GUIA PARA EXAMEN FINAL
|
|
|
- Raúl José Ángel Herrera Segura
- hace 7 años
- Vistas:
Transcripción
1 GUIA PARA EXAMEN FINAL Instrucciones: 1. Dibuja el triángulo de Napoleón usando para el triángulo equilátero del lado la mediana, para el triángulo equilátero del lado la mediatriz y para el equilátero del lado la altura 2. Remarca con color el triángulo de Napoleón. Llama a sus vértices A, B y C. 3. Realiza la siguiente operación + (lados del triángulo de Napoleón del ejercicio anterior) sobre la recta punteada. (10 puntos) 4. Llama a los puntos extremos de la suma X, Y. (5 puntos) 5. Divide el segmento a una razón de 3/7. (10 puntos) 6. Marca la división del segmento con color. (5 puntos)
2 6. Bisectar el ángulo 7. Trasladar la siguiente figura al punto A 8. Encontrar la simetría central de la siguiente figura en el punto E.
3 Dibuja el polígono que corresponde al teorema y escribe tesis e hipótesis: 1. Una mediana de un triángulo lo divide en dos triángulos de igual área. 2. Las medianas de un triángulo lo dividen en 6 triángulos de igual área. 3. Las áreas de dos triángulos que tienen un ángulo congruente son entre ellas como los productos de los lados que comprenden el ángulo. 4. La suma de los ángulos interiores de un cuadrilátero es 360º 5. En un paralelogramo los lados opuestos son congruentes. 6. Si en un cuadrilátero los dos pares de lados opuestos son congruentes, entonces el cuadrilátero es un paralelogramo. 7. En un paralelogramo los ángulos opuestos son congruentes. 8. Si en un cuadrilátero las diagonales se bisecan, entonces es un paralelogramo.
4 9. Si los ángulos de la base de un trapecio son congruentes, el trapecio es isósceles. 10. El valor del lado de un triángulo equilátero inscrito en una circunferencia de radio R es igual a Calcula las áreas que se te piden: 11. En el cuadrilátero ABCD se tiene que AB=BC=AD=a y el ángulo. Encontrar el área del cuadrilátero en términos de a. 12. ABCD es un cuadrado de lado 4 cm. Hallar el área de la parte rayada. 13. Calcular el área de un triángulo equilátero inscrito en la circunferencia, si el radio de la circunferencia es 3.
5 14. ABCD es un cuadrado de lado 8 u. Calcular el área de la región sombreada. 15. Hallar el área de la región sombreada, si el lado del cuadrado es de 12 cm. Ayuda trazar la diagonal DB para encontrar el radio del arco. Calcula lo que se te piden: 16. es una diagonal del rombo ABCD. Si B = 120º, hallar BAC. 17. Sabiendo que el lado del cuadrado inscrito en una circunferencia de 7 cm. de radio vale, hallar el lado del cuadrado circunscrito a la misma circunferencia. Respuesta: 14 cm 18. El perímetro de un cuadrado inscrito en una circunferencia es cm. Hallar el diámetro de dicha circunferencia. 19. El perímetro de un triángulo inscrito en una circunferencia es cm. Hallar el diámetro de dicha circunferencia. Resuelve los siguientes triángulos a=4, b=3, =90, c=?, =?, =? =43, =60, =?, a=?, b=7, c=?
