UNIDAD 1 : ELEMENTOS ALGEBRAICOS
|
|
|
- Pascual Arroyo Soler
- hace 9 años
- Vistas:
Transcripción
1 UNIDAD 1 : ELEMENTOS ALGEBRAICOS 1.D FUNCIONES 1.D.1 Características de una función para graficarla Si necesitamos graficar una función f se pueden prescindir de las tablas de valores y reconocer ciertas características que darán una aproximación valiosa a la forma de la curva que representa a f. Si tenemos la forma analítica de la función podemos obtener: el dominio de definición ( los puntos de discontinuidad) la imagen los puntos de intersección con los ejes la positividad o negatividad la periodicidad la simetría Si analizamos los límites de la función podemos conocer: el tipo de discontinuidad las asíntotas Si calculamos las derivadas podemos saber: crecimiento y decrecimiento máximos y mínimos puntos de inflexión concavidad 1.D.1 Puntos de intersección con los ejes La curva intersecta al eje x cuando la función se anula, f(x)=0, así se hallan los ceros. La curva intersecta al eje y cuando la variable x se anula, f(0); sólo puede cortar una vez al eje. Ejemplo: Dada f tal que Los ceros son 1 y (-1), la curva corta al eje x en los puntos (1,0) y (-1,0) La curva corta al eje y cuando f(0)= -1, el punto de corte es (0,-1) Ejemplo: No existe corte con el eje x. Corta al eje y en (0,1) Prof. Liliana Collado Página 1
2 1.D.2 Positividad y negatividad A partir de conocer el dominio de definición y los cortes con el eje x se establecen los intervalos de estudio del comportamiento de la función. Ejemplo: Dada f tal que Si los ceros son -1 y 1, se establecen los intervalos positiva negativa positiva 1.D.3 Periodicidad Una función f es periódica si se verifica que, para todo x del dominio. La gráfica se repetirá de a tramos. La longitud de cada tramo es el menor valor de k para el cual se verifica la igualdad: k es el período de f(x) y siempre es positivo. Ejemplo: toda función trigonométrica es periódica. Para Se repiten los valores en un período de 2 Para 1.D.4 Simetría La función f es par si cumple simétrica respecto del eje y. La función f es impar si cumple simétrica respecto del origen de coordenadas. Ejemplo:,, f es una función par. para todo x del dominio. La gráfica es para todo x del dominio. La gráfica es Ejemplo:,, f es impar. Prof. Liliana Collado Página 2
3 1.D.5 Continuidad o discontinuidad Todas las funciones polinómicas son continuas. Las funciones racionales son discontinuas de acuerdo al denominador de la forma analítica, por ello hay que indicar las asíntotas. Las funciones exponenciales tienen la base positiva y mayor que 1, el dominio es R y la imagen es. También se pueden indicar las asíntotas. Las funciones logarítmicas son continuas, su dominio de definición es y su rango o imagen es R. Para analizar la continuidad de la función f en x=a habrá que tener en cuenta las tres condiciones: Tiene que existir f(a). Ha de existir también el límite de f cuando x tiende a a. Ambos valores deben ser iguales. 1.D.6 Asíntotas Definimos asíntota de una función a la recta a la que se aproxima la función en el infinito. Puede ocurrir esto en el infinito de la variable x o en el infinito de la imagen de la variable f(x). Existen asíntotas horizontales, verticales y oblicuas. Asíntota horizontal: la recta es una asíntota horizontal de la función f si : o Ejemplo: es discontinua en x=0, entonces la asíntota horizontal es y=1. Aclaración: una función puede tener como máximo dos asíntotas horizontales, una por cada límite. Asíntota vertical: la recta x=a es una asíntota vertical de la función f si: o o Ejemplo: es discontinua en x=1 y en x=-1, entonces Tiene dos asíntotas verticales x=1, x=-1 Aclaración: una función puede tener infinitas asíntotas verticales, como por ejemplo f(x)=tg(x) Asíntota oblicua: la recta es una asíntota oblicua de la función f si: el valor de la pendiente es el valor de la ordenada al origen es Ejemplo: Prof. Liliana Collado Página 3
