EJERCICIOS DE TRIGONOMETRÍA
|
|
|
- Lucía Valenzuela Giménez
- hace 9 años
- Vistas:
Transcripción
1 EJERCICIOS DE TRIGONOMETRÍA. Sabiendo que cot g y que, determina: a. cos d. sec cot g b. sen e. c. tg f. cos. Hallar el valor de las siguientes expresiones: sen / x cos x sen x a. cos x sen x b. c. tgx cot g / x sen / x tg x cos x cot g x cos / x 4. Determina el valor de cot g, sabiendo que cos y IIIC. 4. Sea cos a 0, IC. Determina, en función de a, el valor de. Determinar el valor de A, siendo: sen cos tgsen cos 7 tg cot g cos 0º 4 4 A sen0º sen40º cosec 00º 6. SisenA b, 0º A 90º, determinar, en función de b, el valor de: sen A tg A cot g A cosec A
2 7. Demostrar que: senº cosº senº 8. Si sen8º a, demostrar que: cos 08º tgº sen98º a a tg4º cos8º a sec 8º 4 9. Si cos y IIC, determina el valor de cos y cos, indicando a qué cuadrante pertenece cada uno. 0. Si cosec, con IVC, determina el valor de: 4 cos tg. La tangente de un ángulo, x, del segundo cuadrante es -4/. Halla las razones trigonométricas de los ángulos x y x/.. Demuestra que si x, y, z son los ángulos de un triángulo, entonces tg x y tgz 0.. Deduce una fórmula que permita expresar la tgx y z en función de tgx,tgy,tgz. A partir de la fórmula anterior demuestra que si x, y, z son los ángulos de un triángulo cualquiera, entonces se cumple que tgx tgy tgz tgx tgy tgz. 4. Determina el valor del ángulo : a Nota: calcula tg
3 sena. Expresar en función del cosa. sena sena 6. Simplifica las siguientes expresiones: senx a. cos x sena sena b. cos a cosa sena sena c. sena cosa sen a cosa d. cos a cosa sen a sen a e. cos a cosa sena tga f. cot a g. h. i. j. k. sena sen4a cosa cos4a a a sen cos sena sena senx senx senx sen7x cos x cosx cosx cos7x sena senb cosa cos b sena senb cosa cos b 4 4 sen x cos x l. sen x y cos x cos x y senx m. cos sen sen cos n. sen sen cos cos cos o. sen cos sen cos
4 7. Demuestra las siguientes identidades: a. tg cot g sec cosec b. cosec cos cos cot g cos cot g cos c. 4 d. sen cos cos sec tg sec sec e. tg sen sec f. cot gsec cosec g. sec cosec sen cos senx cosx h. tgx cos x sen x senx x cos x i. cos senx j. cos x 4º cos x 4º cos x k. l. cos x sen senx cos x 4 4cos x cos x senx senx senx sen cos cos sen sen x m. n. cot g o. cot g cot g cot g cot g cos x y cos x y cosx cos y sen a b sen a b cos b cos a p. q. tgx ctgx senx r. x cosx cos s. seca b t. seca secbcsca cscb csca cscb seca secb cos a b cos a b sen a b sen a b tgb 4
5 u. v. w. ctg x tg x 4ctgxcscx senx tgx sen x cosx cos x sen a b tga ctgb sen a b tga ctgb x. tg a tg a tga Sabiendo que x es un ángulo agudo y que se verifica que cos90º x cosecx, determina el valor de tgx secx. 9. Si tg sec, demostrar que sen. 0. Resuelve las siguientes ecuaciones trigonométricas: a. tgx b. c. d. e. sen x cosx cos x sen x 0 tg x tgx 0 senx cos x 6sen x 0 f. cosx 0º g. sen x secx 4 h. cos x tgx i. cosecx cosx cot gx 0 j. cosx tgx secx k. sec x senx tgx l. cot gx 4senx cosx tgx m. cosx cos x 0 n. senx cos x o. cosx cosx 0 p. senx cos x 4 4 q. sen x cos x 0 x r. 4sen cos x
6 s. senx cos t. 4sen x cos x 6 6 u. 8tg sec x v. tgx tgx x w. cosx cos6x senx senx senx cosx cosx senx cosx x. y. cos x sen x senx. Resuelve las siguientes ecuaciones trigonométricas: senx seny a. senx seny senx seny b. xy senx cos y c. cosx cos y senx seny d. x y cos e. sen x y cosx cos y 0 seny 0 PROBLEMAS. Una señal de peligro en una carretera nos advierte que la pendiente es del % Qué ángulo forma ese tramo de carretera con la horizontal? Cuántos metros hemos descendido después de recorrer 7km por esa carretera? 6