6 Realiza las siguientes conversiones considerando la siguiente proporción: =45 =3 radianes Ω=112 Ʈ= Ƴ=539 Ƿ= Resuelve los siguientes problemas de aplicación de los triángulos. 1. El extremo superior de una escalera está apoyada en una pared de forma que alcanza una altura de 3m. Si forma un ángulo 51º con el suelo, Cuál es el largo de la escalera? 2. Un observador se encuentra en un faro al pie de un acantilado. Está a 687m sobre el nivel del mar, desde este punto observa un barco con un ángulo depresión de 23º. Se desea saber a qué distancia de la base del acantilado se encuentra el barco. 3. Hallar la longitud de la sombra de una árbol de 10m de altura cuando los rayos del sol forman con la horizontal un ángulo de 15º 4. Encuentre el ángulo de elevación del sol si un hombre de 1,75 m. de estatura, produce una sombra de 82 cm. de longitud en el suelo. 5. Un barco sale de un puerto y viaja hacia el Oeste. En cierto punto gira 30 grados Norte respecto del Oeste y viaja 42km. adicionales hasta un punto que dista 63km. del puerto. Qué distancia hay del puerto al punto donde giró el barco?
4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud.
7 CAPÍTULO SIETE Ejercicios propuestos 7.5 Triángulos 1. Construya de ser posible los siguientes triángulos ABC. En caso de que existan, determine sus cuatro puntos característicos empleando regla y compás.
a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado...
Geometría Plana 3º E.S.O. PARTE TEÓRICA 1.- Define para un triángulo los siguientes conceptos: Mediatriz: Bisectriz: Mediana: Altura: 2.- Completa las siguientes frases: a) Las mediatrices de un triángulo
A 2 TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO TEOREMA DE PITÁGORAS:
TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS ELEMENTOS CLASIFICACIÓN TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO A b h A b a A perímetro apotema A r TEOREMA DE PITÁGORAS: a b c 1 POLÍGONOS
UNIDAD 2: ELEMENTOS GEOMÉTRICOS
UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este
TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.
RELACIÓN DE EJERCICIOS DE GEOMETRÍA PLANA
RELACIÓN DE EJERCICIOS DE GEOMETRÍA PLANA 1. Halla el perímetro y el área de las siguientes figuras: 2. Entre las dos diagonales de un rombo suman 100 cm, siendo la menor 20 cm más corta que la mayor.
EJERCICIOS DE TRIGONOMETRÍA. 1) Expresa en radianes las medidas de los siguientes ángulos: 2) Expresa en grados sexagesimales los siguientes ángulos:
Colegio María Inmaculada MATEMÁTICAS ACADÉMICAS 4º ESO EJERCICIOS DE TRIGONOMETRÍA 1) Expresa en radianes las medidas de los siguientes ángulos: 2) Expresa en grados sexagesimales los siguientes ángulos:
FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.
1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:
TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008
TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo
DEPARTAMENTO DE MATEMATICAS
1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono 2.- Halla la medida de los ángulos interiores de: a) Un octógono regular. b) Un
8 GEOMETRÍA DEL PLANO
8 GEOMETRÍ DEL PLNO EJERIIOS PR ENTRENRSE Ángulos y triángulos 8.6 Halla la medida del ángulo p en el siguiente triángulo. 6 4 180 6 p 4 p 180 6 4 11 8.7 alcula la suma de los ángulos interiores de un
Contenidos y sub-contenidos
Contenidos y sub-contenidos Definición de perímetro, área y polígono. Polígonos regulares e irregulares. Área de un polígono regular. Polígonos inscrito y circunscrito. Aplicaciones. Analicemos lo siguiente:
Ficha Expresa los siguientes ángulos en radianes, dejando el resultado en función de :
Ficha 1 1. Expresa los siguientes ángulos en radianes, dejando el resultado en función de : 2. Expresa los siguientes ángulos en grados sexagesimales y dibuja los ángulos centrales que tienen cada una
EJERCICIOS ÁREAS DE REGIONES PLANAS
EJERCICIOS ÁREAS DE REGIONES PLANAS 1. En un triángulo equilátero se inscribe una circunferencia de radio R y otra de radio r tangente a dos de los lados y a la primera circunferencia, hallar el área que
POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos
1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular
2.-GEOMETRÍA PLANA O EUCLIDIANA
2.-GEOMETRÍA PLANA O EUCLIDIANA 2.2.-Cuadriláteros. Definición, clasificación y notación. Clasificación de los cuadriláteros: Paralelogramos y no paralelogramos. Los cuadriláteros son los polígonos de
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 Página 160 PRCTIC Ángulos 1 Calcula la medida de X en cada figura: a) 180 139 40' b) 180 17 a) b) ^ 40 0' X^ ^ ^ X^ ^ 53 Calcula la medida de X en cada caso: a) ^ ^ 140 ^ 150 b) ^ X^ ^ c) ^ 33 ^
27.- La diferencia entre el lado de un triangulo equilátero y su altura es 12 cm. Cuanto mide el perímetro del triangulo?
