Curvas. (cost,sent) (cos(-t),sen(-t)) (sent,cost) (cos2t,sen2t) (2cost,2sent)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Curvas. (cost,sent) (cos(-t),sen(-t)) (sent,cost) (cos2t,sen2t) (2cost,2sent)"

Transcripción

1 Curvas cos(t) y sen(t) son las coordenadas del punto en el circulo unitario tal que t es la longitud del arco de circulo desde el eje x hasta el punto. Para cualquier valor de t, cos 2 (t)+sen 2 (t) = 1 1 (cost,sent) t Ejemplos. a(t)= (cost,sent) x=cost y=sent satisfacen la ecuación: x 2 +y 2 = 1 a(t) recorre un circulo de radio 1 en dirección contraria a las manecillas del reloj, con rapidez constante 1 y empezando en (1,0). (cost,sent) b(t)=(cos(-t),sen(-t)) satisfacen la ecuación: x 2 +y 2 = 1 b(t) se obtiene de a(t) cambiando el signo de t (que equivale a hacer el mismo recorrido que a(t) pero en sentido opuesto). (cos(-t),sen(-t)) c(t)=(sent,cost) satisfacen la ecuación: x 2 +y 2 = 1 c(t) se obtiene de a(t)=(cost,sent) intercambiando los papeles de x y y, (lo que equivale a reflejar en la linea x=y). Así que b(t) recorre el circulo unitario en el sentido de las manecillas del reloj, con rapidez constante 1 y empezando desde (0,1). (sent,cost) (cos2t,sen2t) e(t)=(cos2t, sen2t) x=cos2t y=sen2t x 2 +y 2 = cost 2 (2t)+sent 2 (2t)= 1 e(t) se obtiene de a(t) duplicando t, así que e(t) recorre el circulo unitario con rapidez 2. f(t)=(2cost,2sent) x=2cost y=2sent x 2 +y 2 = 4cost 2 t+4sent 2 t = 4 f(t) se obtiene duplicando el tamaño de a(t), así que f(t) recorre el circulo de radio 2 con rapidez constante 2. (2cost,2sent)

2 (2cos3t,2sen3t) g(t)=(2cos(3t)),2sen(3t)) x=2cos(3t) y=2sen(3t) x 2 +y 2 = 4cost 2(3 t)+4sent 2 (3t) = 4 g(t) se obtiene de a(t) triplicando t y luego duplicando el tamaño, así que f(t) recorre el circulo de radio 2 con rapidez 6. (3cost,2sent) h(t)=(3cost,2sent) satisface la ecuación (x/3) 2 +(y/2) 2 = 1, se obtiene estirando a(t)=(cost,sent) horizontalmente al triple y verticalmente al doble, así que h(t) describe un circulo estirado. h(t)=(sent,2sent) satisface la ecuación 2x=y así que se encuentra en una linea recta, pero como sent solo toma valores entre -1 y 1, la trayectoria solo cubre un intervalo de la recta (sent,2sent) (sen 2 t,cos 2 t) z(t)=(sen 2 t,cos 2 t) satisface la ecuación x+y=1 así que la trayectoria esta en otra recta d(t)=(sen(1+t),1+cos(1+t)) satisfacen la ecuación: x 2 +y 2 = 1 se obtiene de a(t) incrementando t por 1 (lo que equivale a adelantar el recorrido) (sen(t+1),cos(t+1)) (1+sent,1+cost) e(t)=(1+sent,1+cost) satisface la ecuación (x-1) 2 +(y-1) 2 = 1 se obtiene de c(t) sumándole el vector(1,1), así que e(t) recorre el circulo de radio 1 centrado en (1,1) con rapidez constante 1

3 La curva s(t) = (t,sent) describe un movimiento ondulatorio: la altura de un punto que gira alrededor del circulo unitario con rapidez constante 1: -3π -2π -π 0 π 2π 3π 4π La curva c(t) = (t,cost) se ve igual, pero desplazada, ya que cos(t)=sen(t+π/2): Ejercicio. Gráfica las siguientes trayectorias de modo que se vean claramente sus diferencias: p(t) = (t, 2sen t) q(t) = (t, sen 2t) r(t) = (2t, sen t) s(t) = (2t, sen 2t) -3π -2π -π 0 π 2π 3π 4π Combinando vectorialmente movimientos simples pueden obtenerse movimientos complicados: Ejemplos. Un punto p gira alrededor del circulo de radio 3 con centro en el origen en la dirección de las manecillas del reloj con rapidez constante 3 mientras que el punto q gira alrededor de p en un circulo de radio 1 en dirección contraria a las manecillas del reloj con rapidez constante 2. Cual es la posición del punto q respecto al origen en el instante t? q La posición de p respecto al origen esta dada por p(t)=(3sent, 3cost) y la posición de q respecto a p esta dada por r(t)=(cos2t,sen2t), así que la posición de q respecto al origen esta dada por q(t)=p(t) +r(t)=(3sent+cos2t, 3cost+sen2t). 0 p