4 tiene asíntota vertical y calcularemos la asíntota oblicua: La asíntota oblicua es y=x 1.D. 7Crecimiento y decrecimiento de una función Decimos que una función continua f es estrictamente creciente en un intervalo (a,b) si cumple para todo elemento x del intervalo: Geométricamente, la derivada de la función f en dicho punto x es la pendiente de la curva que representa a f en dicho punto. Entonces, si la derivada es positiva, la pendiente también lo es, y así se asegura que f es CRECIENTE. Decimos que una función continua f es estrictamente decreciente en un intervalo (a,b) si cumple para todo elemento x del intervalo: Geométricamente, la derivada de la función f en dicho punto x es la pendiente de la curva que representa a f en dicho punto. Entonces, si la derivada es negativa, la pendiente también lo es, y así se asegura que f es DECRECIENTE. 1.D.8 Puntos críticos de una función Se le llama punto crítico de una función f a: un punto singular, aquel en el que la derivada es nula un punto donde no exista la derivada un punto extremo a ó b del dominio [a,b] de definición de la función. Prof. Liliana Collado Página 4
5 Máximos y mínimos Recordando el Teorema (de los extremos absolutos de Weierstrass) Sea f(x) una función continua en [a,b]. Entonces f(x) alcanza un máximo y un mínimo absolutos sobre [a,b]. podremos analizar la existencia de estos puntos críticos: En el gráfico se observa que: para x=d, f(d) es un máximo dentro del intervalo [a,b]. para x=c, f(c) es un mínimo dentro del intervalo [a,b]. En este gráfico se observa que uno de los extremos del intervalo [a,b] es el máximo y un punto interior de dicho intervalo, c, es el mínimo. Y en este gráfico se observa que el extremo inferior del intervalo [a,b] es un mínimo pero que en dicho intervalo no existe máximo. Aclaración: pueden existir funciones que tienen máximo y/o mínimo en un intervalo determinado, pero eso no asegura que la función sea continua. Ejemplo: en el intervalo[-1,1] la función no es continua y sin embargo tiene máximo y mínimo. También puede suceder que la función no sea derivable en el punto y sin embargo tenga un mínimo en él, como es el caso de. Entonces para asegurar que se tiene un mínimo o un máximo dentro del intervalo de del dominio de la función f, se debe partir de la base de que la función f es derivable en el punto a en cuestión, que la derivada es nula (la tangente a la curva en dicho punto es horizontal) y que además si derivamos nuevamente: Prof. Liliana Collado Página 5
6 existe un mínimo en x=a existe un máximo en x=a Qué sucede si f (a)=0? Deberemos hallar la derivada tercera y con ella establecer si la función es creciente o decreciente. A partir de ello, hallar la derivada cuarta y comparar respecto de 0, entonces sabremos si hay un mínimo o hay un máximo. Y así sucesivamente, en caso de tener derivadas sucesivas nulas. Concavidad Una función es cóncava en un punto si a izquierda y a derecha de ese punto, en puntos muy próximos a él, los valores que toma la recta tangente en esos puntos son mayores que el valor de la función en x=a. Una función es convexa en un punto si a izquierda y a derecha de ese punto, en puntos muy próximos a él, los valores que toma la recta tangente en esos puntos son menores que el valor de la función en x=a. La concavidad o convexidad de una función puede estudiarse mediante la segunda derivada de la función en el punto x = a. Después de conocer máximo o mínimo de la función en el punto, se aplica la derivada segunda en el punto y si es positiva es cóncava. Si la derivada segunda en el punto es negativa, la curva es convexa en dicho punto. Ejemplo: para, hay un mínimo en x=0 porque y por lo tanto es cóncava en x=0 para, hay un máximo en x=0 porque y por lo tanto es convexa en x=0 Prof. Liliana Collado Página 6