7 . En una ruta de montaña, una señal indica una altitud de 78m. Tres kilómetros más adelante, la altitud es de.6m. Halla la pendiente media de esa ruta y el ángulo que forma con la horizontal.. La longitud del lado de un octógono regular es m. Hallar los radios de la circunferencia inscrita y circunscrita. 4. Para localizar una emisora clandestina, dos receptores, A y B, que distan entre sí 0km, orientan sus antenas hacia el punto donde está la emisora. Estas direcciones forman con AB ángulos de 40º y 6º. A qué distancia de A y B se encuentra la emisora?. En un círculo de cm de radio, halla el área comprendida entre una cuerda de 0cm de longitud y el diámetro paralelo a ella. 6. Hemos colocado un cable sobre un mástil que lo sujeta como muestra la figura. Cuánto miden el mástil y el cable? 7. Una estatua de,m está colocada sobre un pedestal. Desde un punto del suelo se ve el pedestal bajo un ángulo de º y la estatua bajo un ángulo de 4º. Calcula la altura del pedestal. 8. Para hallar la altura de un globo, realizamos las mediciones indicadas en la figura. Cuánto dista el globo del punto A? Cuánto del punto B? A qué altura está el globo? 7
8 9. Resuelve el siguiente triángulo y calcula las medidas de su altura, mediana y bisectriz trazadas desde el vértice C. 0. Dos barcos parten de un puerto con rumbos distintos que forman un ángulo de 7º. El primero sale a las 0h de la mañana con una velocidad de 7 nudos, y el segundo sale a las h 0min, con una velocidad de 6 nudos. Si el alcance de sus equipos de radio es de 0km, podrán ponerse en contacto a las de la tarde? Nota: Nudo = milla / hora; milla = 80 m. Desde un faro F se observa un barco A bajo un ángulo de 4 con respecto a la línea de la costa; y un barco B, bajo un ángulo de. El barco A está a km de la costa, y el B, a km. Calcula la distancia entre los barcos.. Queremos calcular la distancia entre dos puntos inaccesibles, A y B. Desde C y D tomamos los datos: CD = 00m, ADB = º, ACB = º, ACD =46º, BDC = 40º. Calcula AB. 8
TRIGONOMETRÍA. 2.- Calcula sen x, tg x, sec x, cosec x, y cotg x, si cos x =0,6 y tg x<0. Sol: senx=-0,8; tgx=-4/3, secx=5/3; cosecx=-5/4; cotgx=-3/4.
TRIGONOMETRÍA Trigonometría(pendientes 1ºBach.) 1.- Existe un ángulo "x" tal que sen x =1/ y cos x =1/4? Puede valer el seno de un ángulo 1/8?. Sol: no, si..- Calcula sen x, tg x, sec x, cosec x, y cotg
TRIGONOMETRÍA. d) 0,71 rad. 5.- Calcula las diagonales de un rombo sabiendo que sus ángulos son 60º y 120º y que sus lados miden 6cm.
TRIGONOMETRÍA 1.- Pasa de grados a radianes y viceversa: a) 1º b) 1º c) π rad 4 d) 0,71 rad.- Calcula las razones trigonométricas del ángulo A del siguiente triángulo rectángulo..- Calcula las razones
EJERCICIOS DE TRIÁNGULOS CON SOLUCIÓN
EJERCICIOS DE TRIÁNGULOS CON SOLUCIÓN 1. Uno de los catetos de un triángulo rectángulo mide 4,8 cm y el ángulo opuesto a este cateto mide 54º. Halla la medida del resto de los lados y de los ángulos del
TEMA 3. TRIGONOMETRÍA
TEMA 3. TRIGONOMETRÍA Definiciones: 0 30 45 60 90 180 270 360 Seno 0 1 0-1 0 Coseno 1 0-1 0 1 Tangente 0 1 0 0 Teorema del seno: Teorema del coseno: Fórmulas elementales: FÓRMULAS TRIGONOMÉTRICAS. Suma
BLOQUE 3: TRIGONOMETRÍA. Resolución de triángulos. Funciones y fórmulas trigonométricas.
BLOQUE : TRIGONOMETRÍA Resolución de triángulos Funciones y fórmulas trigonométricas. 6 . RESOLUCIÓN DE TRIÁNGULOS. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Recordamos las razones trigonométricas (seno,
EXAMEN DE TRIGONOMETRÍA
1. Deduce la expresión del seno del ángulo mitad. 2. Sabiendo que sen á = 1/4 y que á está en el primer cuadrante, calcula tg 2á. 3. Calcula cos(2x), siendo cos x=1/2. 4. Resuelve la ecuación: cos(x)=cos(2x)
EJERCICIOS DE TRIGONOMETRÍA
-Calcula las restantes razones trigonométricas del ángulo α en los siguientes casos: a) α I cuadrante; tg α=/4 b) α IV cuadrante; cos α=4/5 c) α I cuadrante; sen α=/5 d) α II cuadrante; cos α=-/ e) α III
Ejercicios de trigonometría.