4 El movimiento de la Luna alrededor del Sol es la suma del movimiento de la Luna alrededor de la Tierra con el movimiento de la Tierra alrededor del Sol. La trayectoria de Marte vista desde la tierra es la resta de la trayectoria de Marte desde el Sol y la trayectoria de la Tierra desde el Sol. Problemas 1. Como se ven las siguientes trayectorias en el plano? Que ecuaciones satisfacen? a. p(t) = (1-3t, 2t+4) d. r(t) = (2+sen t, 3-sen t) b. q(t) = (t+1, t 2 ) e. r(t) = (3cos t, 2sen t) c. q(t) = (2+sen t, 3-cos t) f. s(t) = (3cos t, 2cos t) 2. Muestra que todas estas trayectorias cumplen la misma ecuación cartesiana: p(t) = (1-t, -2t) q(t) = (t 2, 2t 2-2) r(t) = (1+sent, 2sent) Que dice esto sobre las trayectorias? 3. Parametriza la trayectoria de un punto que gira en un círculo de radio 3 y centro en (1,2), partiendo del punto mas bajo y moviéndose en la dirección de las manecillas del reloj con rapidez constante Da parametrizaciones de las siguientes curvas a. 2x+3y=4 b. x+y 2 =0 c. 4x 2 +9y 2 =36 5. Encuentra parametrizaciones aproximadas de las órbitas de la Tierra y de Marte alrededor del Sol y la Luna alrededor de la Tierra, y úsalas para graficar a escala (con computadora): a. La trayectoria de la Luna vista desde el Sol. b. La trayectoria de Marte vista desde la Tierra. c. La trayectoria de la Tierra vista desde Marte. 6. Gráfica las siguientes trayectorias en la computadora para 0 t 2π a. p(t) = (cos t, sen 2t) c. r(t) = (sen 3t, cos 4t) b. q(t) = (sen t, cos 2t) d. s(t) = (cos 3t, cos 5t)

5 Curvas en el espacio Las trayectorias en el espacio pueden descomponerse como la suma vectorial de la trayectoria de la sombra en el plano xy y una trayectoria en el eje z: p(t) = (x(t),y(t),z(t)) = (x(t),y(t),0) + (0,0,z(t)) p(t)=(t,t,sent) Ejemplos: La trayectoria q(t)=(t,2t,sent) tiene como sombra en el plano xy a la linea recta (t,2t) y la altura en cada momento es sent, así que la trayectoria se ve así: y=2x z=senx La trayectoria p(t)=(cost,sent,t) tiene por sombra en el plano xy al circulo (cost,sent) y su altura en cada momento es t. Por lo tanto la trayectoria esta en un cilindro vertical y es una espiral ascendente. x 2 +y 2 =1 x=senz La trayectoria q(t)=(t,sent,-sent) esta en el plano z=-y, y tiene como sombras en los planos xy y xz a la curva (t,sent), así que se ve así: z = -y y = senx Como puede parametrizarse el circulo de radio 1 que esta centrado en (6,7,8) y es perpendicular al vector (1,2,3)? Dos vectores unitarios perpendiculares a (1,2,3) y perpendiculares entre si son U= 1 / 3(1,1,-1) y 1 / 42(-5,4,-1). Así que el circulo es p(t) = (6,7,8) + cost (1,1,-1) + sent (-5,4,-1) = = ( 6+cost-5sent, 7+cost+4sent, 8-cost-sent )

6 Superficies Las curvas son objetos geométricos unidimensionales -pueden describirse con un parametro-. Las superficies son sus análogos bidimensionales y necesitan dos parámetros para describirse Ejemplos: p(s,t)=(t,sent,s) (una lamina acanalada acostada) q(s,t)=(s,t,cost) (una lamina acanalada parada) Cilindros El cilindro con eje vertical y radio r puede describirse por medio de la parametrización p(s,t)=(rcost,rsent,s) Y satisface la ecuación x 2 +y 2 = r 2 t (rcost,rsent,s) s r(cost,sent) Esfera de radio 1 s (coss cost,coss sent,sens) sens (cost,sent) t Esferas: La esfera de radio r puede parametrizarse como E(s,t) = (r coss cost, rcoss sent, r sens) También puede parametrizarse como F(u,v) = (r u cosv, r u senv, r 1-u 2 ) Y satisfacen la ecuación x 2 +y 2 +z 2 = r 2 Toros El toro (la superficie de una dona) de radio b alrededor del circulo de radio a puede parametrizarse así: u a b v T(u,v) = ((a+bcosv)cosu, (a+bcosv)senu, bsenv)

7 Problemas 7. Como se ven las siguientes curvas en el espacio? a. p(t) = (t, cost, sent) b. q(t) = (sent, sent,t) c. r(t) = (t, t 2, sent) d. s(t) = (cost, sent, sent) 8. Encuentra parametrizaciones para: a. una espiral en el plano b. Un resorte en la dirección del vector (1,1,1) Respuesta. Si V es cualquier vector y V' y V'' son dos vectores perpendiculares a V del mismo tamaño, entonces c(t)=costv'+sentv'' describe un circulo en el plano perpendicular a V, por lo tanto r(t)=tv+costv'+sentv'' describe un resorte en la direccion de V. Si V=(1,1,1) podemos tomar a V'=(1,-1,0) y V''=(1/ 2,1/ 2,-1) y la parametrizacion queda p(t) = t(1,1,1)+cost(1,-1,0)+sent(1/ 2,1/ 2,-1) 9. Esboza las siguientes superficies en el espacio y di que ecuaciones satisfacen. a. p(s,t) = (t, s, s+t) b. q(t,s) = (sent, s, cost) c. r(s,t) = (t, s, sens) 10. Que ecuación cartesiana satisface el toro T(u,v) = ((3+cosv)cosu, (3+cosv)senu, senv)? 11.Encuentra una parametrización para un cono vertical y di que ecuación cartesiana satisface.