7 Puntos de inflexión Se llama punto de inflexión de una curva que representa a la función f a aquel valor del dominio de f para el que la función cambia de concavidad, es decir: pasa de cóncava a convexa o viceversa. En este caso, analíticamente se expresa y se calcula. Si existe un punto de inflexión. Ejemplo : la función Tiene un punto de inflexión en x=0 porque: y entonces calculamos Prof. Liliana Collado Página 7
8 TRABAJO PRÁCTICO N 1.D : FUNCIONES Parte A: desarrollo en clase Teórica 1-Indicar si las siguientes funciones son pares o impares: a) b) 2- Expresar la función que describe el área de todos los rectángulos de perímetro 8 Y a partir de ella: a) Representarla gráficamente b) Hallar su derivada primera c) Calcular las dimensiones del rectángulo de área máxima. 3- Clasificar y representa gráficamente la función 4- Evaluar la función 5- Expresar la función que represente el área de un rectángulo inscripto en una circunferencia de 1 m de radio, en función del lado mayor, x. Hallar el dominio de definición de dicha función. Prof. Liliana Collado Página 8
9 TRABAJO PRÁCTICO N 1.D : FUNCIONES Parte B: desarrollo en clase Práctica 1-Se desea construir un recipiente con base rectangular. Para ello, sobre una hojalata rectangular se cortan en sus vértices cuatro cuadrados de lado x según se observa en la figura: a)expresar la función que calcula el volumen de la caja. b)hallar la derivada segunda de dicha función. c)expresar el dominio de definición. 2-Evaluar la función 3-Dada la función: Contestar: a) Tipo de función y Dominio: b) Rango o imagen: c) Periodicidad d) Simetrías e) Corte con los ejes f) Asíntotas g) Positividad y negatividad h) Máximos y mínimos i)puntos de inflexión i) Crecimiento y decrecimiento j) Concavidad 5-Indica si las siguientes funciones son pares e impares: a) b) c) d) Prof. Liliana Collado Página 9
10 6-Para la función: Indicar las discontinuidades y marcar verdadero o falso: a)en el intervalo (-,0) la función es decreciente b)en el dominio real, la función es impar c)(-2,f(-2)) es un máximo para el intervalo (-,6) d)el elemento del dominio x=1 tiene la misma imagen que x=-2 7- Dada la función f tal que Indicar si son verdaderas o falsas las siguientes proposiciones: a)f es par b)f es creciente en el intervalo [-2,0] contiene c)la inversa de f contiene al (0,0) d)existen tres cortes con el eje y e)tiene un máximo y un mínimo relativos f)tiene un punto de inflexión 8- Dadas las funciones: a- analizar dominio e imagen b- analizar concavidad c- analizar máximos y mínimos relativos d- analizar puntos de inflexión Prof. Liliana Collado Página 10
11 TRABAJO PRÁCTICO N 1.D : FUNCIONES Parte C: desarrollo individual del alumno para Carpeta de T. Prácticos Analizar las siguientes funciones f(x)= g(x)= h(x)= j(x)= m(x)= de acuerdo a todos y cada uno de los siguientes ítem: 1- Tipo de función 2- Dominio 3- Imagen 4- Continuidad 5- Periodicidad 6- Parida 7- Asíntotas 8- Cortes con los ejes 9- Positividad 10- Máximos y mínimos relativos 11- Intervalos de crecimiento 12- Puntos de inflexión 13- Intervalos de concavidad Prof. Liliana Collado Página 11
12 1- Prof. Liliana Collado Página 12
UNIDAD 8: LÍMITE Y DERIVADA DE UNA FUNCIÓN
UNIDAD 8: LÍMITE Y DERIVADA DE UNA FUNCIÓN Concepto de límite de una función Una aproximación al concepto de límite : Informalmente hablando se dice que el límite de una función es el valor al que tiende
REPRESENTACION GRÁFICA DE FUNCIONES
REPRESENTACION GRÁFICA DE FUNCIONES 1 REPRESENTACION GRÁFICA DE FUNCIONES UNIDADES Pag. 1. DEFINICIÓN DE DOMINIO UNA FUNCIÓN.3 2. CORTES CON LOS EJES...5 3. SIMETRÍA..7 4. PERIODICIDAD 9 5. FUNCIONES INVERSAS....10
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES I ) DOMINIO DE DEFINICIÓN DE UNA FUNCIÓN: Es el conjunto de puntos donde tiene sentido realizar las operaciones indicadas en el criterio de definición de la
Ecuación de la recta tangente
Ecuación de la recta tangente Pendiente de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. Recta tangente a una curva en un punto
CRECIMIENTO Y DECRECIMIENTO. MÁXIMOS Y MÍNIMOS.
