángulo agudo de un triángulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO RAZONAMIENTO Y DEMOSTRACIÓN Calcula razones trigonométricas en un triángulo rectángulo. Demuestra identidades trigonométricas elementales Demuestra identidades

Más detalles

TEMARIO DEL CURSO UTILIZAS TRIÁNGULOS: ÁNGULOS Y RELACIONES MÉTRICAS. TEOREMA DE PITÁGORAS.

TEMARIO DEL CURSO UTILIZAS TRIÁNGULOS: ÁNGULOS Y RELACIONES MÉTRICAS. TEOREMA DE PITÁGORAS. UNIDAD DE COMPETENCIA I Ángulos: Por su abertura Por la posición entre dos rectas paralelas y una secante (transversal) Por la suma de sus medidas. Complementarios Suplementarios Triángulos: Por la medida

Más detalles

Funciones Trigonométricas Básicas, Teorema del Seno y del Coseno

Funciones Trigonométricas Básicas, Teorema del Seno y del Coseno Trigonometría Básica Funciones Trigonométricas Básicas, Teorema del Seno y del Coseno Introducción a la Trigonometría Rama de la matemática que estudia las relaciones métricas entre los lados y los ángulos

Más detalles

ETAPA 1. INSTRUCCIONES: Resuelve cada uno de los siguientes ejercicios (sin procedimiento no será válida tu respuesta).

ETAPA 1. INSTRUCCIONES: Resuelve cada uno de los siguientes ejercicios (sin procedimiento no será válida tu respuesta). UANL UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN CICLO ESCOLAR: 2016 2017 SEMESTRE: ENERO JUNIO 2017 PRODUCTO INTEGRADO DE APRENDIZAJE DE MATEMÁTICAS II FECHA: MAYO DE 2017 ELABORÓ: ACADEMIA DE MATEMÁTICAS SEGUNDO

Más detalles

TRIGONOMETRÍA. d) 0,71 rad. 5.- Calcula las diagonales de un rombo sabiendo que sus ángulos son 60º y 120º y que sus lados miden 6cm.

TRIGONOMETRÍA. d) 0,71 rad. 5.- Calcula las diagonales de un rombo sabiendo que sus ángulos son 60º y 120º y que sus lados miden 6cm. TRIGONOMETRÍA 1.- Pasa de grados a radianes y viceversa: a) 1º b) 1º c) π rad 4 d) 0,71 rad.- Calcula las razones trigonométricas del ángulo A del siguiente triángulo rectángulo..- Calcula las razones

Más detalles

TRABAJO PRÁCTICO Nº 4

TRABAJO PRÁCTICO Nº 4 TRIGONOMETRÍA TRABAJO PRÁCTICO Nº 4 Objetivos: Utilizar correctamente el sistema sexagesimal y radial, realizar el pasaje de un ángulo expresado en un sistema a otro. Aprehender las definiciones de las

Más detalles

TEMAS 4 Y 5 TRIGONOMETRÍA

TEMAS 4 Y 5 TRIGONOMETRÍA Temas 4 y 5 Trigonometría Matemáticas I º Bachillerato TEMAS 4 Y 5 TRIGONOMETRÍA UNIDADES DE MEDIDAS DE ÁNGULOS EJERCICIO a Pasa a radianes los siguientes ángulos: y 7 b) Pasa a grados los ángulos: 7 rad

Más detalles

TRIGONOMETRÍA. 2.- Calcula sen x, tg x, sec x, cosec x, y cotg x, si cos x =0,6 y tg x<0. Sol: senx=-0,8; tgx=-4/3, secx=5/3; cosecx=-5/4; cotgx=-3/4.

TRIGONOMETRÍA. 2.- Calcula sen x, tg x, sec x, cosec x, y cotg x, si cos x =0,6 y tg x<0. Sol: senx=-0,8; tgx=-4/3, secx=5/3; cosecx=-5/4; cotgx=-3/4. TRIGONOMETRÍA Trigonometría(pendientes 1ºBach.) 1.- Existe un ángulo "x" tal que sen x =1/ y cos x =1/4? Puede valer el seno de un ángulo 1/8?. Sol: no, si..- Calcula sen x, tg x, sec x, cosec x, y cotg

Más detalles

BOLETÍN Nº5. TRIGONOMETRÍA

BOLETÍN Nº5. TRIGONOMETRÍA BOLETÍN Nº5. TRIGONOMETRÍA 1. Completa la tabla:. Halla las restantes razones trigonométricas del ángulo α: 3. Expresa en función de ángulos del primer cuadrante, los senos y cosenos de los siguientes

Más detalles

ω C) tan θ C) 1 se n θ cos θ tan θ B) sec θ D) sen θ E) 1 csc θ C) senx sen ω + cosω sen ω + + es igual a: csc x sec + D) 1 E) 0