ANALISIS II 12/2/08 COLOQUIO TEMA 1

ANALISIS II 12/2/08 COLOQUIO TEMA 1 ANALISIS II //08 COLOQUIO TEMA Sea f : R R un campo vectorial C y C la curva parametrizada por: γ(t) = (cost, 0, sent) con t ɛ [0, π] Sabiendo que C f ds = 6 y que rot( f( ) = (z, ), calcular la integral

Más detalles

Funciones de R en R n

Funciones de R en R n Funciones Vectoriales Funciones de R en R n Llamaremos función vectorial de variable real o simplemente función vectorial, a aquellas con dominio en un subconjunto de R y contradominio en un espacio vectorial

Más detalles

1 Parametrización de curvas

1 Parametrización de curvas Dpto. Matemática Aplicada E.T.S. Arquitectura, U.P.M. Curvas y Super cies HOJA DE PROBLEMAS: CURVAS 1 Parametrización de curvas 1. Obtener una parametrización de cada una de las siguientes cónicas: (a

Más detalles

(x 1) + y = 1 y 1, y = (x 2) y 0,1

(x 1) + y = 1 y 1, y = (x 2) y 0,1 CÁLCULO III (053) SECCIÓN 05 6/03/09. Una curva C está definida por y tg(x) x 0, (x ) + y y, 0. y (x ) y 0, 8 a. Parametrice la curva C en sentido antihorario. ( puntos) b. En el punto (, ) determine las

Más detalles

Tema 3: Cinemática del punto

Tema 3: Cinemática del punto Tema 3: Cinemática del punto FISICA I, 1º Grado en Ingeniería Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Introducción Ecuaciones de una curva Velocidad y aceleración Movimientos

Más detalles

Tema 4: Movimiento en 2D y 3D

Tema 4: Movimiento en 2D y 3D Tema 4: Movimiento en 2D y 3D FISICA I, 1º Grado en Ingeniería Electrónica, Robótica y Mecatrónica Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice

Más detalles

CÁLCULO III (0253) PRIMER PARCIAL (33.33%) SECCIONES 02 Y 04 27/03/09. . π

CÁLCULO III (0253) PRIMER PARCIAL (33.33%) SECCIONES 02 Y 04 27/03/09. . π UCV FIUCV CÁLCULO III (05) PRIMER PARCIAL (%) SECCIONES 0 Y 04 7/0/09 Una curva C está definida por y = sen(x) x 0 y = x x 0 x + (y + ) = x 0 a Parametrice la curva C en sentido horario ( puntos) b Encuentre

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. 2do. cuatrimestre de 2015 Práctica 2 - Integrales de superficie. Definición.1. Una superficie paramétrica (superficie a secas para nosotros) es un conjunto

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

CURVAS Y SUPERFICIES Hoja 1: Curvas

CURVAS Y SUPERFICIES Hoja 1: Curvas CURVAS Y SUPERFICIES Hoja 1: Curvas 1. Sea σ (t) = (cos t, sen t, t) con t [0, π] y sea f(x, y, z) = x + y + z. Evaluar la integral σ fdσ. (Sol.: π 3 (3 + 4π )).. Sea σ : [0, π/] R 3 la curva σ(t) = (30

Más detalles

Tema 4: Movimiento en 2D y 3D

Tema 4: Movimiento en 2D y 3D Tema 4: Movimiento en 2D y 3D FISICA I, 1º Grado en Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla Física I, GIC, Dpto. Física Aplicada III, ETSI, Universidad de Sevilla, 2017/18 1

Más detalles

Cálculo III (0253) TEMA 1 FUNCIONES VECTORIALES DE UNA VARIABLE REAL. Semestre 3-2009

Cálculo III (0253) TEMA 1 FUNCIONES VECTORIALES DE UNA VARIABLE REAL. Semestre 3-2009 Cálculo III (05) Semestre -009 TEMA FUNCIONES VECTORIALES DE UNA VARIABLE REAL Semestre -009 Octubre 009 UCV FIUCV CÁLCULO III (05) - TEMA Las notas presentadas a continuación tienen como único fin, el

Más detalles

ACTIVIDADES GA ACTIVIDAD

ACTIVIDADES GA ACTIVIDAD ACTIVIDADES GA ACTIVIDAD 1: (Mié-12-Feb-14) a) Conteste Qué es y para qué sirve un Sistema de referencia? b) Conteste Qué es y para qué sirve un Sistema de coordenadas? c) Conteste Es lo mismo 'sistema

Más detalles

Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada CÁLCULO III (0253) Semestre

Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada CÁLCULO III (0253) Semestre Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada CÁLCULO III (05) Semestre -009 Octubre 009 CÁLCULO III (05) UCV FIUCV Las notas presentadas a continuación

Más detalles

Superfícies. Superfícies Parametricas. Y se dice de tipo II si ésta puede escribirse como

Superfícies. Superfícies Parametricas. Y se dice de tipo II si ésta puede escribirse como La integral de supercie puede considerarse como el equivalente en dos dimensiones a la integral de línea siendo la región de integración una supercie en lugar de una curva. El integrando será un campo

Más detalles

Escriba la función vectorial dada r(t) como ecuaciones paramétricas.