EJERCICIOS 1.- Calcular la altura a la hipotenusa de un triángulo rectángulo cuyos catetos miden 6 y 8 cm. 5 2.- En un triángulo rectángulo, un cateto mide 15 cm., y la proyección del otro sobre la hipotenusa
Soluciones Primer Nivel - 5º Año de Escolaridad
Primer Nivel - 5º Año de Escolaridad Problema 1. La diagonal del cuadrado mide cm. El cuadrado se descompone en cuatro triángulos rectángulos cuyos catetos miden 1cm. Las áreas de estos triángulos miden
( 2) 1. Simplificar las siguientes expresiones usando propiedades de la potenciación: a) f) 5 0 b) 2 6 : 2 3 g) 2 4.
DO AÑO. 014 TRABAJO PRÁCTICO 0 1. Simplificar las siguientes expresiones usando propiedades de la potenciación: a) 5.. f) 5 0 b) 6 : g) 4. - + c) 5-5. 5 h) 5 d) ( 5 ) 5 i) e) Esta Guía 0 contiene los prerrequisitos
CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS
OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.
NOMBRE Y APELLIDOS: debe medir el tercero para que ese triángulo sea un triángulo rectángulo?
FICHA REFUERZO TEMA 8: TEOREMA DE PITAGORAS. SEMEJANZA. CURSO: 2 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Los dos lados menores de un triángulo miden 8 cm y 15 cm. Cuánto debe medir el tercero para que
Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:
3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-
2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm.
ACTIVIDAD DE APOYO GEOMETRIA GRADO 11 1. Calcular el valor de la altura del triángulo equilátero y de la diagonal del cuadrado (resultado con dos decimales, bien aproimados): h 6 cm (Sol: 3,46 cm) (Sol:
donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos.
Polígonos regulares 1 POLIGONOS REGULARES DEFINICION: Un polígono regular es el que tiene todos sus lados y sus ángulos congruentes. DEFINICION: Un polígono esta inscrito en una circunferencia si sus vértices
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.
TRIGONOMETRÍA. c) 315º = d) 320º = 4.- Expresa los siguientes ángulos como suma de un número entero de vueltas y un ángulo menor
TRIGONOMETRÍA 1.- Expresa en grados los siguientes ángulos medidos en radianes: a) b) c) 5π rad = 4 7π rad = 6 4π rad = 3 10π d) rad = 9 e) 0,25 π rad = f) 1,25 π rad = 2.-Expresa en radianes los siguientes
Cálculo de perímetros y áreas
Cálculo de perímetros y áreas 1. Calcula el perímetro de las siguientes figuras planas: 2. Calcula el perímetro de las siguientes figuras geométricas: 3. La rueda de un triciclo tiene 30 cm de radio. Cuántos
Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.
EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se
INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES - MATEMÁTICA I TRIÁNGULOS
TRIÁNGULOS Definición: Dados tres puntos no alineados, A, B y C, se llama triángulo a la intersección de los semiplanos que tienen como borde la recta determinada por dos de estos puntos y contiene al
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es
RELACIÓN DE TRIGONOMETRÍA
RELACIÓN DE TRIGONOMETRÍA ) Resuelve el triángulo ABC rectángulo en A del que se sabe que: a cm y ˆB 7º0' La hipotenusa mide 7 m y un cateto 8 m. Un cateto mide 0 cm, y su ángulo opuesto 0º. ) De un triángulo
El polígono es una porción del plano limitado por una línea poligonal cerrada.