ω C) tan θ C) 1 se n θ cos θ tan θ B) sec θ D) sen θ E) 1 csc θ C) senx sen ω + cosω sen ω + + es igual a: csc x sec + D) 1 E) 0 Sesión Unidad II Funciones trigonométricas. D. Identidades trigonométricas..- La expresión sin( x) es igual a: Sec(x) ) Tan(x) C) Csc(x) D) Cot(x) E) Cos(x).- sin ( x ) equivale a: Cos (x) ) + sin( x )

Más detalles

EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos:

EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: Seminario Universitario Matemática EJERCICIOS MÓDULO 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: a) 5 b ) 170 c ) 0 d ) 75 e) 10 f ) 50 g ) 0 h ) 87 i ) 08 j ) 700 k

Más detalles

6. RAZO ES Y FU CIO ES TRIGO OMÉTRICAS

6. RAZO ES Y FU CIO ES TRIGO OMÉTRICAS Facultad de Matemáticas-UDYY Módulo : Geometría Plana y Trigonometría 6. RZOES Y FUCIOES TRIGOOMÉTRICS 6. Definiciones Considerando el triángulo CB rectángulo (situado en la figura de abajo), la notación

Más detalles

17π. 10π. π B) 5 π C) π D) 3 π E) 2π. 225 en radianes es: = radianes, su equivalencia en grados es: 3 π. = es: B. Sesión 3

17π. 10π. π B) 5 π C) π D) 3 π E) 2π. 225 en radianes es: = radianes, su equivalencia en grados es: 3 π. = es: B. Sesión 3 Sesión Unidad II Funciones trigonométricas. A. Grados y radianes..- l equivalente de O en radianes es:.- La equivalencia en radianes de es: rad rad 9 rad rad rad.- l equivalente de en radianes es: rad

Más detalles

3.- Calcula los ángulos de un rombo cuyas diagonales miden 12 y 8 m.

3.- Calcula los ángulos de un rombo cuyas diagonales miden 12 y 8 m. Departamento de Matemáticas 1.- Sabiendo que tga = 4, calcula sena, cosa y a. 2.- Sabiendo que sena = -0 4, calcula tga, cosa y a. 3.- Calcula los ángulos de un rombo cuyas diagonales miden 12 y 8 m. 4.-

Más detalles

Taller #1 II BIMESTRE 2018

Taller #1 II BIMESTRE 2018 Taller #1 II BIMESTRE 2018 Ciencias Exactas Básico FISICA FUNDAMENTAL --- 3ro. Básico I SERIE (Teorema de Pitágoras) 1) Hallar la longitud de la hipotenusa c en cada triángulo rectángulo, de catetos a

Más detalles

ESTUDIANTE: 4 de marzo 2010

ESTUDIANTE: 4 de marzo 2010 LICEO CANADIENSE SUR 3RO. BASICO SECCIÓN JORNADA MATEMÁTICA REPASO DE ANGULOS Y TRIÁNGULOS ESTUDIANTE: 4 de marzo 2010 Observaciones: 1 1. Ángulos: Este ángulo se llama porque 1 1 Este ángulo se llama

Más detalles

4º E.S.O. OPCIÓN B. Departamento de Matemáticas. I.E.S. Príncipe de Asturias. Lorca

4º E.S.O. OPCIÓN B. Departamento de Matemáticas. I.E.S. Príncipe de Asturias. Lorca Relación ejercicios trigonometría 1) Halla la altura de un edificio que proyecta una sombra de 6 m. a la misma hora que un árbol de 1 m. proyecta una sombra de 4 m. Sol: 49 m ) En un mapa, la distancia

Más detalles

TEMAS 4 Y 5 TRIGONOMETRÍA

TEMAS 4 Y 5 TRIGONOMETRÍA Temas 4 y 5 Trigonometría Matemáticas I º Bachillerato TEMAS 4 Y 5 TRIGONOMETRÍA UNIDADES DE MEDIDAS DE ÁNGULOS EJERCICIO a Pasa a radianes los siguientes ángulos: y 7 b) Pasa a grados los ángulos: 7 rad

Más detalles

7. RAZONES TRIGONOMÉTRICAS

7. RAZONES TRIGONOMÉTRICAS 7. RAZONES TRIGONOMÉTRICAS 1. El papá de Pablo tiene una escalera que distando el pie de la escalera 1, 6m de la pared alcanza una atura sobre la pared de m. Entonces la dimensión de la escalera del papá

Más detalles

Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas

Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Algebra y Trigonometría Taller 8: Funciones trigonométricas Dado el ángulo α, halla la medida exacta del ángulo en radianes o en grados