Escriba la función vectorial dada r(t) como ecuaciones paramétricas. Nota: las respuestas al ejercicio 8 de los problemas se encuentran en la parte inferior. Ejercicio 8. Escriba las ecuaciones paramétricas dadas como una función vectorial r(t). 1. x = sen πt, y = cos πt,

Más detalles

SERIE # 2 CÁLCULO VECTORIAL

SERIE # 2 CÁLCULO VECTORIAL SERIE # CÁLCULO VECTORIAL SERIE 1) Calcular las coordenadas del punto P de la curva: en el que el vector P 1, 1, r t es paralelo a r t Página 1 t1 r t 1 t i ( t ) j e k ) Una partícula se mueve a lo largo

Más detalles

MAT 1620 Cálculo II Examen

MAT 1620 Cálculo II Examen Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Matemática Primer Semestre de MAT 6 Cálculo II Examen. Determinar el área de la superficie generada al hacer girar la curva

Más detalles

R(t)=P+tV. (el nombre del parámetro es irrelevante)

R(t)=P+tV. (el nombre del parámetro es irrelevante) Rectas en el plano Parametrizaciones La recta que pasa por el punto P y tiene la dirección del vector V esta formada por los los puntos de la forma R(t)=P+tV donde t es un escalar. Esta es una parametrizacion

Más detalles

Parcial I Cálculo Vectorial

Parcial I Cálculo Vectorial Parcial I Cálculo Vectorial Febrero 8 de 1 ( Puntos) I. Responda falso o verdadero justificando matematicamente su respuesta. (i) La gráfica de la ecuación cos ϕ = 1, en coordenadas esféricas en R3, es

Más detalles

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESTUDIOS GENERALES CIENCIAS. Cálculo 3 Práctica N 3 Semestre Académico

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESTUDIOS GENERALES CIENCIAS. Cálculo 3 Práctica N 3 Semestre Académico Práctica N 3 Semestre Académico 014-1 1. a. Parametrizar la curva : b. Dadas las curvas: x 1 y z y x ; z 0. pts C 1 : Ft e t, 1, lnt 1, t 0, y 1 t C : Gr r, 9 r, ln r, r 0,. Hallar la ecuación de la recta

Más detalles

Matemáticas II CURVAS

Matemáticas II CURVAS CURVAS En este tema introduciremos nuevos conceptos relacionados con la curva y sus parametrizaciones. Definiciones.- Sea γ : I = [a,b] R n. Se dice que la curva es cerrada si γ(a) = γ(b). Se dice que

Más detalles

Conjuntos de nivel, diagramas de contorno, gráficas. Funciones vectoriales de una y dos variables.

Conjuntos de nivel, diagramas de contorno, gráficas. Funciones vectoriales de una y dos variables. Empezaremos el curso introduciendo algunos conceptos básicos para el estudio de funciones de varias variables, que son el objetivo de la asignatura: Funciones escalares de dos y tres variables. Conjuntos

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. 1 Análisis II Análisis matemático II Matemática 3. 1er. cuatrimestre de 2015 Práctica 1 - urvas, integral de longitud de arco e integrales curvilíneas. urvas Ejercicio 1 1. Probar que x 1 (t) = r cos(2πt),

Más detalles

Integrales de lı nea y de superficie

Integrales de lı nea y de superficie EJERIIO DE A LULO II PARA GRADO DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera 4 4.1 Integrales de lı nea y de superficie Integrales sobre curvas

Más detalles

Problemas resueltos. La integral de línea. 1. Halle la longitud de la curva dada por la parametrización. Solución:

Problemas resueltos. La integral de línea. 1. Halle la longitud de la curva dada por la parametrización. Solución: Problemas resueltos 1. Halle la longitud de la curva dada por la parametrización α(t) t ı + 4 3 t3/ j + 1 t k, t [, ]. α (t) (1, t 1/, 1 ), t [, ]. La curva α es de clase C 1 y, por tanto, es rectificable.

Más detalles

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS.

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. Cálculo III, Examen Final. Semestre Primavera 1 Tiempo: 11 min. Problema 1 [1,5 puntos] La curvatura de una trayectoria

Más detalles

Formulario: Geometría Analítica

Formulario: Geometría Analítica Universidad Autónoma del Estado de México UAEM Facultad de Ingeniería Formulario: Geometría Analítica Elaborado por: Estudiante en Ingeniería en Electrónica Formulario Geometría Analítica 1. VECTORES EN

Más detalles

1. Curvas paramétricas y funciones vectoriales de un parámetro

1. Curvas paramétricas y funciones vectoriales de un parámetro Universidad Nacional de La Plata Facultad de Ciencias Exactas ANÁLISIS MATEMÁTICO II (CiBEx - Física Médica) 2014 Segundo Semestre GUÍA Nro. 2: FUNCIONES VECTORIALES 1. Curvas paramétricas y funciones

Más detalles

y = x x 0, 4 π 2 π π

y = x x 0, 4 π 2 π π UCV FIUCV CÁLCULO III (053) PRIMER PARCIAL (3333%) SECCIONES 01 Y 03 7/03/09 1 Una curva C está definida por y cos(x) x, y x x 0, x + y y,0 16 a Parametrice la curva C en sentido antihorario ( puntos)

Más detalles

1.5. Integral de línea de un campo Vectorial.

1.5. Integral de línea de un campo Vectorial. .5. Integral de línea de un campo Vectorial. Sea F ( xyz,, un campo vectorial continuo sobre R donde F representa un campo de fuerzas aplicado sobre una partícula cuya trayectoria puede ser descrita por

Más detalles

En los ejercicios 1-8, dibujar la curva representada por la función vectorial e indicar su orientación.