pág.1 CRECIMIENTO Y DECRECIMIENTO. MÁXIMOS Y MÍNIMOS. En la figura se observa la recta tangente a una función creciente. La recta tangente es siempre creciente también para cualquier punto, por lo que
el blog de mate de aida CS II: Representación de funciones y optimización.
Pág.1 CRECIMIENTO Y DECRECIMIENTO. En la figura se observa la recta tangente a una función creciente. La recta tangente es siempre creciente también para cualquier punto, por lo que su pendiente será positiva
REPRESENTACIÓN GRÁFICA DE CURVAS - II
REPRESENTACIÓN GRÁFICA DE CURVAS - II 1.- Representa gráficamente la función a) Dominio: f(x) es el cociente del valor absoluto de una función polinómica de 2º grado entre la variable x. Ambas son continuas
< La recta y = -4/5 es una asíntota horizontal en +4. < La misma recta es también asíntota en -4. < y asíntota y = -4/5 = -0,8
Ramas infinitas de una curva. Asíntotas horizontales Ejemplo 1. Analizar si la curva tiene o no asíntotas horizontales Análisis del comportamiento de la función en +4 : x 6 +4 < La recta y = -4/5 es una
La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.
Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio
Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones
Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a
ESTUDIO LOCAL DE UNA FUNCIÓN
ESTUDIO LOCAL DE UNA FUNCIÓN CRECIMIENTO. DECRECIMIENTO. MÁXIMOS Y MINIMOS. Sea Sea DEF.- f es creciente en a E(a) / { ( ) ( ) ( ) ( ) E(a) De la misma forma se define función decreciente. ***TEOREMA.
Cálculo Diferencial de una Variable
Departamento de Matemática Aplicada Universitat Politècnica de València, España Fundamentos Matemáticos para la Ingenieria Civil Esquema Esquema de la exposición Definición. Interpretación geométrica de
Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)
Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de
CONCEPTOS QUE DEBES DOMINAR
INTERVALOS CONCEPTOS QUE DEBES DOMINAR Un intervalo es un conjunto infinito de números reales comprendidos entre dos extremos, que pueden estar incluidos en él o no. 1. Intervalo abierto (a, b): Comprende
CBC. Matemática (51) universoexacto.com 1
CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta
ANÁLISIS MATEMÁTICO I (2012)
ANÁLISIS MATEMÁTICO I (2012) TRABAJO PRÁCTICO 4 Etremos y teorema del valor medio Ejercicio 1. Decir si las siguientes afirmaciones son correctas. En caso contrario, justificar la respuesta. 1. El teorema
Ejercicios resueltos de cálculo Febrero de 2016
Ejercicios resueltos de cálculo Febrero de 016 Ejercicio 1. Calcula los siguientes ites: x 5x 1. x + x + 1 x 1 x. x x. x + x + 1 x x 4. x 0 x cos x sen x x Solución: 1. Indeterminación del tipo. Tenemos:
TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL
TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS
Cálculo Diferencial en una variable
Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia
Derivación. Aproximaciones por polinomios.
Derivación... 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Matemáticas (Grado en Químicas) Contenidos Derivada 1 Derivada 2 3 4 5 6 Outline Derivada 1 Derivada 2 3 4 5 6 Definición
Aplicaciones de la derivada Ecuación de la recta tangente
Aplicaciones de la derivada Ecuación de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. La recta tangente a una curva en un punto
Derivada Aplicaciones. Prof. Alberto Alvaradejo IVº Medio Calculo II 2017
Derivada Aplicaciones Prof. Alberto Alvaradejo IVº Medio Calculo II 2017 I. Función creciente Una función continua f es estrictamente creciente en un intervalo I si cumple x 0 < x 1 < x 2 f (x 0 ) < f
Estudio local de una función.