Más detalles

UNIVERSIDAD PONTIFICIA BOLIVARIANA FACULTAD DE INGENIERÍA INGENIERÍA ADMINISTRATIVA

UNIVERSIDAD PONTIFICIA BOLIVARIANA FACULTAD DE INGENIERÍA INGENIERÍA ADMINISTRATIVA UNIVERSIDAD PONTIFICIA BOLIVARIANA FACULTAD DE INGENIERÍA INGENIERÍA ADMINISTRATIVA GUIA DE TRIGONOMETRÍA (Tomado de: wwwsectormatematicacl//nm_trigonometria_doc) Los ángulos se pueden medir en grados

Más detalles

El coseno del ángulo agudo Ĉ es la razón entre la longitud del cateto contiguo y de la. hipotenusa a 1. Razones trigonométricas inversas Secante de Ĉ

El coseno del ángulo agudo Ĉ es la razón entre la longitud del cateto contiguo y de la. hipotenusa a 1. Razones trigonométricas inversas Secante de Ĉ .- MEDIDA DE ÁNGULOS. El grado sexagesimal (º) es cada una de las 60 partes iguales en las que se divide la circunferencia (submúltiplos: el minuto y el segundo). El radián (rad) es la medida del ángulo

Más detalles

NOTA: El ángulo de elevación, siempre es igual al ángulo de depresión, y la visual es la hipotenusa.

NOTA: El ángulo de elevación, siempre es igual al ángulo de depresión, y la visual es la hipotenusa. ÁNGULO DE ELEVACIÓN Y ÁNGULO DE DEPRESIÓN INDICADORES DE LOGRO Resolverás problemas con confianza, utilizando el ángulo de elevación. Resolverás problemas con seguridad, utilizando el ángulo de depresión.

Más detalles

TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS

TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS IES IGNACIO ALDECOA 19 TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS 4.1 Medida de ángulos. Equivalencias. Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas

Más detalles

MATERIA:_Matemáticas V 5010 CICLO ESCOLAR_ PROFESOR:

MATERIA:_Matemáticas V 5010 CICLO ESCOLAR_ PROFESOR: MATERIA:_Matemáticas V 5010 CICLO ESCOLAR_2014-2015 PROFESOR: Relaciones y funciones. Para las siguientes funciones encuentra el dominio por medio de su regla de correspondencia e intervalo correspondiente

Más detalles

VERSIÓN 31 1, 1. 12y 24 0 es: MATEMÁTICAS V. 1.- La gráfica de la ecuación. 3.- El dominio de la función f x. es: A) B) B), 1 A) 1, E) 1, C) D)

VERSIÓN 31 1, 1. 12y 24 0 es: MATEMÁTICAS V. 1.- La gráfica de la ecuación. 3.- El dominio de la función f x. es: A) B) B), 1 A) 1, E) 1, C) D) 1.- La gráfica de la ecuación MATEMÁTICAS V B) 1y 4 0 es:.- El dominio de la función f 1, B), 1 4 es: 1 1, 1 VERSIÓN 1 C), 1 1, C) 4.- Determina el rango de la función y. y B) y C) 1 y y y 0, 0.- Para

Más detalles

Guía - 2 de Funciones: Trigonometría

Guía - 2 de Funciones: Trigonometría Centro Educacional San Carlos de Aragón. Coordinación Académica Enseñanza Media. Sector: Matemática. Nivel: NM 4 Prof.: Ximena Gallegos H. Guía - de Funciones: Trigonometría Nombre(s): Curso: Fecha. Contenido:

Más detalles

ÁNGULO DE ELEVACIÓN Y ÁNGULO DE DEPRESIÓN

ÁNGULO DE ELEVACIÓN Y ÁNGULO DE DEPRESIÓN ÁNGULO DE ELEVACIÓN Y ÁNGULO DE DEPRESIÓN INDICADORES DE LOGRO Resolverás problemas con confianza, utilizando el ángulo de elevación. Resolverás problemas con seguridad, utilizando el ángulo de depresión.

Más detalles

Guía - 3 de Funciones y Procesos Infinitos: Trigonometría

Guía - 3 de Funciones y Procesos Infinitos: Trigonometría Centro Educacional San Carlos de Aragón. Coordinación Académica Enseñanza Media. Prof.: Ximena Gallegos H. Guía - de Funciones y Procesos Infinitos: Trigonometría Nombre(s): Curso: Fecha. Contenido: Trigonometría.