UNIDAD 12: GEOMETRÍA PLANA 12.1. Los polígonos: Elementos El polígono es una porción del plano limitado por una línea poligonal cerrada. Un polígono se nombra con las letras mayúsculas situadas en los
GEOMETRIA Y TRIGONOMETRÍA PRIMER PARCIAL
GEOMETRIA Y TRIGONOMETRÍA PRIMER PARCIAL INVESTIGAR LOS SIGUIENTES CONCEPTOS Y DEFINICIONES UTILIZADOS EN LA GEOMETRIA PLANA 1.- Explicar Qué es la demostración en geometría? 2.- Explicar Qué es un Teorema?
GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.
GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el
Guía Nº 1 - Revisión
A. Completar con V o F según sea verdadero o falso. 1) Dos ángulos opuestos por el vértice siempre son iguales. 2) Dos ángulos opuestos por el vértice son suplementarios. 3) Dos ángulos opuestos por el
1 Ángulos en las figuras planas
Unidad 11. Elementos de geometría plana 1 Ángulos en las figuras planas Página 139 1. Cinco de los ángulos de un heágono irregular miden 147, 101, 93, 1 y 134. Halla la medida del seto ángulo. Los seis
TRIÁNGULOS Y CUADRILÁTEROS.
TRIÁNGULOS Y CUADRILÁTEROS. 1. Triángulos. Al polígono de tres lados se le llama triángulo. Clasificación: Según sus lados, un triángulo puede ser Equilátero, si tiene los tres lados iguales Isósceles,
TEMA 6: LAS FORMAS POLIGONALES
EDUCACIÓN PLÁSTICA Y VISUAL 1º DE LA E.S.O. TEMA 6: LAS FORMAS POLIGONALES Los polígonos son formas muy atractivas para realizar composiciones plásticas. Son la base del llamado arte geométrico, desarrollado
- Propiedades de las figuras planas
MATEMÁTICAS 1ºESO TEMA 10 PROPIEDADES DE LAS FIGURAS PLANAS 1 Tema 10 - Propiedades de las figuras planas 1 Escribe de línea poligonal y dibuja una: 2 Escribe el concepto de polígono. Dibuja un polígono
Mª Rosa Villegas Pérez
Mª Rosa Villegas Pérez FIGURAS PLANAS G.T. Elaboración de Materiales y Recursos Didácticos en un Centro TIC. Polígonos.- / 14 POLÍGONOS Un polígono es una figura plana y cerrada formada al unir tres o
BANCO DE PREGUNTAS DE MATEMÁTICAS EXACTAS ÁLGEBRA Tablas de verdad. 3. Complete la tabla de verdad poniendo los operadores lógicos correspondientes
BANCO DE PREGUNTAS DE MATEMÁTICAS EXACTAS ÁLGEBRA Tablas de verdad Desarrolle la tabla de verdad 1 (p q) r 2 [(p q) p] q 3 Complete la tabla de verdad poniendo los operadores lógicos correspondientes (p
EJERCICIOS DE RELACIONES TRIGONOMÉTRICAS (TEMA 1)
Colegio Diocesano Asunción de Nuestra Señora Ávila Tema EJERCICIOS DE RELACIONES TRIGONOMÉTRICAS (TEMA ).- Dados los ángulos = º y = 7º, calcula: a) + b) c) d).- Dados los ángulos = º 7 y = 7º, calcula:
*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio.
*DISTANCIA ENTRE DOS PUNTOS EN EL PLANO: P(x a, y b ). Q(x a, y b ) 2 b + ya yb d= ( ) ( ) 2 x a x *SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *ALTURA: perpendicular bajada del vértice al
Ángulos 1º = 60' = 3600'' 1' = 60''
Ángulos Definición de ángulo Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. Medida de ángulos Para
1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas.