Estudio local de una función. A partir de una cartulina cuadrada de 60 cm de lado, se va a construir una caja de base cuadrada, sin tapa, recortando cuatro cuadrados iguales en las esquinas de la cartulina
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS E. ESTUDIO DE LA GRÁFICA DE UNA FUNCIÓN. E.1 Campo
APLICACIONES DE DERIVADAS: ANALISIS DE FUNCIONES 1. 1º PARTE: Función creciente y decreciente, puntos críticos, extremos relativos
Cálculo 1 _Comisión 1 Año 016 APLICACIONES DE DERIVADAS: ANALISIS DE FUNCIONES 1 Una de las aplicaciones de derivadas es el estudio del comportamiento de funciones Este estudio ya se había comenzado cuando
4.2 Tasas de Variación. Sea la función f: Se llama tasa de variación media de la función f en el intervalo [a, b] al cociente:
U.D.4: DERIVADAS 4.1 Ecuaciones de una recta. Pendiente de una recta La pendiente de una recta es una medida de la inclinación de la recta. Es el cociente del crecimiento en vertical entre el crecimiento
Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )
Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 4 (APLICACIONES DE LA DERIVADA) Profesora: Yulimar Matute Febrero 2012 RECTA
PAIEP. Valores máximos y mínimos de una función
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Valores máximos y mínimos de una función Diremos que la función f : D R R, alcanza un máximo absoluto en el punto
UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL PARANÁ
UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL PARANA ANÁLISIS MATEMATICO I ALGEBRA Y GEOMETRIA ANALITICA TRABAJO PRACTICO INTEGRADOR Nº1 PARTE C UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL
Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos
página /9 Problemas Tema Solución a problemas de Repaso de ºBachillerato - Hoja 02 - Todos resueltos Hoja 2. Problema. Sea f x )=a x 3 +b x 2 +c x+d un polinomio que cumple f )=0, f ' 0)=2, y tiene dos
Matemáticas 2 Agosto 2015
Laboratorio # 1 Línea recta I.-Determina la ecuación de la recta que satisface las siguientes condiciones y exprésala en la forma general. Pasa por el punto (1,5) y tiene pendiente 2 Pasa por y Pendiente
entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a)
DERIVADAS. TEMA 2. BLOQUE 1 1.- DERIVADA DE UNA FUNCIÓN EN UN PUNTO Se llama derivada de la función y = f ( en el punto de abscisa x = a al límite f ( f ( a f ( a = lím x a x a Si existe f (a entonces
FUNCIONES y = f(x) ESO3
Las correspondencias entre conjunto de valores o magnitudes se pueden expresar de varias formas: con un enunciado, con una tabla, con una gráfica, o con una fórmula o expresión algebraica o analítica.
TEMA 8. FUNCIONES (I). GENERALIDADES
TEMA 8. FUNCIONES (I). GENERALIDADES Contenido 1. Definición y formas de definir una función 2 1.1. Definición de función 2 1.2. Formas de definir la función: 4 1.2.1. A partir de una representación gráfica
TEMA 5. FUNCIONES (I). GENERALIDADES
TEMA 5. FUNCIONES (I). GENERALIDADES Contenido 1. Definición y formas de definir una función 2 1.1. Definición de función 2 1.2. Formas de definir la función: 4 1.2.1. A partir de una representación gráfica
Unidad 8: Derivadas. Técnicas de derivación. Aplicación al estudio y representación de funciones. Primitiva de una función (integración).
representación de funciones Primitiva de una función (integración) 1 Unidad 8: Derivadas Técnicas de derivación Aplicación al estudio y representación de funciones Primitiva de una función (integración)
2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN
2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 1.) Resuelve las siguientes derivadas: a) b) c) d) e) f) g) h) i) j) k) l) m) n) o) p) q) r) f(x) = arcsen 2.) Resuelve la siguiente derivada, simplificando
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación
Si se pueden obtener las imágenes de x por simple sustitución.
TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,
6 Funciones. 1. Estudio gráfico de una función. Piensa y calcula. Aplica la teoría
6 Funciones 1. Estudio gráfico de una función Piensa y calcula Indica cuál de las siguientes funciones es polinómica y cuál racional: 2 + 5 f() = f() = 3 5 2 + 6 4 2 4 Racional. Polinómica. Aplica la teoría
b) B es el punto Medio de MN siendo M(8,-2) y N(4,12) c) El baricentro del Triangulo es (3,7) R. A(1,2) B(6,5) C(2,14) CÁLCULO I COMPLEMENTO GUIA # 1
CÁLCULO I COMPLEMENTO GUIA # 1 Ejercicios sugeridos para la semana 2. Cubre el siguiente material: Sistemas de coordenadas rectangulares, Ecuación de la recta, Rectas paralelas y perpendiculares, Distancia
Aplicaciones de la derivada 7
Aplicaciones de la derivada 7 ACTIVIDADES 1. Página 160 a) La pendiente de la recta tangente es 12. b) La pendiente de la recta tangente es 3. 2. Página 160 a) La pendiente de la recta tangente es. b)
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,
Dos curvas interesantes: Unidad 10: REPRESENTACIÓN DE FUNCIONES TRACTRIZ INTRODUCCIÓN
Unidad 10: REPRESENTACIÓN DE FUNCIONES INTRODUCCIÓN Concepto de función Una de las ideas más fecundas y brillantes del siglo XVII fue la de la coneión entre el concepto de función y la representación gráfica
Ejercicios de representación de funciones
Ejercicios de representación de funciones Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.
REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL
REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se
Tema 7: Aplicaciones de la derivada, Representación de Funciones
Tema 7: Aplicaciones de la derivada, Representación de Funciones 0.- Introducción 1.- Crecimiento y Decrecimiento de una función. Monotonía..- Máimos y mínimos de una función.1.- Etremos relativos...-
5. ANÁLISIS MATEMÁTICO // 5.2. DERIVADA DE
5. ANÁLISIS MATEMÁTICO // 5.2. DERIVADA DE UNA FUNCIÓN EN UN PUNTO Y APLICACIONES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.2.1. El problema de la tangente. Derivada.
CÁLCULO DIFERENCIAL E INTEGRAL I APLICACIONES DE LA DERIVADA. 1. Derivabilidad y monotonía. creciente para x en cierto intervalo f es < 0
CÁLCULO DIFERENCIAL E INTEGRAL I APLICACIONES DE LA DERIVADA 1. Derivabilidad y monotonía Tenemos también el resultado: f (x) > 0 creciente para x en cierto intervalo f es Lo cual es claro, pues: Si la
TEMA 0: REPASO DE FUNCIONES
TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento
REPRESENTACIÓN DE FUNCIONES
8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta
TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R
TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le
Conocer las posibles asíntotas de una función nos ayudará en su representación gráfica. Vamos a distinguir tres tipos distintos de asíntotas:
1. Dominio, periodicidad y paridad de una función A la hora de representar una función lo primero que se ha de determinar es dónde está definida, es decir, para qué valores tiene sentido hablar de f(x).
-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.
EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta
Derivada de una función en un punto. Función derivada. Diferencial de una función en un punto. dy = f (x) dx. Derivada de la función inversa
Derivada de una función en un punto Las tres expresiones son equivalentes. En definitiva, la derivada de una función en un punto se obtiene como el límite del cociente incremental: el incremento del valor
Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9
Asignatura: Matemáticas II ºBachillerato página 1/8 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9 Hoja 1. Problema 9 Resuelto por José Antonio Álvarez
Aplicaciones de la integral definida al cálculo de áreas
Aplicaciones de la integral definida al cálculo de áreas 1º) Interpreta geométricamente el área que define la integral y obtenla. Geométricamente, la integral representa el área de la región del plano
EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.
FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,
ESTUDIO LOCAL DE LA FUNCIÓN
ESTUDIO LOCAL DE LA FUNCIÓN Dominio : x Calcular máximo, mínimo, Punto de Inflexión, intervalos crecimiento y decrecimiento e intervalos de curvatura de la y = (x 1) 3 y = 3 (x 1) 2 ; y = 0 3 (x 1) 2
01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial.