Más detalles

PROBLEMAS DE APLICACIÓN DE LAS RAZONES TRIGONOMÉTRICAS 2

PROBLEMAS DE APLICACIÓN DE LAS RAZONES TRIGONOMÉTRICAS 2 1 PROBLEMAS DE APLICACIÓN DE LAS RAZONES TRIGONOMÉTRICAS 2 EJERCICIOS DE APLICACIÓN 1. Desde un punto en el suelo, un estudiante observa la parte más alta de una catedral con un ángulo de elevación de

Más detalles

Curso RELACIÓN DE PROBLEMAS Y CUESTIONES DE TRIGONOMETRÍA PARA 4º DE ESO OPCIÓN B (CPM) GRADO 1

Curso RELACIÓN DE PROBLEMAS Y CUESTIONES DE TRIGONOMETRÍA PARA 4º DE ESO OPCIÓN B (CPM) GRADO 1 Curso 12-13 RELACIÓN DE PROBLEMAS Y CUESTIONES DE TRIGONOMETRÍA PARA 4º DE ESO OPCIÓN B (CPM) Graduados según su dificultad siendo Grado 1: Muy fácil Grado 5: Muy difícil GRADO 1 1. Prueba que en un triángulo

Más detalles

MATEMÁTICAS I Pendientes 1ª Parte

MATEMÁTICAS I Pendientes 1ª Parte MATEMÁTCAS Pendientes ª Parte Calcula: ) ( ) ( ) ) d a bi a b ab d i ) a b ab RADCALES -6 ) ab a b a b ) ( ) a a a 6) b c 6 a a b b c 6 8 7) a bc 9 a bc 8) 7 8 8 9) 80 80 0 0) 8 0 6 ) 7 7 ) 7 8 0 6 ) 7

Más detalles

4, halla sen x y tg x. 5

4, halla sen x y tg x. 5 TRIGONOMETRÍA 1º.- Sabiendo que 90 º < x < 70 º y que 4, halla sen x y tg x. 5 a) sen x? ; de la fórmula fundamental sen x + cos x 1 se obtiene sen x 1 - cos x. 9 5 de donde sen x 5 3, solución positiva

Más detalles

UTILIZAMOS LA TRIGONOMETRÍA.

UTILIZAMOS LA TRIGONOMETRÍA. UTILIZAMOS LA TRIGONOMETRÍA. RAZONAMIENTO Y DEMOSTRACIÓN Determina las demás razones trigonométricas a través de un dato. Aplica las definiciones de razones trigonométricas en la solución de ejercicios

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS DE LA TIERRA MANUAL PARA EL CURSO PROPEDÉUTICO DE MATEMÁTICAS Elaborado por: Roberto Soto Villalobos 15/07/2015 Trigonometría Definición (ángulo)

Más detalles

Matemáticas I 1º BACHILLERATO

Matemáticas I 1º BACHILLERATO Matemáticas I 1º BACHILLERATO Introducción Estas prácticas constituyen un complemento esencial de los esquemas. Su finalidad principal es la de afianzar los conocimientos expuestos en el módulo. Las actividades

Más detalles

TEMA 3. TRIGONOMETRÍA

TEMA 3. TRIGONOMETRÍA TEMA 3. TRIGONOMETRÍA Definiciones: 0 30 45 60 90 180 270 360 Seno 0 1 0-1 0 Coseno 1 0-1 0 1 Tangente 0 1 0 0 Teorema del seno: Teorema del coseno: Fórmulas elementales: FÓRMULAS TRIGONOMÉTRICAS. Suma

Más detalles

TEMA 4. TRIGONOMETRÍA.

TEMA 4. TRIGONOMETRÍA. TEMA 4. TRIGONOMETRÍA. 4.1. Semejanza. - Criterios de semejanza de triángulos. - Teorema del cateto. - Teorema de la altura. 4.2. Razones trigonométricas. - Razones trigonométricas de un ángulo agudo.

Más detalles

Matemática 3 año

Matemática 3 año Trabajo Práctico N 7: Razones trigonométricas Matemática 3 año - 2016 1) Un arquitecto tiene que hacer la maqueta de una rampa. Para eso comienza dibujando un triángulo rectángulo ABC, que cumple con estas

Más detalles

DEPARTAMENTO DE CIENCIAS BÁSICAS TALLER 2009_II PRECALCULO. PRIMERA PARTE: Preguntas Tipo Ecaes.

DEPARTAMENTO DE CIENCIAS BÁSICAS TALLER 2009_II PRECALCULO. PRIMERA PARTE: Preguntas Tipo Ecaes. DEPARTAMENTO DE CIENCIAS BÁSICAS TALLER 009_II PRECALCULO PRIMERA PARTE: Preguntas Tipo Ecaes. 1. La ecuación de la circunferencia con radio r= 7 y centro C(4, -10) es: a) (X - 4) + (Y 10) = 49 b) (X +

Más detalles

DEPARTAMENTO DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO 1. Con ayuda de la calculadora, calcula el seno, el coseno y la tangente de los siguientes ángulos. a) 5º b) 48º c) 80º 2. Con ayuda de la calculadora, calcula

Más detalles

Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Departamento de Matemáticas

Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Departamento de Matemáticas Algebra y Trigonometría Taller 7: Funciones Trigonométricas de Números Reales Encuentre el ángulo complementario de α. 1) α = 7 39 58

Más detalles

6.- En un puerto de montaña aparece una señal de tráfico que señala una pendiente del 12 %. Cuál sería ese desnivel en grados?