MYP (MIDDLE YEARS PROGRAMME) 2015-2016 Fecha 30/03/2016 APUNTES DE GEOMETRÍA 1º ESO 1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. Un punto es una posición en el espacio, adimensional,
Autor: 2º ciclo de E.P.
1 Autor: 2º ciclo de E.P. Una línea recta es una línea que no tiene principio ni fin. Una semirrecta es una línea que tiene principio pero no tiene final. o Un punto divide a una recta en dos semirrectas.
Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid
Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos
Polígonos Polígonos especiales: Cuadriláteros y triángulos
Polígonos Polígonos especiales: Cuadriláteros y triángulos 1) a) Busca información sobre polígonos equiláteros, equiángulares y regulares. Lista semejanzas y diferencias. b) Haz una lista de los polígonos
TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES
TORNEOS GEOMÉTRICOS 015 Segunda Ronda 5º Grado SOLUCIONES Problema 1- Un paralelogramo de 5 cm de área, tiene por vértices al centro de un hexágono regular y a otros tres vértices del hexágono, como muestra
Las bisectrices de dos ángulos adyacentes son perpendiculares. Las bisectrices de los ángulos opuestos por el vértice están en línea recta.
CONCEPTOS Y TEOREMAS BÁSICOS PARA LA RESOLUCIÓN DE PROBLEMAS DE GEOMETRÍA PLANA 1. CONSIDERACIONES GENERALES El objeto de la Geometría plana es el estudio de las figuras geométricas en el plano desde el
EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS
EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS 1- Dados el punto V, la circunferencia de centro O y la recta R tangente a la circunferencia, se pide: a. Dibujar la circunferencia homotética de la dada, sabiendo
ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2.
1. Resolver las siguientes ecuaciones en Q. ARITMÉTICA a) b) 3. x + 1 = 3 83 3,90x x = 3 31 c) 0,x + x 4,16 = 6 d) ( x ) ( x ) + 3 1 = + 1 4 e) f) g) x x + = 0,3 0, 6x 3 0, 6 1x + 6x = 0,3 8 0,86x 0,73
Figuras planas. Definiciones
Figuras planas Definiciones Polígono: definición Un polígono es una figura plana (yace en un plano) cerrada por tres o más segmentos. Los lados de un polígono son cada uno de los segmentos que delimitan
Ángulo inscrito es aquel cuyo vértice está en la circunferencia. Todos los ángulos inscritos que compartan el mismo arco son iguales.
TEMA 8: PROBLEMAS MÉTRICOS EN EL PLANO ÁNGULOS EN LA CIRCUNFERENCIA Ángulo central es aquel cuyo vértice está en el centro de la circunferencia. Ángulo inscrito es aquel cuyo vértice está en la circunferencia.
TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros)
3 TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros) Ejemplo 1: Un rectángulo tiene 60 m de área y 3m de perimetro. Hallar sus dimensiones.. Ejemplo : La base de un rectángulo es el triple de su altura
1º ESO TEMA 12 FIGURAS PLANAS
1º ESO TEMA 12 FIGURAS PLANAS 1 1.- POLÍGONOS Concepto de polígono POLÍGONO 2 1.- POLÍGONOS Elementos de un polígono Lado: segmento que une dos vértices consecutivos Vértice: punto en común entre dos lados
EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos:
Seminario Universitario Matemática EJERCICIOS MÓDULO 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: a) 5 b ) 170 c ) 0 d ) 75 e) 10 f ) 50 g ) 0 h ) 87 i ) 08 j ) 700 k
Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles.
FICHA REFUERZO TEMA 12: FIGURAS PLANAS Y ESPACIALES CURSO: 1 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja
2. (10pts.) Cuál es el producto de los divisores comunes de 99 y 275?