Matemáticas 1ºBach CNyT. Ejercicios Tema 1. Trigonometría. Pág 1/15 Ejercicios de trigonometría. 1. Expresa en grados sexagesimales los siguientes ángulos: 1. 3 rad 2. 2π/5rad. 3. 3π/10 rad. 2. Expresa
PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA
CURSO PRE FACULTATIVO II-01 PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA 1. En una circunferencia de centro O, se traza el diámetro AB y se prolonga hasta el punto C a partir del
PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA
CURSO PRE FACULTATIVO 1-011 PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA 1. En una circunferencia de centro O, se traza el diámetro AB y se prolonga hasta el punto C a partir del
UNIVERSIDAD SIMÓN BOLÍVAR PROGRAMA IGUALDAD DE OPORTUNIDADES ÁREA: MATEMÁTICA PIO EXAMEN Nº 2 (Puntaje: 100 puntos)
UNIVERSIDAD SIMÓN BOLÍVAR PROGRAMA IGUALDAD DE OPORTUNIDADES ÁREA: MATEMÁTICA PIO 01 013 Nombre: Sección: EXAMEN Nº (Puntaje: 100 puntos) Parte I. A continuación se te presentan una serie de ejercicios,
2.1 Razones trigonométricas del ángulo suma y del ángulo diferencia de otros dos ángulos dados.
Tema : TRIGONOMETRÍA PLANA..1 Razones trigonométricas del ángulo suma y del ángulo diferencia de otros dos ángulos dados.. Razones trigonométricas del ángulo doble y del ángulo mitad..3 Teoremas del coseno
TEMAS 4 Y 5 TRIGONOMETRÍA
Temas 4 y 5 Trigonometría Matemáticas I º Bachillerato TEMAS 4 Y 5 TRIGONOMETRÍA UNIDADES DE MEDIDAS DE ÁNGULOS EJERCICIO a Pasa a radianes los siguientes ángulos: y 7 b) Pasa a grados los ángulos: 7 rad
Trigonometría ACTIVIDADES. a) 360 x π. b) 360 x sen α = 109. sec α = tg α = cos α = cosec α = 60. cotg α = tg β = 60.
ACTIVIDADES a) b) c) π x 0π π = x = = rad 60 10 60 18 π x 70π π = x = = rad 60 15 60 π x 10π π = x = = rad 60 60 60 a) 60 x 60 π = x = = 10º π π 6π b) 60 x 60 = x = = 171,88º π π c) 60 x 60 π = x = = 0º
TEMA 4: Trigonometría. 1.- Calcula las restantes razones trigonométricas de cada ángulo, si son conocidas:
Matemáticas Curso 011/1 º E.S.O. TEMA : Trigonometría. 1.- Calcula las restantes razones trigonométricas de cada ángulo, si son conocidas: a) = ¼ está situado en el primer cuadrante b) cotg = - π/ π c)
EJERCICIOS DE RELACIONES TRIGONOMÉTRICAS (TEMA 1)
Colegio Diocesano Asunción de Nuestra Señora Ávila Tema EJERCICIOS DE RELACIONES TRIGONOMÉTRICAS (TEMA ).- Dados los ángulos = º y = 7º, calcula: a) + b) c) d).- Dados los ángulos = º 7 y = 7º, calcula:
1. Un ciclista tiene que subir una cuesta que tiene una inclinación de 12º. Qué altura habrá subido cuando haya recorrido 200m?
º ESO - AMPLIACIÓN DE MATEMÁTICAS EJERCICIOS DE TRIGONOMETRÍA. Un ciclista tiene que subir una cuesta que tiene una inclinación de º. Qué altura habrá subido cuando haya recorrido 00m?. Si α es un ángulo
TRIGONOMETRIA. 1. Sabiendo que. y que es del 2º cuadrante y. del 4º,calcular el valor exacto de cos( )
TRIGONOMETRIA 1. Sabiendo que 17 cos ec y sec 8 del 4º,calcular el valor exacto de cos() 5 4 y que es del º cuadrante y a 1. Obtener el valor de cos,sabiendo que cotg a= siendo a un ángulo 5 del tercer
UTILIZAMOS LA TRIGONOMETRÍA.
UTILIZAMOS LA TRIGONOMETRÍA. RAZONAMIENTO Y DEMOSTRACIÓN Determina las demás razones trigonométricas a través de un dato. Aplica las definiciones de razones trigonométricas en la solución de ejercicios
6.- En un puerto de montaña aparece una señal de tráfico que señala una pendiente del 12 %. Cuál sería ese desnivel en grados?
TRIGONOMETRÍA 1.- En un triángulo rectángulo, la hipotenusa mide 8 dm y tgα 1' 43, siendo α uno de los ángulos agudos. Halla la medida de los catetos..- Si cos α 0' 46 y 180º α 70º, calcula las restantes
T3 Trigonometría. Definiciones. Las razones trigonométricas del ángulo agudo,, de un triángulo rectángulo son:
T Trigonometría Definiciones. Las razones trigonométricas del ángulo agudo,, de un triángulo rectángulo son: sen = cateto opuesto = a hipotenusa c hipotenusa cosec = = c cateto opuesto a cos = cateto adyacente
FICHA BLOQUE 2. RESOLUCIÓN DE TRIÁNGULOS Y FÓRMULAS MATEMÁTICAS. 1. Resuelve las siguiente ecuaciones:
FICHA BLOQUE. RESOLUCIÓN DE TRIÁNGULOS Y FÓRMULAS MATEMÁTICAS. Resuelve las siguiente ecuaciones: a) sen 6sen b) sen sen 0 5 8 8 5 6 6 69 6 60 9 k k k k 60 80 siendo 60 56" 0' 08 60 " 9' 5 8 5 Z c) 0 d)
75 EJERCICIOS DE TRIGONOMETRÍA
75 EJERCICIOS DE TRIGONOMETRÍA Repaso Trigonometría elemental:. Completar en el cuaderno la siguiente tabla: Grados 05º 5º 0º 5º Radianes 4π/9 rad π/5 rad rad. Uso de la calculadora: a) Hallar, con cuatro