En los ejercicios 1-8, dibujar la curva representada por la función vectorial e indicar su orientación. Universidad de Costa Rica Práctica Miscelánea para el Primer Parcial Facultad de Ciencias Funciones Vectoriales, Regla de la Cadena y Funciones Implícitas Escuela de Matemática MA 1003 Cálculo 3 Departamento

Más detalles

Rectas y planos en el espacio

Rectas y planos en el espacio Rectas y planos en el espacio Los puntos de cualquier recta en el espacio son de la forma p(t)=po+tu donde po es punto de la recta y U es un vector en la recta. Esta es una parametrizacion de la recta

Más detalles

1. Integrales curvilíneas.

1. Integrales curvilíneas. GRADO DE INGENIERÍA AEROESPAIAL. URSO 0. MATEMÁTIAS II. DPTO. DE MATEMÁTIA APLIADA II Lección. álculo vectorial.. Integrales curvilíneas. Muchos conceptos físicos, como el de traajo desarrollado por una

Más detalles

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen Universidad Técnica Federico anta aría Coordinación de atemática IV Guía-Apunte de Preparación del CAR 2 do emestre 2011 Información Contenidos del Certamen Teorema de Green, Teorema de Green para Regiones

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. 1 Análisis II Análisis matemático II Matemática 3. 1er. cuatrimestre de 2008 Práctica 1 - urvas, integral de longitud de arco e integrales curvilíneas. urvas Definición 1. Una curva R 3 es un conjunto

Más detalles

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02 Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 0/02 x 2 + y 4. (a) Comprueba que el siguiente límite no existe lim (x,y) (0,0) x 2 + y. 2 (b) Busca una trayectoria a través de la

Más detalles

Cinemática de la partícula, movimiento curvilíneo

Cinemática de la partícula, movimiento curvilíneo Cinemática de la partícula, movimiento curvilíneo Introducción En este documento se estudiará el movimiento de partículas (cuerpos cuyas dimensiones no son tomadas en cuenta para su estudio) que siguen

Más detalles

Superficies. Como se ve la superficie formada por las soluciones de xy=0 en R 3?

Superficies. Como se ve la superficie formada por las soluciones de xy=0 en R 3? Superficies En general, un polinomio en 2 variables corresponde a una curva en en R 2, un polinomio en 3 variables corresponde a una superficie en R 3, y un polinomio en n variables corresponde a una hipersuperficie

Más detalles

Superficies parametrizadas

Superficies parametrizadas 1 Universidad Simón Bolívar.. Preparaduría nº 1. christianlaya@hotmail.com ; @ChristianLaya Superficies parametrizadas Superficies parametrizadas: Una superficie parametrizada es una función donde D es

Más detalles

ELEMENTOS DEL MOVIMIENTO

ELEMENTOS DEL MOVIMIENTO ELEMENTOS DEL MOVIMIENTO Unidad 10 CONTENIDOS.- 1.- Introducción..- Magnitudes escalares vectoriales. 3.- Sistemas de referencia. Concepto de movimiento. 4.- Operaciones con vectores. 5.- Traectoria, posición

Más detalles

CURVAS Y SUPERFICIES. RELACIÓN 2

CURVAS Y SUPERFICIES. RELACIÓN 2 CURVAS Y SUPERFICIES. RELACIÓN 2 SUPERFICIES EN EL ESPACIO Curso 2015-16 1. Demostrar que las siguientes cuádricas reales son superficies. Obtener una parametrización de cada una de ellas. En cada caso,

Más detalles

Prof. Enrique Mateus Nieves. Doctorando en Educación Matemática. Cálculo multivariado REPASO DE SECCIONES CONICAS

Prof. Enrique Mateus Nieves. Doctorando en Educación Matemática. Cálculo multivariado REPASO DE SECCIONES CONICAS REPASO DE SECCIONES CONICAS SUPERFICIES CUADRICAS Y SUS TRAZAS Elipsoide x z Ecuación canónica: 1 a b c Secciones paralelas al plano x: Elipses; Secciones paralelas al plano xz: Elipses; Secciones paralelas

Más detalles

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G.

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G. Nombre: Curso: Movimiento Circunferencial Uniforme. (MCU) Caracteristicas 1) La trayectoria es una circunferencia 2) La partícula recorre distancia iguales en tiempos iguales Consecuencias 1) El vector

Más detalles

Respuestas faltantes en ejercicios edición 2007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4-1

Respuestas faltantes en ejercicios edición 2007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4-1 Editorial Mc Graw Hill. Edición 007 Respuestas faltantes en ejercicios edición 007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4- R r + x + y Ejercicio 4-3 + R x + y + z Ecuaciones: x +

Más detalles

y 5 que pasa por el punto (2, 1).

y 5 que pasa por el punto (2, 1). PONTIFICIA UNIVERSIDAD CATOLICA MADRE Y MAESTRA FACULTAD DE CIENCIAS Y HUMANIDADES DEPARTAMENTO DE CIENCIAS BASICAS TERCER PARCIAL DE MAT- 211 A NOMBRE MAT. 1.)(Valor 15 puntos) Encuentre una ecuación

Más detalles

x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto.

x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto. 1 Sea f : R R una función C 3 que satisface f(1, ) = (0, 0), y cuya matriz ( Hessiana ) en (1, ) es: 1 0 H = 0 Hallar todos los b ɛ R de manera que la función: g( = f( + 1 b b (y ) ) tenga extremo en (1,