3raEtapa (Examen Simultáneo) 1ro de Secundaria 1. (10 pts.) Si son números para los cuales : Hallar a) 20 b) 18 c) 16 d) 11 d) 17 e) Ninguno 2. (10pts.) Cuál es el producto de los divisores comunes de
4º E.S.O. OPCIÓN B. Departamento de Matemáticas. I.E.S. Príncipe de Asturias. Lorca
Relación ejercicios trigonometría 1) Halla la altura de un edificio que proyecta una sombra de 6 m. a la misma hora que un árbol de 1 m. proyecta una sombra de 4 m. Sol: 49 m ) En un mapa, la distancia
Clasifi cación de polígonos
Clasifi cación de polígonos Cuándo un polígono es regular? Marca la opción correcta. Sus ángulos son iguales. Sus lados son iguales. Sus lados y sus ángulos son iguales. Sus diagonales son iguales. Escribe
MATEMÁTICAS 2º E.S.O. TEMA 7 GEOMETRÍA PLANA.
MATEMÁTICAS 2º E.S.O. TEMA 7 GEOMETRÍA PLANA. 7.1 Figuras planas elementales. 7.2 Circunferencia, círculo, arcos y sectores circulares. 7.3 Figuras semejantes. Planos, mapas, maquetas. 7.4 Teorema de Thales.
TORNEOS GEOMÉTRICOS 2016 Primera Ronda. Primer Nivel - 5º Año de Escolaridad. Apellido Nombres.. DNI Tu Escuela. Localidad Provincia
Primer Nivel - 5º Año de Escolaridad 1- En el triángulo rectángulo ABC cuyo ángulo en C mide 48º se trazan la bisectrices de los ángulos B y C, que se cortan en O. Calcula la medida de los ángulos del
TEMA Nombre IES ALFONSO X EL SABIO
1. Trazar la mediatriz del segmento AB 2. Trazar la perpendicular a la semirrecta s en su extremo A sin prolongar ésta 3. Dividir el arco de circunferencia en dos partes iguales. 4. Dividir gráficamente
DIBUJO GEOMÉTRICO. - Segmento: es una parte limitada de la recta comprendida entre dos puntos que por lo tanto se nombraran con mayúscula.
DIBUJO GEOMÉTRICO 1. SIGNOS Y LÍNEAS. A. El punto: es la intersección de dos rectas. Se designa mediante una letra mayúscula y se puede representar también con un círculo pequeño o un punto. A B C D X
4. Qué sistema de medición de ángulos conoce? 6. Clasifique los triángulos: Según la medida de sus lados y según sus ángulos.
- AUTOEVALUACION - RECTA SEMIRRECTA Y SEGMENTO 1. Qué diferencia hay entre recta, semirrecta y segmento? 2. Graficar cada uno con su correspondiente notación. ANGULO 3. Qué es un ángulo, defínalo y clasifíquelo
2º. La diagonal de un cuadrado mide 1 metro. Cuántos centímetros mide el lado?