2.6 Criterios específicos de evaluación. 01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial. 03. Conoce la definición
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA Supongamos que tenemos una función. Consideramos la recta que corta a la gráfica en los puntos A y B. Esta recta se llama secante
( ) Por ejemplo: RECTA TANGENTE A UNA FUNCIÓN EN UNO DE SUS PUNTOS. Unidad 9: APLICACIONES DE LAS DERIVADAS
Unidad 9: APLICACIONES DE LAS DERIVADAS INTRODUCCIÓN La obtención de la tangente a una curva en uno de sus puntos y el cálculo de la velocidad instantánea de un móvil son problemas históricos que dieron
REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x
1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.
1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones:
APLICACIONES DE DERIVADAS 1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: a. 6 9 b. c. 2 d. 2 e. f. 1 2. Estudia los intervalos de crecimiento y decrecimiento de las siguientes
(, ) ( ) ( ) ( ) ( ) ( ) = 0. Calcula las coordenadas de los demás vértices del cuadrado.
Eamen de geometría analítica del plano y funciones 3/6/0 Ejercicio. El punto A ( 6,) es un vértice de un cuadrado inscrito en la circunferencia de ecuación y y 4 6 7 = 0. Calcula las coordenadas de los
TEMA 5. FUNCIONES DERIVABLES. TEOREMA DE TAYLOR
TEMA 5. FUNCIONES DERIVABLES. TEOREMA DE TAYLOR 5.1 DERIVADA DE UNA FUNCIÓN 5.1.1 Definición de derivada Definición: Sea I in intervalo abierto, f : I y a I. Diremos que f es derivable en a si existe y
APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente
APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente
x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.
. [0] [SEP-B] Sea la función f definida por f() = e- para. - a) Estudia las asíntotas de la gráfica de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto
GUÍA DE LA UNIDAD FUNCIONES : DERIVADAS
Funciones Límites Derivadas Aplicaciones Gráficas C ontenidos Idea de Función. Elementos notables de la gráfica de una función. Funciones lineales. Función definida por intervalos. Función Valor Absoluto.
Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización
Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Aplicaciones de la derivada primera para el estudio de la variación de una función El signo de la
2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.
cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima..
Funciones en explícitas
Funciones en eplícitas.- Sea la función f() e, se pide:. Dominio.. Signo de f() en función de.. Asíntotas. 4. Crecimiento y decrecimiento. Máimos y mínimos relativos. 5. Concavidad y conveidad. Puntos
APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA
Matemáticas º Bachillerato APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA CRECIMIENTO DECRECIMIENTO, CONCAVIDAD CONVEXIDAD Sea y = f() una función continua cuya gráfica es la de la figura. DEFINICIÓN
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA VICE RECTORADO ACADÉMICO DECANATO DE DOCENCIA DEPARTAMENTO DE MATEMÁTICA Y FÍSICA
UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA VICE RECTORADO ACADÉMICO DECANATO DE DOCENCIA DEPARTAMENTO DE MATEMÁTICA Y FÍSICA PROGRAMA DE MATEMÁTICA I Código: 0826101T Teoría: 4 horas/semana Pre-requisito:
Una función es una correspondencia única entre dos conjuntos numéricos.
FUNCIONES Qué es una función? Una función es una correspondencia entre dos conjuntos de números de modo que a cada valor del conjunto inicial, llamado dominio, se le hace corresponder un valor del conjunto
Funciones reales de variable real
Tema Funciones reales de variable real Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real.. Conceptos Generales Definición.
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto
2.1 Derivadas Tipo Función Simple Función Compuesta
Tema 2: Derivadas, Rectas tangentes y Derivabilidad de funciones. 2.1 Derivadas Tipo Función Simple Función Compuesta Constante Identidad Potencial Irracional Exponencial Logarítmica Suma Resta Producto
2) Estudia crecimiento, decrecimiento y existencia de extremos relativos. x 4x
EJERCICIOS DE ANÄLISIS 1) Estudia el dominio, ceros y signo, continuidad, límites en caso que tienda a + y -, máimos y mínimos relativos de las siguientes funciones. Realiza en cada caso el bosquejo correspondiente.