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

transparent CINEMÁTICA Prof. Jorge Rojo Carrascosa 3 de marzo de 2016

transparent  CINEMÁTICA Prof. Jorge Rojo Carrascosa 3 de marzo de 2016 transparent www.profesorjrc.es 3 de marzo de 2016 Elementos para describir el movimiento 1 Sistema de Referencia (inerciales o no) = Ejes cartesianos 2 Vector de posición, r = r(t) r(t) = (x(t) i, y(t)

Más detalles

Funciones reales de varias variables

Funciones reales de varias variables PROBLEMAS DE CÁLCULO II Curso 2-22 2 Funciones reales de varias variables. Dibuja las curvas de niveles,,..., 5 y la representación gráfica de las siguientes funciones a) f(x, y) = 5 x y b) f(x, y) = x

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

Soluciones de los ejercicios del segundo examen parcial

Soluciones de los ejercicios del segundo examen parcial Matemáticas II (GIC, curso 5 6 Soluciones de los ejercicios del segundo examen parcial EJERCICIO. Halla el área que encierra la curva C dada en polares por r = + sen(θ. Solución: Primero debemos hallar

Más detalles

Tarea 1 - Vectorial

Tarea 1 - Vectorial Tarea - Vectorial 2050. Part :. - 3.2.. Un cerro se queda en las montañas en la altura de 6 mil metros. El cerro tiene la forma del gráfico de la función z = f(x, y) = x 2 y 2. Observamos que plaquitas

Más detalles

Coordenadas Generalizadas en el Espacio

Coordenadas Generalizadas en el Espacio Capítulo 3 Coordenadas Generalizadas en el Espacio Las coordenadas cartesianas usuales en R 3 pueden verse también como un sistema de tres familias de superficies en el espacio, de modo que cada punto

Más detalles

MATEMÁTICAS II Geometría diferencial Curso de las curvas en el espacio

MATEMÁTICAS II Geometría diferencial Curso de las curvas en el espacio 1.- a) Se denomina cicloide a la curva descrita por un punto P de una circunferencia que rueda, sin deslizar, a lo largo de una recta. Si P está inicialmente en el origen O(,) y a es el radio de la circunferencia,

Más detalles

1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y

1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 5 1. Hallar la ecuación del plano que

Más detalles

PEP 3. Responda 4 de los siguientes 9 problemas, escogiendo al menos uno de cada sección.

PEP 3. Responda 4 de los siguientes 9 problemas, escogiendo al menos uno de cada sección. Universidad de Santiago de Chile Cálculo odrigo Vargas do semestre 1 PEP Nombre: Nota: esponda de los siguientes 9 problemas, escogiendo al menos uno de cada sección. Sección 1. 1. Use coordenadas esféricas

Más detalles

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares. FIUBA 07-05-11 Análisis Matemático II Parcial - Tema 1 1. Sea f(x, y) = { x y si x 3y si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.. Sea G(x, y) = (u(x, y),

Más detalles

Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 14 de Junio de 2000

Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 14 de Junio de 2000 ÁLULO Primer curso de ngeniero de elecomunicación egundo Examen Parcial. de Junio de Ejercicio. Hallar los extremos absolutos de la función f (x, y, z) =x + y + z, en el conjunto A = (x, y, z) R 3 : x

Más detalles

GRADO DE INGENIERÍA AEROESPACIAL. CURSO MATEMÁTICAS II. DPTO. DE MATEMÁTICA APLICADA II

GRADO DE INGENIERÍA AEROESPACIAL. CURSO MATEMÁTICAS II. DPTO. DE MATEMÁTICA APLICADA II GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Ejercicios Eámenes Anteriores. Ejercicio. Se dobla en dos una hoja de cartulina de 4 por 36 cm para formar un rectángulo de 4 por 8 cm, como se muestra en la figura

Más detalles

3. Cinemática de la partícula: Sistemas de referencia

3. Cinemática de la partícula: Sistemas de referencia 3. Cinemática de la partícula: Sistemas de referencia 3.1.- Cinemática de la partícula 3.2.- Coordenadas intrínsecas y polares 3.3.- Algunos casos particulares de especial interés 3.1.- Cinemática de la

Más detalles

SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones:

SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: SERIE SUPERFICIES 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: 4x C z 0 y que se genera por rectas perpendiculares al plano: x + y + 3z + = 0.-Sea la superficie

Más detalles

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)

Más detalles

Curvas. Definición 6. Una curva cerrada simple o una curva de Jordan es una curva cerrada con la propiedad de que f(t 1 ) = f(t 2 ) t 1 = t 2

Curvas. Definición 6. Una curva cerrada simple o una curva de Jordan es una curva cerrada con la propiedad de que f(t 1 ) = f(t 2 ) t 1 = t 2 Introducción a las Funciones Vectoriales (Funciones de R R n ) Curvas Definición. Una función vectorial f : I R R 2 continua en I = [a, b] se llama trayectoria ó camino. Definición 2. A la imagen de una

Más detalles

Integrales de Superficie

Integrales de Superficie Capítulo 12 Integrales de uperficie 12.1. Definiciones Básicas Nuestro porpóstito en esta sección es el definir el concepto de integral de una función f : M R sobre una superficie M en el espacio. Para

Más detalles

1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN

1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN 1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN 1.2.1. Supuesto el vector de posición de un punto en el espacio: r = 2i-6j+4k, la mejor representación de dicho vector de todas las dadas es la: a) A b)

Más detalles

Parametrización de curvas Integrales de linea. h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/

Parametrización de curvas Integrales de linea. hp://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Parametrización de curvas Integrales de linea h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Curvas en el espacio En el espacio, una curva se define por el corte de dos superficies. La forma más general