FIGURAS PLANAS. ÁREAS 1º. De las siguientes ternas de números, cuáles son pitagóricas? (Es decir cumplen el teorema de Pitágoras) a) 3, 4, 5 b) 4, 5, 6 c) 5, 12, 13 d) 6, 8, 14 e) 15, 20, 25 2º. La diagonal
8 GEOMETRÍA DEL PLANO
EJEROS PROPUESTOS 8.1 alcula la medida del ángulo que falta en cada figura. 6 A 145 15 105 160 130 En un triángulo, la suma de las medidas de sus ángulos es 180. Ap 180 90 6 8 El ángulo mide 8. En un hexágono,
MATEMÁTICAS Y SU DIDÁCTICA
MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se
Halla los siguientes perímetros y áreas:
73 CAPÍTULO 9: LONGITUDES Y ÁREAS.. Matemáticas 1º y º de ESO 1. TEOREMA DE PITÁGORAS 1.1. Concepto de perímetro y de área de una figura plana El perímetro de una figura plana es la suma de las longitudes
Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº 1
TRABAJO PRÁCTICO Nº 1 CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los
Geometría 2D: Preguntas Capítulo Relaciones Geométricas, Perímetro y Circunferencia
Geometría 2D: Preguntas Capítulo Relaciones Geométricas, Perímetro y Circunferencia 1. Cuáles son algunas de las relaciones especiales entre los ángulos? 2. Explique qué es un polígono y cómo determinar
Elementos del cilindro
Definición de cilindro Un cilindro es un cuerpo geométrico engendrado por un rectángulo que gira alrededor de uno de sus lados. Desarrollo del cilindro Elementos del cilindro Eje Es el lado fijo alrededor
COLEGIO JORBALÁN-LA CARO II RELIGIOSAS ADORATRICES PREESCOLAR, PRIMARIA Y BACHILLERATO ACADÉMICO CON ESPECIALIDAD EN COMERCIO
HABILITACIÓN ANUAL DE GEOMETRÍA - 2016 GRADO SÉPTIMO ÁREA: Matemáticas ASIGNATURA: Geometría DOCENTE: Lic. Ángela González NOMBRE: Cód. FECHA: INSTRUCCIONES: a. Lea con atención los enunciados de cada
EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?
Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de
Ángulos consecutivos, suplementarios, adyacentes, opuestos por el vértice y complementarios.
ÁNGULOS Dadas dos semirrectas de origen común (Ox, Oy), no opuestas ni coincidentes, llamaremos ángulo convexo de vértice O, a la intersección del semiplano de borde la recta sostén de Ox, que contiene
Los elementos básicos de la Geometría Plana son el punto, la línea, y el plano.
GEOMETRÍA PLANA Dibujo Geométrico La geometría es la parte de las matemáticas que estudia las propiedades y las medidas de las figuras planas y tridimensionales en el espacio. La palabra procede de dos
10 SEMEJANZA. TEOREMA DE PITÁGORAS EJERCICIOS
0 SEMEJNZ. TEOREM DE PITÁGORS EJERCICIOS Indica qué rectángulos son semejantes: a) ase cm, altura cm y base 0 cm, altura cm. b) ase 0 m, altura m y base 0 m, altura 8 m. c) ase 0,7 dm, altura 0, dm y base,0
CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B
ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean
[ÀLGEBRA Y TRIGONOMETRIA GUIA DEL ALUMNO PRIMERA FASE]
211 PLANTEL DE LA ESCUELA PREPARATORIA IGNACIO RAMIREZ CALZADA ING. ROBERTO MERCADODORANTES [ÀLGEBRA Y TRIGONOMETRIA GUIA DEL ALUMNO PRIMERA FASE] ING.ROBERTO MERCADO DORANTES Página 1 1. Cómo se denomina
EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA
1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.
Llamamos área o superficie a la medida de la región interior de un polígono. Figura Geométrica Perímetro Área. p = a + b + c 2 2.
GUÍA GEOMETRÍA PERÍMETRO Y AREA DE FIGURAS PLANAS Llamamos área o superficie a la medida de la región interior de un polígono. El perímetro corresponde a la suma de los lados del polígono. Figura Geométrica
Construcciones. Proporciones. Áreas
Construcciones Proporciones Áreas Rectángulo y Cometa Dibuja una cometa inscrita en un rectángulo Qué relación hay entre sus áreas respectivas? Cómo cambiará el perímetro de la cometa a medida que E y
Trazados geométricos con escuadra, cartabón y compás. 1. Traza la mediatriz del segmento dado AB.
1. Traza la mediatriz del segmento dado AB. 2. A la semirrecta s trázale una perpendicular en su extremo.. ª.2. Construye un triángulo sabiendo A= 30º, B= 45º Y se A B x s 3. Dada la recta r, trázale desde
Geometría. 1 a.- Qué diferencia hay entre una recta y una semirrecta?, y entre una semirrecta y un segmento?