70 Problemas de triángulos y trigonometría.
http://www.cepamarm.es ACFGS - Matemáticas ESG - 04/2014 Pág. 1 de 16 1º). Bernardo conoce la distancia AB a la que está del árbol y los ángulos CBA y BAC; y quiere calcular la distancia BC a la que está
68 EJERCICIOS DE TRIGONOMETRÍA
68 EJERCICIOS DE TRIGONOMETRÍA Repaso Trigonometría elemental:. Completar en el cuaderno la siguiente tabla: Grados 05º 5º 0º 5º Radianes 4π/9 rad π/5 rad rad Ejercicios libro: pág. 9:, y 4; pág. 4:, y.
MATEMÁTICAS I Pendientes 1ª Parte
MATEMÁTCAS Pendientes ª Parte Calcula: ) ( ) ( ) ) d a bi a b ab d i ) a b ab RADCALES -6 ) ab a b a b ) ( ) a a a 6) b c 6 a a b b c 6 8 7) a bc 9 a bc 8) 7 8 8 9) 80 80 0 0) 8 0 6 ) 7 7 ) 7 8 0 6 ) 7
a1 3 siendo a 1 y a 2 las aristas. 2 a a1
Semejanza y Trigonometria. 77 Ejercicios para practicar con soluciones Dos rectángulos tienen sus lados proporcionales. Los lados del primero miden 6 y 8 cm respectivamente. Si el perímetro del segundo
EXAMEN GLOBAL. 4. Dada la función y = 1/x. Existe algún punto en el que la recta tangente esté inclinada 45º?, y 135º?. Calcula esa recta tangente.
ejerciciosyeamenes.com. a) Enunciado y demostración del teorema del seno. b) Dos coches parten al mismo tiempo de un mismo punto. Van por carreteras rectas que forman entre sí un ángulo de 30º. El primer
Matemáticas Física Curso de Temporada Verano Ing. Pablo Marcelo Flores Jara
Matemáticas Física Curso de Temporada Verano 2016 Ing. Pablo Marcelo Flores Jara [email protected] UNIDAD II: RESOLUCIÓN DE TRIÁNGULO CUALESQUIERA U OBLICUÁNGULOS Ing. Pablo Marcelo Flores Jara
Relaciones fundamentales
Tema Nº 7 TRIIGONOMETRÍÍA Relaciones fundamentales 6 Si sen α /, calcula cos α y tg α utilizando las relaciones fundamentales (α < 90 ). sen α 9 6 4 senα ;tgα 4 4 7 Halla el valor exacto (con radicales)
TEMAS 4 Y 5 TRIGONOMETRÍA
Temas 4 y 5 Trigonometría Matemáticas I º Bachillerato TEMAS 4 Y 5 TRIGONOMETRÍA UNIDADES DE MEDIDAS DE ÁNGULOS EJERCICIO a Pasa a radianes los siguientes ángulos: y 7 b) Pasa a grados los ángulos: 7 rad
Edificio y árbol, qué altura tienen?
Nivel: 3.º medio Subsector: Matemática Unidad temática: Edificio y árbol, qué altura tienen? Joaquín es un joven inquieto, y entre muchas cosas que le llaman la atención es que cada vez que él camina,
3.- TRIGONOMETRÍA 1.- EL RADIÁN
. Pasa a radianes los siguientes ángulos: a) 00 b) 00 Solución: a) 0/9 rad, b) 5/ rad.. Pasa a radianes los siguientes ángulos: a) 70 b) 6 Solución: a) / rad, b) 7/0 rad..- TRIGONOMETRÍA.- EL RADIÁN. Halla,
Trigonometría. 5. Calcula el valor de las siguientes expresiones, sin utilizar la calculadora: a) b) c) d)
Trigonometría 1. Razones trigonométricas de un ángulo agudo 1.1. Definiciones de seno de, coseno de y tangente de. 1.2. Relaciones entre las razones trigonométricas de un ángulo. 1.3. Razones trigonométricas
EJERCICIOS DE TRIGONOMETRÍA. 1) Expresa en radianes las medidas de los siguientes ángulos: 2) Expresa en grados sexagesimales los siguientes ángulos:
Colegio María Inmaculada MATEMÁTICAS ACADÉMICAS 4º ESO EJERCICIOS DE TRIGONOMETRÍA 1) Expresa en radianes las medidas de los siguientes ángulos: 2) Expresa en grados sexagesimales los siguientes ángulos:
EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos:
Seminario Universitario Matemática EJERCICIOS MÓDULO 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: a) 5 b ) 170 c ) 0 d ) 75 e) 10 f ) 50 g ) 0 h ) 87 i ) 08 j ) 700 k
DOCUMENTO DE TRABAJO TRIGONOMETRÍA. Prof. Juan Gutiérrez Céspedes
ANGULO TRIGONOMÉTRICO * ANGULO TRIGONOMETRICO Es aquel que se genera por la rotación de un rayo desde una posición inicial hasta otra posición final, siempre alrededor de un punto fijo llamado vértice.