6.- En un puerto de montaña aparece una señal de tráfico que señala una pendiente del 12 %. Cuál sería ese desnivel en grados? TRIGONOMETRÍA 1.- En un triángulo rectángulo, la hipotenusa mide 8 dm y tgα 1' 43, siendo α uno de los ángulos agudos. Halla la medida de los catetos..- Si cos α 0' 46 y 180º α 70º, calcula las restantes

Más detalles

COLEGIO COMPAÑÍA DE MARÍA SEMINARIO DEPARTAMENTO DE MATEMATICAS

COLEGIO COMPAÑÍA DE MARÍA SEMINARIO DEPARTAMENTO DE MATEMATICAS COLEGIO COMPAÑÍA DE MARÍA SEMINARIO DEPARTAMENTO DE MATEMATICAS GUÍA N DE TRIGONOMETRÍA IV MEDIO DIFERENCIADO MATEMÁTICO )Completa la siguiente tabla que indica la relación entre valores en radianes y

Más detalles

EJERCICIOS DE TRIGONOMETRÍA

EJERCICIOS DE TRIGONOMETRÍA -Calcula las restantes razones trigonométricas del ángulo α en los siguientes casos: a) α I cuadrante; tg α=/4 b) α IV cuadrante; cos α=4/5 c) α I cuadrante; sen α=/5 d) α II cuadrante; cos α=-/ e) α III

Más detalles

EJERCICIOS RESOLUCIÓN DE TRIÁNGULOS Y RAZONES TRIGONOMÉTRICAS 1º BACH

EJERCICIOS RESOLUCIÓN DE TRIÁNGULOS Y RAZONES TRIGONOMÉTRICAS 1º BACH 1. Para calcular la anchura AB de un río se elige un punto C que está en la misma orilla que A y se toman las siguientes medidas: AC=67 m; BAC=99º; ACB=20º Cuál es la distancia entre A y B? 2. Un pasillo

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Las tutorías corresponden a los espacios académicos en los que el estudiante del Politécnico Los Alpes puede profundizar y reforzar sus conocimientos en diferentes temas de cara

Más detalles

GUÍA DE TRABAJO INDEPENDIENTE O CON ACOMPAÑAMIENTO

GUÍA DE TRABAJO INDEPENDIENTE O CON ACOMPAÑAMIENTO NOMBRE DEL ACADÉMICO DOCENTE: ASIGNATURA: TRABAJO INDEPENDIENTE Gloria Esperanza Puetaman Guerrero MBX14 TRABAJO CON TEMA O CONCEPTO: APLICACIONES TRIGONOMETRIA. COMPETENCIA (S) Utilizar adecuadamente

Más detalles

= + = 1+ Cuarta relación fundamental

= + = 1+ Cuarta relación fundamental 1.- Determina las razones trigonométricas de los siguientes ángulos, relacionándolos con algunos ángulos notables (0º, 0º,, 60º, 90º, 180º, 70º, 60º), indicando en qué cuadrante se encuentran: a) 40º b)

Más detalles

(determinación de dominio, imagen y ceros) de las gráficas de las funciones seno, coseno y tangente. º 135º 120º 240º 300º 315º 270º

(determinación de dominio, imagen y ceros) de las gráficas de las funciones seno, coseno y tangente. º 135º 120º 240º 300º 315º 270º TRABAJO PRÁCTICO Nº 5 FUNCIONES TRIGONOMÉTRICAS En este eje continuaremos con la competencia básica de Resolución de Problemas y además las siguientes competencias específicas 1. Analizar una función o

Más detalles

PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA

PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA CURSO PRE FACULTATIVO 1-011 PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA 1. En una circunferencia de centro O, se traza el diámetro AB y se prolonga hasta el punto C a partir del

Más detalles

GUIA DE TRIGONOMETRÍA

GUIA DE TRIGONOMETRÍA GUIA DE TRIGONOMETRÍA Los ángulos se pueden medir en gos sexagesimales y ianes Un ángulo de 1 ián es aquel cuyo arco tiene longitud igual al io - 60º = ianes (una vuelta completa) - Un ángulo recto mide

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMIREZ CALZADA. PORTAFOLIO DE EVIDENCIAS DE ÁLGEBRA Y TRIGONOMETRÍA Semestre 2010B

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMIREZ CALZADA. PORTAFOLIO DE EVIDENCIAS DE ÁLGEBRA Y TRIGONOMETRÍA Semestre 2010B UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMIREZ CALZADA PORTAFOLIO DE EVIDENCIAS DE ÁLGEBRA Y TRIGONOMETRÍA Semestre 2010B MÓDULO I: CONCEPTOS BÁSICOS DE GEOMETRÍA Y TRIGONOMETRÍA 1.