Más detalles

1. INTRODUCCIÓN. MOVIMIENTO Y SISTEMA DE REFERENCIA.

1. INTRODUCCIÓN. MOVIMIENTO Y SISTEMA DE REFERENCIA. TEMA 1 CINEMÁTICA 1. INTRODUCCIÓN. MOVIMIENTO Y SISTEMA DE REFERENCIA. Un cuerpo está en movimiento cuando cambia de lugar respecto a un punto que se considera fijo, a medida que pasa el tiempo. En todo

Más detalles

CÁLCULO VECTORIAL SEMESTRE

CÁLCULO VECTORIAL SEMESTRE SERIE # CÁLCULO VECTORIAL SEMESTRE 009- SEMESTRE: 009- Página ) Sea la superficie de ecuación z = f x, y y su naturaleza. función ( ) z = x y x y, obtener los puntos críticos de la P ( 0,0 ) máximo relativo,

Más detalles

4 Integrales de línea y de superficie

4 Integrales de línea y de superficie a t e a PROBLEMA DE ÁLULO II t i c a s 1 o Ings. Industrial y de Telecomunicación URO 2009 2010 4 Integrales de línea y de superficie 4.1 Integrales sobre curvas y campos conservativos. Problema 4.1 Integra

Más detalles

1 Curvas planas. Solución de los ejercicios propuestos.

1 Curvas planas. Solución de los ejercicios propuestos. 1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)

Más detalles

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE PLANO TANGENTE Y VECTOR NORMAL. AREA DE UNA SUPERFICIE 1) En cada uno de los siguientes ejercicios se presenta una S dada en forma paramétrica,

Más detalles

x y z x y z x y z z z z z z z

x y z x y z x y z z z z z z z . Un vector v tiene módulo 5 y es tal que cos ; siendo α el ángulo que forma el vector con el eje x. 5 Escribir la expresión cartesiana del o los vectores v sabiendo que su segunda y tercera componentes

Más detalles

SEMANA 12: CURVAS EN EL ESPACIO. ds v(t) = d r (t) =

SEMANA 12: CURVAS EN EL ESPACIO. ds v(t) = d r (t) = FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 8-2 Basado en el apunte del ramo Matemáticas Aplicadas, de Felipe Álvarez, Juan Diego Dávila, Roberto Cominetti

Más detalles

1. Use el Teorema de Green para calcular el área de la región del. plano xy que satisface las desigualdades y x, x y, 8xy 1.

1. Use el Teorema de Green para calcular el área de la región del. plano xy que satisface las desigualdades y x, x y, 8xy 1. CÁLCULO VECTORIAL (54) SEGUNO PARCIAL (%) 9//9 EPARTAMENTO E APLICAA Use el Teorema de Green para calcular el área de la región del plano xy que satisface las desigualdades y x, x y, 8xy Halle el área

Más detalles

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA R. Artacho Dpto. de Física y Química ÍNDICE 1. Áreas y volúmenes de figuras geométricas. Funciones trigonométricas 3. Productos de vectores

Más detalles

UNIDAD III TRIGONOMETRIA

UNIDAD III TRIGONOMETRIA UNIDAD III TRIGONOMETRIA 1 UNIDAD III TRIGONOMETRIA TEMARIO. 1. Relación del par ordenado en un plano bidimensional. 1.1. El plano coordenado 1.2. Localización de puntos en los cuatro cuadrantes 2. Ángulos

Más detalles

Álgebra Lineal Agosto 2016

Álgebra Lineal Agosto 2016 Laboratorio # 1 Vectores I.- Calcule el producto escalar de los dos vectores y el coseno del ángulo entre ellos u = i 2j + 3k; v = 3i 2j + 4k 3) u = 15i 2j + 4k; v = πi + 3j k 3) u = 2i 3j; v = 3i + 2j

Más detalles

Movimiento curvilíneo. Magnitudes cinemáticas

Movimiento curvilíneo. Magnitudes cinemáticas Movimiento curvilíneo. Magnitudes cinemáticas Movimiento curvilíneo Supongamos que el movimiento tiene lugar en el plano XY, Situamos un origen, y unos ejes, y representamos la trayectoria del móvil, es

Más detalles

IES Francisco Giner de los Ríos 2016/2017 Física y Química 1º Bachillerato nocturno (FQ NB1B-Noct) UD 8. El movimiento

IES Francisco Giner de los Ríos 2016/2017 Física y Química 1º Bachillerato nocturno (FQ NB1B-Noct) UD 8. El movimiento UD 8. El movimiento 1- Sistemas de referencia. 2- Magnitudes vectoriales. 3- Interpretaciones gráficas de los movimientos. 4- Componentes intrínsecas de la aceleración. 1- Sistemas de referencia: 1.1.

Más detalles

Unidad II. Cinemática

Unidad II. Cinemática Unidad II. Cinemática Ref. Capítulos II y III. Física Tipler-Mosca, 6a ed. 18 de marzo de 018 1. Introducción La mecánica estudia el movimiento de los cuerpos. La cinemática describe el movimiento, explica

Más detalles

(0, 4). d) P 4. (0, 4). Obtenemos el vector posición para cada punto empleando la expresión: + y u y. = x u x. d) OP 8 = r 8 8

(0, 4). d) P 4. (0, 4). Obtenemos el vector posición para cada punto empleando la expresión: + y u y. = x u x. d) OP 8 = r 8 8 2 Cinemática: magnitudes cinemáticas ACTIVIDADES Actividades DELdel INTERIOR interior DE LAde UNIDAD la unidad 1. Halla la expresión del vector posición, y su módulo, para los siguientes puntos: a) P 1

Más detalles

PRÁCTICA DE LABORATORIO - trigonometría Funciones trigonométricas y ondas senoides.