EJERCICIO 2. (1 punto) Reduce a un ángulo del primer cuadrante y calcula las razones trigonométricas de los ángulos siguientes:
Segunda Evaluación Grupo: 1ºBTCN Fecha: 1 enero 010 1 er Control EJERCICIO 1 (1 puntos) Sabiendo que está en el primer cuadrante y sen =1/, calcula (sin calcular previamente el ángulo ): a) cos b) sen
T R I G O N O M E T R Í A
T R I G O N O M E T R Í A 1. M E D I D A D E Á N G U L O S Existen varios sistemas de medida de ángulos. Los más comunes son el sistema sexagesimal y el radián. Sistema sexagesimal: Cada una de las 360
El coseno del ángulo agudo Ĉ es la razón entre la longitud del cateto contiguo y de la. hipotenusa a 1. Razones trigonométricas inversas Secante de Ĉ
.- MEDIDA DE ÁNGULOS. El grado sexagesimal (º) es cada una de las 60 partes iguales en las que se divide la circunferencia (submúltiplos: el minuto y el segundo). El radián (rad) es la medida del ángulo
I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS RESOLUCIÓN DE TRIÁNGULOS
I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS RESOLUCIÓN DE TRIÁNGULOS Resuelve el triángulo ABC del que se conocen los siguientes datos: a = 5, b = 80, c = 60 Aplicando el teorema del coseno:
TRIGONOMETRÍA. c) 315º = d) 320º = 4.- Expresa los siguientes ángulos como suma de un número entero de vueltas y un ángulo menor
TRIGONOMETRÍA 1.- Expresa en grados los siguientes ángulos medidos en radianes: a) b) c) 5π rad = 4 7π rad = 6 4π rad = 3 10π d) rad = 9 e) 0,25 π rad = f) 1,25 π rad = 2.-Expresa en radianes los siguientes
1. Con ayuda de las fórmulas que relacionan la suma o diferencia entre dos ángulos, calcula las siguientes razones trigonométricas: cos. sen.
Soluciones de la Hoja de problemas de Números complejos y trigonometría. 1. Con ayuda de las fórmulas que relacionan la suma o diferencia entre dos ángulos, calcula las siguientes razones trigonométricas:
1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º.
MATEMÁTICAS NM TRIGONOMETRÍA 1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º. a) Calcule AB. b) Halle el área del triángulo. 2. (D) La siguiente figura muestra una
EJERCICIOS RESOLUCIÓN DE TRIÁNGULOS Y RAZONES TRIGONOMÉTRICAS 1º BACH
1. Para calcular la anchura AB de un río se elige un punto C que está en la misma orilla que A y se toman las siguientes medidas: AC=67 m; BAC=99º; ACB=20º Cuál es la distancia entre A y B? 2. Un pasillo
UNIDAD 7 FUNCIONES TRIGONOMÉTRICAS
UNIDAD 7 FUNCIONES TRIGONOMÉTRICAS Uso de la calculadora. Calcula, usando calculadora: a) sen 0 b) cos 70 e) cos 89 0 f) tan c) tan 0 0 g) sen 80 7 d) sen 7 0 h) cos 6 8. Encuentra el valor del ángulo
Ángulos y razones trigonométricas
Departamento Matemáticas TEMAS 3 y 4. Trigonometría Nombre CURSO: 1 BACH CCNN 1 Ángulos y razones trigonométricas 1. Hallar las razones trigonométricas de los ángulos agudos del siguiente triángulo rectángulos.
4, halla sen x y tg x. 5
TRIGONOMETRÍA 1º.- Sabiendo que 90 º < x < 70 º y que 4, halla sen x y tg x. 5 a) sen x? ; de la fórmula fundamental sen x + cos x 1 se obtiene sen x 1 - cos x. 9 5 de donde sen x 5 3, solución positiva
3.- Calcula los ángulos de un rombo cuyas diagonales miden 12 y 8 m.
Departamento de Matemáticas 1.- Sabiendo que tga = 4, calcula sena, cosa y a. 2.- Sabiendo que sena = -0 4, calcula tga, cosa y a. 3.- Calcula los ángulos de un rombo cuyas diagonales miden 12 y 8 m. 4.-
Como el ángulo es mayor que 360º lo tratamos del siguiente modo:
MATEMÁTICAS 4º ESO EXAMEN DE TRIGONOMETRÍA RESUELTO EXAMEN RESUELTO Halla las razones trigonométricas de los siguientes ángulos: a) 740º Como el ángulo es maor que lo tratamos del siguiente modo: 740 60
TRABAJO PARA LA TERCERA EVALUACION PARCIAL DE TRIGONOMETRIA Profra. Dulce Estrella Hernández Hernández.
NEXA A LA NORMAL DE NAUCALPAN TRABAJO PARA LA TERCERA EVALUACION PARCIAL DE TRIGONOMETRIA Profra. Dulce Estrella Hernández Hernández. Contesta a mano en hojas blancas, incluye todos los procedimientos.