«La derivada de una función en un punto representa geométricamente la pendiente de la recta tangente a la función en dicho punto»
TEMA 10 DERIVADA DE UNA FUNCIÓN EN UN PUNTO f (a): Consideremos una función f(x) y un punto P de su gráfica (ver figura), de abscisa x=a. Supongamos que damos a la variable independiente x un pequeño incremento
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES
Ficha 1. Formas de expresar una función
Ficha 1. Formas de expresar una función 1. En unas instalaciones deportivas cobran 5 euros por la entrada, que da derecho a la utilización de todas las dependencias salvo las pistas de tenis, por las que
FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN
FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN 1.- Derivada de una función en un punto. El estudio de la derivada de una función en un punto surge con el problema geométrico
TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
TEMA 7 DERIVADAS Y APLICACIONES MATEMÁTICAS CCSSI º Bac TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Definición : Se llama
C.P.U. MATEMATICA Trabajo Práctico 2 FUNCIONES. FUNCIONES LINEAL, MÓDULO Y CUADRÁTICA. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA.
UNSAM º cuatrimestre 008 I. FUNCIONES C.P.U. MATEMATICA Trabajo Práctico FUNCIONES. FUNCIONES LINEAL, MÓDULO Y CUADRÁTICA. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA.. De acuerdo a la siguiente descripción:
FUNCIÓN. La Respuesta correcta es D
FUNCIONES FUNCIÓN La Respuesta correcta es D FUNCIÓN Función Continua: Es aquella en la que su gráfica se puede recorrer en forma ininterrumpida en toda su extensión. FUNCIÓN Función Discontinua: Es aquella
Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo.
UNIDAD. APLICACIONES DE LAS DERIVADAS.. Información etraída de la primera derivada.. Información etraída de la segunda derivada.. Derivabilidad en intervalos: Teorema de Rolle, del valor medio y Caucy..4
(1-mx)(2x+3) x 2 +4 = 6. x > -1
. [04] [EXT-A] Sea la función f(x) = e x +ax+b a) Calcular a y b para que f(x) tenga un extremo en el punto (,). b) Calcular los extremos de la función f(x) cuando a = 0 y b = 0.. [04] [EXT-B] En la figura
Expliquemos con exactitud qué queremos decir con valores máximos y mínimos.
Introducción: Ahora que conocemos las reglas de derivación nos encontramos en mejor posición para continuar con las aplicaciones de la derivada. Veremos cómo afectan las derivadas la forma de la gráfica
Tema 8: Aplicaciones de la derivada
Tema 8: Aplicaciones de la derivada 1. Introducción En la unidad anterior hemos establecido el concepto de derivada de una función en un punto de su dominio y la hemos interpretado geométricamente como
1. Calcula la tasa de variación media de las siguientes funciones en los intervalos que se indican. 1
6 Derivadas CRITERIOS DE EVALUACIÓN ACTIVIDADES DE EVALUACIÓN A. Calcular la tasa de variación media de una función en un intervalo.. Calcula la tasa de variación media de las siguientes funciones en los
CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas
CÁLCULO ELEMENTAL PROBLEMAS Valor absoluto - Resolver las ecuaciones siguientes: (i) 2x 6 = x (ii) x + 8 = 3x 4 2- Resolver la inecuación 2x 3 4 Funciones y sus gráficas 3- Dada f(x) = 2x 2 x, hallar f(
1. Halle el dominio de la función f(x) = ln(25 x2 ) x 2 7x + 12 ; es decir, el conjunto más grande posible donde la función está definida.
Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, 0-3 y 03-4 (segunda parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro,
CÁLCULO I. Módulo I: Números Reales, Relación de Orden y Valor Absoluto. Tiempo: Dos (2) Semanas. Valor: 10%
CÁLCULO I Módulo I: Números Reales, Relación de Orden y Valor Absoluto. Tiempo: Dos (2) Semanas. Valor: 1% Contenido: Números Reales: Axiomática de los números reales. Orden en R. Propiedades de orden.