PRÁCTICA DE LABORATORIO - trigonometría Funciones trigonométricas y ondas senoides. PRÁCTICA DE LABORATORIO - trigonometría Funciones trigonométricas y ondas senoides. Objetivos: Identificar y familiarizarse con las ondas senoides. construir e identificar claramente las características

Más detalles

Integrales de Superficie.

Integrales de Superficie. CAPÍTULO 9. Integrales de Superficie. Este capítulo cierra los tipos de integrales que estudiamos en el curso. Se practica el concepto de integral de superficie y se dan aplicaciones geométricas y físicas.

Más detalles

Ingeniería Civil Matemática Universidad de Valparaíso.

Ingeniería Civil Matemática Universidad de Valparaíso. * Ejercicios Álgebra Ingeniería Civil Matemática Universidad de Valparaíso. Prof: Gerardo Honorato CIRCUNFERENCIA. PREGUNTAS 1. 1) Escribir la ecuación de la circunferencia de centro C = ( 3, 7) y radio

Más detalles

Del tema 2 sobre campos vectoriales realiza los siguientes ejercicios: Propuestos número 2, 3, 5

Del tema 2 sobre campos vectoriales realiza los siguientes ejercicios: Propuestos número 2, 3, 5 Este documento contiene las actividades no presenciales propuestas al terminar la clase del día que se indica. Se sobreentiende que también se debe realiar el estudio de lo explicado en clase aunque no

Más detalles

CURVAS Y SUPERFICIES. RELACIÓN 1

CURVAS Y SUPERFICIES. RELACIÓN 1 CURVAS Y SUPERFICIES. RELACIÓN 1 CURVAS EN EL PLANO Y EN EL ESPACIO Curso 2015-16 1. En R 2 se considera la circunferencia C de centro (0,1) y radio 1. Sea R la recta afín tangente a C en (0,2). Para cada

Más detalles

SUPERFICIES DE REVOLUCIÓN

SUPERFICIES DE REVOLUCIÓN SUPERFICIES DE REVOLUCIÓN Si a una curva Γ (Generatriz), la giramos alrededor de un eje (eje de rotación), obtenemos una superficie, que se llamará superficie de revolución. Como se aprecia en las siguientes

Más detalles

Si cálculamos el límite de estas pendiente cuando t tiende a t 0 f 2 (t) f 2 (t 0 )

Si cálculamos el límite de estas pendiente cuando t tiende a t 0 f 2 (t) f 2 (t 0 ) ANÁLISIS MATEMÁTICO BÁSICO. TANGENTES A CURVAS PARAMÉTRICAS. La forma más general de representar un curva en el plano no es a través de una gráfica sino de una curva paramétrica (ver Apéndice al tema de

Más detalles

) + t( a 1 CILINDRO. = { P = Q( u) + ta / t! u! } Γ = Q F 1 ( u), F 2 ( u), F 3. Σ cil. ,a 3 ) / t! u! } ,a 2

) + t( a 1 CILINDRO. = { P = Q( u) + ta / t! u! } Γ = Q F 1 ( u), F 2 ( u), F 3. Σ cil. ,a 3 ) / t! u! } ,a 2 CILINDRO Conjunto de puntos en el espacio en donde se genera una superficie por una recta que se mantiene siempre paralela con respecto a otra, la cual pasa por una superficie plana contenida en alguno

Más detalles

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESTUDIOS GENERALES CIENCIAS. Cálculo 3 Práctica N 4 Semestre Académico

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESTUDIOS GENERALES CIENCIAS. Cálculo 3 Práctica N 4 Semestre Académico Práctica N 4 Semestre Académico 014-1 1. Dada la curva : y 0 z y. a. Parametrizar la curva. pts b. Hallar la curvatura kt, la torsión t y la ecuación cartesiana del plano osculador de la curva en el punto

Más detalles

1.2 CONJUNTOS DEFINIDOS MEDIANTE FUNCIONES

1.2 CONJUNTOS DEFINIDOS MEDIANTE FUNCIONES 1.. Conjuntos definidos mediante funciones 1. CONJUNTOS DEFINIDOS MEDIANTE FUNCIONES A lo largo de este texto se verá la necesidad de diferenciar dos eventos: dada una función, encontrar los diferentes

Más detalles

Lección 4. Integrales múltiples. 4. Superficies parametrizadas.

Lección 4. Integrales múltiples. 4. Superficies parametrizadas. GRADO DE INGENIERÍA AEROESPACIAL CURSO 0 MATEMÁTICAS III DPTO DE MATEMÁTICA APLICADA II Lección 4 Integrales múltiples 4 Superficies parametrizadas Representación paramétrica de una superficie La primera

Más detalles

1.18 Convertir de coordenadas cilíndricas a esféricas el campo vectorial H = (A/r), donde A es constante.

1.18 Convertir de coordenadas cilíndricas a esféricas el campo vectorial H = (A/r), donde A es constante. Problemas 1.5 Un campo vectorial está dado por G = 24xy + 12(x 2 + 2) + 18z 2. Dados dos puntos, P(1, 2, - 1) y Q(-2, 1, 3), encontrar: a) G en P; b) un vector unitario en la dirección de G en Q; c) un

Más detalles