RELACIÓN DE TRIGONOMETRÍA
RELACIÓN DE TRIGONOMETRÍA ) Resuelve el triángulo ABC rectángulo en A del que se sabe que: a cm y ˆB 7º0' La hipotenusa mide 7 m y un cateto 8 m. Un cateto mide 0 cm, y su ángulo opuesto 0º. ) De un triángulo
Problemas Tema 2 Enunciados de problemas sobre trigonometría
página 1/1 Problemas Tema Enunciados de problemas sobre trigonometría Hoja 1 1. Siendo α y β dos ángulos del primer cuadrante que cumplen: senα= 5 cosβ= 5 1 Calcular las siguientes expresiones trigonométricas:
Actividades. de verano º Bachillerato Matemáticas Ciencias. Nombre y apellidos:
Actividades de verano 017 Nombre y apellidos: Curso: Grupo: 1º Bachillerato Matemáticas Ciencias 1.- Representa los siguientes conjuntos: TRABAJO DE VERANO.- Suma y simplifica: 3.- Racionaliza denominadores
RESOLUCIÓN DE TRIÁNGULOS
RESOLUCIÓN DE TRIÁNGULOS Triángulos rectángulos, isósceles o equiláteros 1.- Resuelve los triángulos rectángulos, en los que A=90º: a) b=3, c=3; b) a=5; B=37º; c) c=15, b=8. Sol: a) B=45º, C=45º, b=3 2
Razones trigonométricas DE un ángulo agudo de un triángulo
RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO RAZONAMIENTO Y DEMOSTRACIÓN Calcula razones trigonométricas en un triángulo rectángulo. Demuestra identidades trigonométricas elementales Demuestra identidades
Guía - 2 de Funciones: Trigonometría
Centro Educacional San Carlos de Aragón. Coordinación Académica Enseñanza Media. Sector: Matemática. Nivel: NM 4 Prof.: Ximena Gallegos H. Guía - de Funciones: Trigonometría Nombre(s): Curso: Fecha. Contenido:
CURSO: GRUPO: Nº: FECHA: CALIF. 1. (1 puno) Representa sobre la recta real los siguientes conjuntos:
CURSO: GRUPO: Nº: FECHA: CALIF. 1. (1 puno) Representa sobre la recta real los siguientes conjuntos: {x/ -1
5.5 LÍNEAS TRIGONOMÉTRICAS
5.5 LÍNES TRIGONOMÉTRIS Sea (O, ) una circunferencia con centro en el origen de coordenadas O(0, 0) radio la unidad. Si se construe un ángulo con vértice en el origen sentido positivo podemos obtener las
= + = 1+ Cuarta relación fundamental
1.- Determina las razones trigonométricas de los siguientes ángulos, relacionándolos con algunos ángulos notables (0º, 0º,, 60º, 90º, 180º, 70º, 60º), indicando en qué cuadrante se encuentran: a) 40º b)
Curso RELACIÓN DE PROBLEMAS Y CUESTIONES DE TRIGONOMETRÍA PARA 4º DE ESO OPCIÓN B (CPM) GRADO 1
Curso 12-13 RELACIÓN DE PROBLEMAS Y CUESTIONES DE TRIGONOMETRÍA PARA 4º DE ESO OPCIÓN B (CPM) Graduados según su dificultad siendo Grado 1: Muy fácil Grado 5: Muy difícil GRADO 1 1. Prueba que en un triángulo
2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos?
1. Qué relaciones ligan las razones trigonométricas de (45º-a) y (45º+a) 2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos? 3. Demostrar la fórmula: 4. Expresar
EJERCICIOS de TRIGONOMETRÍA
EJERCICIOS de TRIGONOMETRÍA GRADOS Y RADIANES: 1. Pasar los siguientes ángulos a radianes: a) b) 45º c) 60º d) 90º e) 180º f) 270º g) 360º ) 135º i) 235º j) 75º 2. Pasar los siguientes ángulos, epresados
EJEMPLO: Dadas las siguientes medidas calcula la longitud del segmento B C. = = 5,338 5
1.TEOREMA DE TALES. Si se traza un conjunto de rectas paralelas entre si, r, s, t, que cortan a otras dos rectas a e b, los segmentos que se determinan sobre las rectas a y b son proporcionales. A ' AB
BANCO DE PREGUNTAS DE MATEMÁTICAS EXACTAS ÁLGEBRA Tablas de verdad. 3. Complete la tabla de verdad poniendo los operadores lógicos correspondientes
BANCO DE PREGUNTAS DE MATEMÁTICAS EXACTAS ÁLGEBRA Tablas de verdad Desarrolle la tabla de verdad 1 (p q) r 2 [(p q) p] q 3 Complete la tabla de verdad poniendo los operadores lógicos correspondientes (p
TEMA 8: TRIGONOMETRÍA RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Dado el siguiente triángulo rectángulo: sen. hipotenusa. hipotenusa.
TEMA 8: TRIGONOMETRÍA RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Dado el siguiente triángulo rectángulo: seno de cos eno de cateto opuesto hipotenusa cateto próximo hipotenusa cateto opuesto tan gente
UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERÍA INSTITUTO DE CIENCIAS BASICAS
UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERÍA INSTITUTO DE CIENCIAS BASICAS Álgebra Ejercicios Trigonometría Plana Material para el alumno. Recopilado y preparado por los profesores Isabel Arratia
se nombra y sus elementos: vértices, ángulos y lados. Indicar que el vértice da nombre al lado. Proporcionalidad de sus lados.
Unidades Didácticas 6 y 7: Semejanza y Trigonometría 6.1 Semejanzas, homotecias y escalas. 7.1 Razones trigonométricas. Sistema sexagesimal-radianes. 7.2 Propiedades de las razones a partir de la circunferencia
TEMA 4. TRIGONOMETRÍA.
TEMA 4. TRIGONOMETRÍA. 4.1. Semejanza. - Criterios de semejanza de triángulos. - Teorema del cateto. - Teorema de la altura. 4.2. Razones trigonométricas. - Razones trigonométricas de un ángulo agudo.
COLEGIO COMPAÑÍA DE MARÍA SEMINARIO DEPARTAMENTO DE MATEMATICAS
COLEGIO COMPAÑÍA DE MARÍA SEMINARIO DEPARTAMENTO DE MATEMATICAS GUÍA N DE TRIGONOMETRÍA IV MEDIO DIFERENCIADO MATEMÁTICO )Completa la siguiente tabla que indica la relación entre valores en radianes y
( ) i ( ) ( ) i ( ) ( ) RESOLUCIÓN Del dato: RESOLUCIÓN 2cos4asena 2sen4asena E = ctg 4a RPTA.: D RESOLUCIÓN RESOLUCIÓN SEMANA 13 TRANSFORMACIONES
SEMANA TRANSFORMACIONES. Simplificar: sen5a sena cosa cos5a tg 8a B) tg a C) tg a ctg a ctg a cosasena senasena ctg a. En un triángulo ABC, factorice: W = sen A + senb sen C icosaisenbi B) i senaisenbi
1. Contesta: función sea creciente? 2. Representa la función: ( ) = Representa la siguiente función definida a trozos:
IES SAULO TORÓN Matemáticas 4º ESO RECUPERACIÓN 3ª Evaluación 1. Contesta: a) Pon un ejemplo de una función de proporcionalidad directa. b) En la función () = +, explica el significado de m. Cómo debe
Trigonometría Cálculo I
Trigonometría Cálculo I Estimado estudiante, para que se te haga más fácil la aplicación de trigonometría en Cálculo I, es necesario que revises y repases los siguientes conceptos: Ángulos de Referencia
SOLUCIONES TRIGONOMETRÍA19
SOLUCIONES EJERCICIOS DE TRIGONOMETRÍA Ejercicio nº 1.- Halla las razones trigonométricas de los ángulos y del triángulo ABC sabiendo que es rectángulo. Sea x la longitud de la hipotenusa; por el teorema
UNIDAD 4: TRIGONOMETRÍA
UNIDAD 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS La palara tri-gono-metría significa medida de las figuras con tres esquinas, es decir, de los triángulos. La trigonometría estudia las relaciones entre
EJERCICIOS DE 1º BACHILLERATO CIENCIAS DE LA SALUD
EJERCICIOS DE º BACHILLERATO CIENCIAS DE LA SALUD TRIGONOMETRÍA I - Sin utilizr l clculdor, hll el vlor de l siguientes expresiones: π π 5 π π 7π 4π π sen. 4sen + senπ sen sen cos + tg + tg 6 6 - Comprueb:
1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a)
Ejercicios de cónicas 1º bachillerato C 1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) b) c) d) e) f) g) h) i) Soluciones: a) Circunferencia de centro ( y radio 3. Excentricidad
Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DEL TEMA 7
Colegio La Inmaculada Misioneras Seculares de Jesús Obrero Matemáticas º E.S.O. ACTIVIDADES DEL TEMA 7. Dos circunferencias tienen por radios 5 cm y 9 cm. Cuál es la razón de semejanza de sus longitudes?.
Presionand o este botón se borra la
ACTIVIDAD CON EL GRAFICADOR Tema: GRAFICAR FUNCIONES TRIGONOMETRICAS Introducción: En el GRAFICADOR que usarán a continuación, el objetivo es graficar las diferentes funciones trigonométricas. Presionando
TRABAJO PRÁCTICO Nº 4
TRIGONOMETRÍA TRABAJO PRÁCTICO Nº 4 Objetivos: Utilizar correctamente el sistema sexagesimal y radial, realizar el pasaje de un ángulo expresado en un sistema a otro. Aprehender las definiciones de las
4º E.S.O. OPCIÓN B. Departamento de Matemáticas. I.E.S. Príncipe de Asturias. Lorca
Relación ejercicios trigonometría 1) Halla la altura de un edificio que proyecta una sombra de 6 m. a la misma hora que un árbol de 1 m. proyecta una sombra de 4 m. Sol: 49 m ) En un mapa, la distancia
Medida de ángulos. Es la medida de un ángulo cuyo arco mide un radio. 2 rad = 360. rad = º rad
Medida de ángulos Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. El ángulo es positivo si se desplaza
*Caracterización de funciones trigonométricas. *Clases de triángulos.
IED. COLEGIO NACIONAL NICOLÁS ESGUERRA J.T. Edificamos futuro ÁREA DE MATEMÁTICAS ESTRATEGIAS DE RECUPERACIÓN Y MEJORAMIENTO ACADÉMICO TALLER DE SUFICIENCIA TRIGONOMETRIA GRADO: 10 PROFESOR: GINÉS SALCEDO
Problemas de trigonometría
Problemas de trigonometría Relaciones trigonometrícas de un ángulo 1. Calcular las razones trigonométricas de un ángulo α, que pertenece al 8 primer cuadrante, y sabiendo que sin α =. 17 2. Calcular las
TREBALL D ESTIU MATEMATIQUES 4t ESO
Pàgina 1 de 7 Alumnes suspesos: fer tot el treball obligatòriament. Altres alumnes: Es recomana que realitzeu aquells apartats on heu tingut més dificultats durant el curs. 1.- Efectúa las siguientes operaciones
EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes
Seminario Universitario Matemática EJERCICIOS MÓDULO 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: a) α = 5 b) β = 170 c) γ = 0 d) δ = 75 e) ε = 10 f ) η = 50 g) θ = 0
Aplicaciones de la Trigonometría
Aplicaciones de la Trigonometría José Antonio Salgueiro González Departamento de Matemáticas IES Bajo Guadalquivir Lebrija - Sevilla dpto mates [email protected] 23 de marzo de 2007 José Antonio Salgueiro González
Sin hacer uso de la calculadora, halla el valor exacto de las razones trigonométricas que faltan o del ángulo, sabiendo que 0 90 :
EJERCICIOS DE TRIGONOMETRÍA Ejercicio nº 1.- Halla las razones trigonométricas de los ángulos y del triángulo ABC sabiendo que es rectángulo. Ejercicio nº 2.- Sin hacer uso de la calculadora, halla el
4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud.
7 CAPÍTULO SIETE Ejercicios propuestos 7.5 Triángulos 1. Construya de ser posible los siguientes triángulos ABC. En caso de que existan, determine sus cuatro puntos característicos empleando regla y compás.
1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones:
APLICACIONES DE DERIVADAS 1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: a. 6 9 b. c. 2 d. 2 e. f. 1 2. Estudia los intervalos de crecimiento y decrecimiento de las siguientes
Colegio Diocesano Asunción de Nuestra Señora Ávila Tema 7
EJERCICIOS DE RESOLUCIÓN DE TRIÁNGULOS (TEMA 7) 1.- La base de un triángulo isósceles mide 5 cm y el ángulo opuesto a dicha base es de 55º. Calcula el área del triángulo. 2.- Hallar el área de un octógono
a a Nota: Como norma general se usan tantos decimales como los que lleven los datos
1. Sea ABC un triángulo rectángulo en A, si sen B 1/3 y que el lado AC es igual a cm. Calcular los otros lados de este triángulo. Mediante la definición de sen Bˆ, se calcula el lado c. b b sen Bˆ a 30
APELLIDOS Y NOMBRE:...
1º BACHILLERATO Fecha: 6-09-011 PRUEBA INICIAL APELLIDOS Y NOMBRE:... NORMAS El eamen se realizará con tinta de un solo color: azul ó negro No se puede usar corrector Se valorará potivamente: ortografía,
1.- Simplifica al máximo la expresión: 2.- Obtener de manera razonada las soluciones de la primera vuelta de la
Colegio del Sagrado Corazón EXAMEN Trigonometría CLASE:1º BACHILLERATO FECHA:9/10/15 tg 1.- Simplifica al máimo la epresión: sen sen sen sen.- Obtener de manera razonada las soluciones de la primera vuelta
EVALUACION: 1ª CURSO: 1º B.C.T. FECHA: 8/11/13 EXAMEN: 1º. 1) Simplifica todo lo posible racionalizando los denominadores:
EVALUACION: 1ª CURSO: 1º B.C.T. FECHA: 8/11/13 EXAMEN: 1º 1) Simplifica todo lo posible racionalizando los denominadores: + 2) Simplifica todo lo posible la siguiente operación con fracciones algebraicas:
TRABAJO PRÁCTICO Nº 9. TRIGONOMETRÍA. 1º PARTE: REVISIÓN. Resolución de triángulos rectángulos.
Instituto Dr. Juan Segundo Fernández Área y curso: Matemática 4º año. TRABAJO PRÁCTICO Nº 9. TRIGONOMETRÍA Profesora: Graciela Bejar 1º PARTE: REVISIÓN. Resolución de triángulos rectángulos. Plantea y
INSTITUTO POLITÉCNICO NACIONAL CENTRO DE ESTUDIOS CIENTÍFICOS Y TECNOLÓGICOS CUAUHTÉMOC
INSTITUTO POLITÉCNICO NACIONAL CENTRO DE ESTUDIOS CIENTÍFICOS Y TECNOLÓGICOS CUAUHTÉMOC ACADEMIA DE MATEMÁTICAS GUÍA DE ESTUDIO GEOMETRÍA Y TRIGONOMETRÍA LOGARÍTMOS Y EXPONENCIALES.- Expresa las siguientes
Unidad 1: Trigonometría básica
Ejercicio Unidad : Trigonometría básica Obtén los radianes correspondientes a los siguientes grados: π rad rad 6 a) 80º 80º π rad b) 0º 0º π π rad ' rad 80º 80º 6 rad c) º º π π rad 0'79 rad 80º d) 00º