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMIREZ CALZADA GUIA DE ÁLGEBRA Y TRIGONOMETRÍA 1ª Fase Nombre del alumno: No. de Cta.

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMIREZ CALZADA GUIA DE ÁLGEBRA Y TRIGONOMETRÍA 1ª Fase Nombre del alumno: No. de Cta. UNIVERSIDD UTÓNOM DEL ESTDO DE MÉXICO PLNTEL IGNCIO RMIREZ CLZD GUI DE ÁLGER Y TRIGONOMETRÍ 1ª Fase Nombre del alumno: No. de Cta.: Nombre del profesor: Grupo: DESIGULDDES. Resuelve los ejercicios en hojas

Más detalles

Trigonometría. 5. Calcula el valor de las siguientes expresiones, sin utilizar la calculadora: a) b) c) d)

Trigonometría. 5. Calcula el valor de las siguientes expresiones, sin utilizar la calculadora: a) b) c) d) Trigonometría 1. Razones trigonométricas de un ángulo agudo 1.1. Definiciones de seno de, coseno de y tangente de. 1.2. Relaciones entre las razones trigonométricas de un ángulo. 1.3. Razones trigonométricas

Más detalles

GUIA DE ESTUDIO PARA EXAMEN EXTRAORDINARIO NOMBRE DEL ALUMNO: GRUPO: FECHA:

GUIA DE ESTUDIO PARA EXAMEN EXTRAORDINARIO NOMBRE DEL ALUMNO: GRUPO: FECHA: CENTRO DE BACHILLERATO TECNOLOGICO INDUSTRIAL Y DE SERVICIOS N 281 SEMS DGETI DEPARTAMENTO DE SERVICIOS DOCENTES ASIGNATURA: GEOMETRIA Y TRIGONOMETRIA GUIA DE ESTUDIO PARA EXAMEN EXTRAORDINARIO NOMBRE

Más detalles

PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA

PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA CURSO PRE FACULTATIVO II-01 PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA 1. En una circunferencia de centro O, se traza el diámetro AB y se prolonga hasta el punto C a partir del

Más detalles

EJERCICIOS DE TRIGONOMETRÍA

EJERCICIOS DE TRIGONOMETRÍA EJERCICIOS DE TRIGONOMETRÍA. Sabiendo que cot g y que, determina: a. cos d. sec cot g b. sen e. c. tg f. cos. Hallar el valor de las siguientes expresiones: sen / x cos x sen x a. cos x sen x b. c. tgx

Más detalles

7 ACTIVIDADES DE REFUERZO

7 ACTIVIDADES DE REFUERZO 7 ACTIVIDADES DE REFUERZO. Clasifica estos ángulos según su amplitud sin cambiar de unidad. Después, epresa en grados, minutos y segundos. rad: c), rad: 4 rad: d) rad:. Calcula las razones trigonométricas

Más detalles

GRADO: GRUPO ALUMNO(A)

GRADO: GRUPO ALUMNO(A) COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel. 5604-3628, 5605-1509 MATEMATICAS TERCER GRADO SECCIÓN SECUNDARIA TRABAJO ESPECIAL DE REPASO ALUMNO(A) GRADO: GRUPO

Más detalles

1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º.

1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º. MATEMÁTICAS NM TRIGONOMETRÍA 1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º. a) Calcule AB. b) Halle el área del triángulo. 2. (D) La siguiente figura muestra una

Más detalles

3.- Calcular, sin calcular el ángulo, las restantes razones trigonométricas del ángulo que

3.- Calcular, sin calcular el ángulo, las restantes razones trigonométricas del ángulo que REPASO DE TRIGONOMETRÍA ELEMENTAL:.- Dados los ángulos 5º9' 6' ' y 670''5' ', calcula sin calculadora: a) b).- Demuestra cuánto valen las razones trigonométricas de rad..- Calcular, sin calcular el ángulo,

Más detalles

MATEMÁTICAS BÁSICAS. Profesoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza

MATEMÁTICAS BÁSICAS. Profesoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Profesoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 15 de junio de 2009 Razones trigonométricas Considere los triángulos

Más detalles

Trigonometría. Guía de Ejercicios

Trigonometría. Guía de Ejercicios . Módulo 6 Trigonometría Guía de Ejercicios Índice Unidad I. Razones trigonométricas en el triángulo rectángulo. Ejercicios Resueltos... pág. 0 Ejercicios Propuestos... pág. 07 Unidad II. Identidades trigonométricas

Más detalles

5.5 LÍNEAS TRIGONOMÉTRICAS

5.5 LÍNEAS TRIGONOMÉTRICAS 5.5 LÍNES TRIGONOMÉTRIS Sea (O, ) una circunferencia con centro en el origen de coordenadas O(0, 0) radio la unidad. Si se construe un ángulo con vértice en el origen sentido positivo podemos obtener las

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA PÁGINA: 1 de 6 Nombres y Apellidos del Estudiante: Docente: ALEXANDRA URIBE Área: Matemáticas Grado: DÉCIMO Periodo: CUARTO Duración: 40 horas Asignatura: Matemáticas ESTÁNDAR: Establezco relaciones y

Más detalles

; b) Calcular el resultado de las siguientes operaciones lo más simplificado posible: ; b) 2

; b) Calcular el resultado de las siguientes operaciones lo más simplificado posible: ; b) 2 MATEMÁTICAS - SEPTIEMBRE TAREA DE VERANO 4º E.S.O.-B 4 1. Simplificar potencias: a) 4 ( ) 5 5 81 9 ; b) 4 0 5 9 5 4 ; c) 4 0 15 5 5 4 ; d) 9000 0'000000006 6000000 0'0007. Calcular el resultado de las

Más detalles

Secretaría de Educación Pública Centro de Estudios de Bachillerato 4/2 Lic. Jesús Reyes Heroles

Secretaría de Educación Pública Centro de Estudios de Bachillerato 4/2 Lic. Jesús Reyes Heroles Secretaría de Educación Pública entro de Estudios de achillerato 4/2 Lic. Jesús Reyes Heroles Matemáticas II GUÍA DE ESTUDIO Nombre Grupo Fecha Escribe en el paréntesis la letra que complete correctamente

Más detalles

RADIANES. CÍRCULO Y CIRCUNFERENCIA. 2. La siguiente figura muestra un círculo de centro O y radio r cm, a) Halle la longitud del arco ABC.

RADIANES. CÍRCULO Y CIRCUNFERENCIA. 2. La siguiente figura muestra un círculo de centro O y radio r cm, a) Halle la longitud del arco ABC. C URSO: º BACHILLERATO RADIANES. CÍRCULO Y CIRCUNFERENCIA. 1. La siguiente figura muestra un círculo de centro O y radio 40 cm, Los puntos A, B y C pertenecen a la circunferencia del círculo y AOC = 1,9

Más detalles

Julián Moreno Mestre

Julián Moreno Mestre Ejercicios de Trigonometría: 1º Expresa en radianes los siguientes ángulos: a) 315º b) 300º c) 135º d) 10º e) 945º f) 1500º g) 1650º Sol: a) 5.50 rad; b) 5.4 rad; c).36 rad; d) 38.57 rad; e) 16.49 rad;

Más detalles

9cm α = 50º. P R PR = 22 cm

9cm α = 50º. P R PR = 22 cm EJERCCIOS DE TRIGONOMETRÍA II: 1. Calcula el área de un triángulo como el de la figura: 9cm α = 50º 19cm 2. Calcular la longitud de la sombra que arroja un poste de 2,5 m de altura cuando los rayos del

Más detalles

Trigonometría: Ángulos y sus Medidas; Razones Trigonométricas

Trigonometría: Ángulos y sus Medidas; Razones Trigonométricas Trigonometría: Ángulos y sus Medidas; Razones Trigonométricas Carlos A. Rivera-Morales Precálculo 2 Tabla de Contenido Contenido anes : Contenido Discutiremos: ángulo trigonométrico : Contenido Discutiremos:

Más detalles

MATEMÁTICAS BÁSICAS TALLER DE TRIGONOMETRIA I. RAZONES TRIGONOMÉTRICAS Y TRIÁNGULO RECTANGULO

MATEMÁTICAS BÁSICAS TALLER DE TRIGONOMETRIA I. RAZONES TRIGONOMÉTRICAS Y TRIÁNGULO RECTANGULO MATEMÁTICAS BÁSICAS TALLER DE TRIGONOMETRIA I. RAZONES TRIGONOMÉTRICAS Y TRIÁNGULO RECTANGULO Encuentra el valor numérico de las siguientes expresiones sin usar calculadora: Resuelve los siguientes problemas:

Más detalles

Ángulos y razones trigonométricas

Ángulos y razones trigonométricas Departamento Matemáticas TEMAS 3 y 4. Trigonometría Nombre CURSO: 1 BACH CCNN 1 Ángulos y razones trigonométricas 1. Hallar las razones trigonométricas de los ángulos agudos del siguiente triángulo rectángulos.

Más detalles

APELLIDOS Y NOMBRE:...

APELLIDOS Y NOMBRE:... 1º BACHILLERATO Fecha: 6-09-011 PRUEBA INICIAL APELLIDOS Y NOMBRE:... NORMAS El eamen se realizará con tinta de un solo color: azul ó negro No se puede usar corrector Se valorará potivamente: ortografía,

Más detalles

INSTITUCION EDUCATIVA NUESTRA SEÑORA DE BELEN

INSTITUCION EDUCATIVA NUESTRA SEÑORA DE BELEN RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Las funciones trigonométricas estudiadas en la circunferencia unitaria se pueden describir en triángulos rectángulos a partir de las relaciones entre

Más detalles

EJERCICIOS DE TRIÁNGULOS CON SOLUCIÓN

EJERCICIOS DE TRIÁNGULOS CON SOLUCIÓN EJERCICIOS DE TRIÁNGULOS CON SOLUCIÓN 1. Uno de los catetos de un triángulo rectángulo mide 4,8 cm y el ángulo opuesto a este cateto mide 54º. Halla la medida del resto de los lados y de los ángulos del

Más detalles

MATEMÁTICA Trigonometría Guía Nº 5

MATEMÁTICA Trigonometría Guía Nº 5 MATEMÁTICA Trigonometría Guía Nº 5 APELLIDO: Prof. Karina G. Rizzo 2. Consideremos el triángulo abc rectángulo en b. c a) completa: la es ac los s son ab y bc a b b) teniendo en cuenta el ángulo a, tacha

Más detalles

lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas cos, tg 0 ; c) tg 3, 180º

lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas cos, tg 0 ; c) tg 3, 180º 0. Trigonometría () Matemáticas I º achillerato. En los siguientes apartados se da el valor de una razón trigonométrica de un ángulo. alcula, utilizando las fórmulas fundamentales de la trigonometría,

Más detalles

Asignatura: Trigonometría Realiza las siguientes actividades. 1.- Qué es un ángulo?

Asignatura: Trigonometría Realiza las siguientes actividades. 1.- Qué es un ángulo? Asignatura: Trigonometría Realiza las siguientes actividades. 1.- Qué es un ángulo? 2.- Clasifica los ángulos por su magnitud y su posición. Define cada tipo de ángulo y dibuja un ejemplo de cada uno de

Más detalles

1.- Simplifica al máximo la expresión: 2.- Obtener de manera razonada las soluciones de la primera vuelta de la

1.- Simplifica al máximo la expresión: 2.- Obtener de manera razonada las soluciones de la primera vuelta de la Colegio del Sagrado Corazón EXAMEN Trigonometría CLASE:1º BACHILLERATO FECHA:9/10/15 tg 1.- Simplifica al máimo la epresión: sen sen sen sen.- Obtener de manera razonada las soluciones de la primera vuelta

Más detalles

NIVELACION SEGUNDO BIMESTRE 2017 MATEMÁTICAS GRADO DECIMO

NIVELACION SEGUNDO BIMESTRE 2017 MATEMÁTICAS GRADO DECIMO COLEGIO CARLOS ALBÁN HOLGUÍN INSTITUCIÓN EDUCATIVA DISTRITAL Resolución Oficial N 8879 de Dic. 7 de 2001 de Secretaría de Educación de Bogotá D.C. En sus niveles Preescolar, Básica Primaria, Básica Secundaria

Más detalles

SOLUCIONES TRIGONOMETRÍA19

SOLUCIONES TRIGONOMETRÍA19 SOLUCIONES EJERCICIOS DE TRIGONOMETRÍA Ejercicio nº 1.- Halla las razones trigonométricas de los ángulos y del triángulo ABC sabiendo que es rectángulo. Sea x la longitud de la hipotenusa; por el teorema

Más detalles

Solución: Solución: 5. Calcula los siguientes ángulos en grados, minutos y segundos

Solución: Solución: 5. Calcula los siguientes ángulos en grados, minutos y segundos BLOQUE II Geometría. Razones trigonométricas 4. Resolución de triángulos 5. Geometría analítica 6. Lugares geométricos y cónicas 7. Los números complejos Razones trigonométricas. Razones trigonométricas

Más detalles

Los Modelos Trigonométricos

Los Modelos Trigonométricos Los Modelos Trigonométricos Eliseo Martínez, Manuel Barahona 1. Introducción Normalmente, por motivos históricos, y de acuerdo al itinerario seguido por la humanidad en la invención de la trigonometría,

Más detalles

II. TRIGONOMETRÍA. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que existe ebtre dos líneas que se cortan.

II. TRIGONOMETRÍA. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que existe ebtre dos líneas que se cortan. II. TRIGONOMETRÍA La trigonometría se encarga del estudio de la medida de los triángulos, es decir de la medida de sus ángulos y sus lados. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que eiste ebtre

Más detalles

UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERÍA INSTITUTO DE CIENCIAS BASICAS

UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERÍA INSTITUTO DE CIENCIAS BASICAS UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERÍA INSTITUTO DE CIENCIAS BASICAS Álgebra Guía de Ejercicios º Trigonometría Plana TRIGO OMETRÍA PLA A. En cada caso, encuentre los valores de las restantes

Más detalles