Geometría 1 a.- Qué diferencia hay entre una recta y una semirrecta?, y entre una semirrecta y un segmento? 2 a.- Qué originan dos puntos en una recta?. Cuántas rectas pasan por dos puntos?, y por un punto?
Ejercicios de trigonometría.
Matemáticas 1ºBach CNyT. Ejercicios Tema 1. Trigonometría. Pág 1/15 Ejercicios de trigonometría. 1. Expresa en grados sexagesimales los siguientes ángulos: 1. 3 rad 2. 2π/5rad. 3. 3π/10 rad. 2. Expresa
TALLER No. 17 GEOMETRÍA
TLLER No. 17 GEOMETRÍ ontenidos: Los triángulos Fecha de entrega: Mayo 12 de 2014 1. Investigue sobre las líneas y puntos notables en un triángulo. 2. Responda las siguientes preguntas: a. Qué es un polígono?
Matemáticas Física Curso de Temporada Verano Ing. Pablo Marcelo Flores Jara
Matemáticas Física Curso de Temporada Verano 2016 Ing. Pablo Marcelo Flores Jara [email protected] UNIDAD II: RESOLUCIÓN DE TRIÁNGULO CUALESQUIERA U OBLICUÁNGULOS Ing. Pablo Marcelo Flores Jara
INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO
PRIMER EXAMEN PARCIAL INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO GUÍA DE GEOMETRÍA ANALÍTICA 2016-2017A SISTEMA DE COORDENADAS, LUGARES
DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez
DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado
Nombre completo: Fecha: Clave:
Instituto Evangélico América Latina EDUCACIÓN A DISTANCIA PROCESO DE MEJORAMIENTO DEL APRENDIZAJE PRIMER SEMESTRE Matemática 2 Año Básico por Madurez Punteo Nombre completo: Fecha: Clave: I Serie: (7 puntos)
1. Encuentra cuánto vale el ángulo exterior θ en la siguiente figura si son conocidos los ángulos α y β. El ángulo θ se llama ángulo exterior en C.
1. Encuentra cuánto vale el ángulo exterior θ en la siguiente figura si son conocidos los ángulos α y β. El ángulo θ se llama ángulo exterior en C. 2. En un triángulo rectángulo, los ángulos agudos están
1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice?
Pág. 1 Puntos 1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice? 2 Los puntos ( 2, 3), (1, 2) y ( 2, 1) son vértices de un rombo. Cuáles son las coordenadas
Cuadriláteros y circunferencia
CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C
Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6
página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto
CURSO: 1º bachillerato GRUPO: A Nº: FECHA: CALIF. 1. (1 puno) Representa sobre la recta real los siguientes conjuntos:
CURSO: 1º bachillerato GRUPO: A Nº: FECHA: CALIF. 1. (1 puno) Representa sobre la recta real los siguientes conjuntos: a) {x/ -5
Educación Plástica y Visual de 1º de ESO Cuaderno de apuntes. Tema 5 FORMAS POLIGONALES ESQUEMA DEL TEMA
Educación Plástica y Visual de 1º de ESO Cuaderno de apuntes Tema 5 FORMAS POLIGONALES ESQUEMA DEL TEMA 1. 2. 3. 4. 5. 6. Educación Plástica y Visual de 1º de ESO Página 48 Ejercicio 5.1 Los polígonos
GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 2- Explorando el triángulo. Fecha: Profesor: Fernando Viso
GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 2- Explorando el triángulo. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros, ni cuadernos,
Ejercicios para 1 EMT geometría (extraídos de los parciales y exámenes)
Ejercicio 1 Construya con regla y compas un triángulo ABC conociendo: { Indicar programa de construcción. Ejercicio 2 Dado ABC tal que: { se pide a) Construir todos los puntos P que cumplan simultáneamente:
