Tarea 11. Integral Impropia
|
|
|
- Isabel Santos Luna
- hace 7 años
- Vistas:
Transcripción
1 Tr Intgrl Imroi Ers con l límit corrsondint cd un d ls siguints intgrls Mustr un dibujo qu indiqu l ár qu s clculrí (si ist) con l intgrl rsctiv, no clculs l intgrl d ; b) d ; c) d ; d) / cot( ) d En los siguints incisos, dtrmin si l intgrl imroi convrg o divrg En cso d convrgnci clcul l vlor d l intgrl d ; b) / d ; c) 5 ln( ) d ; d) d ; ) tn( ) d ) 6 d ln( y) ; g) dy ; h) y d ; i) d ; 6 j) dt ; k) t d ; l) ln d Clcul: d, b) ( ) d, y inlmnt c) ( ) d ( ) Pr qué vlors d d ; b) d ; c) istn ls siguints intgrls? d 5 Pr n ntro ositivo, dtrmin si cd un d ls siguints intgrls convrg En cso d convrgnci, dtrmin qué convrgn n d Más gnrlmnt, dtrmin qué convrg n Sugrnci: Hz l cmbio n d, con b) ln d t ln / y lic l inciso 6 Prub qu ls siguints dos intgrls convrgn, dsués clcul l dirnci qu s id I b) J I d ; J rctn d
2 7 Es osibl signr un vlor rl l ár dlimitd or ( ) sc h( ) y l j? Prsnt dcudmnt tus rgumntos usndo l concto d intgrl imroi 8 Dtrmin los vlors d n r los culs l intgrl imroi Un vz qu ncuntrs l rsust indic qué convrg l intgrl d ln( ) n convrg 9 En cd uno d los siguints incisos, dtrmin l vlor d l constnt k con l cul s ud sgurr qu l intgrl convrg Un vz hlld l constnt, clcul l intgrl corrsondint k k d ; b) d ; c) k k d Dd un unción dinid r tod t, l trnsormd d Llc d s l unción F d s qu s din d l siguint mnr: st F( s) ( t) dt r todos los vlors s dond l intgrl imroi convrj En cd uno d los siguints incisos, ncuntr bjo qué condición ist l trnsormd d Llc y dtrmin l órmul corrsondint t () t b) ( t) cos( t) c) ( t) snh( t) En l torí d l robbilidd, un unción stiscn ls siguints dos condicions: s llm unción d dnsidd si s ( ) r todo b) ( ) d Pr un constnt, y tmbién constnt s din l unción i) A rtir dl rsultdo () t t u du, dmustr qu () t s un unción d dnsidd ii) Un r d conctos imortnts d l robbilidd son l srnz mtmátic y l vrinz qu s dinn r un unción d dnsidd d l siguint mnr: E t () t dt, Vr t E () t dt
3 si ls intgrls convrgn Dmustr qu r l unción d dnsidd n (i), mbs intgrls convrgn, dsués clcul qué convrgn Un unción muy imortnt d l mtmátic licd s l unción gmm qu s din or s t s t dt () l cul convrg r s Alic intgrción or rts y rub qu ( s ) s ( s) Dsués dmustr or inducción qu ( n) n! r n ntro ositivo d Pr, clcul cos( ) Encuntr un vlor d l constnt C in d qu l unción C, ( ), s un unción d dnsidd (v l roblm ) 5 Un vrill uniorm s tind sobr l j no ngtivo Si l vrill tin un dnsidd linl y un rtícul d ms m s coloc n l unto,, dtrmin l urz grvittori F qu l vrill jrc sobr l ms 6 Suón qu l intgrl Hz l cmbio d vribl / I ln( sn( )) d convrg y y mustr qu / b) A rtir d ln( ( )) ln(cos( )) / I sn d, mustr qu: I ln(cos( )) d / I ln( sn( )) d ln() / c) Us l inciso b) y l cmbio v y mustr qu I ln( sn( )) d d) A rtir d los incisos b) y c) ncuntr l vlor d I ) Clcul J ln( sn( )) d 7 A rtir dl rsultdo cos( ), y suonindo l convrgnci d ls intgrls sn( ) d sn ( ) d, obtén l vlor d cd un d lls
4 8 Us los roblms y r clculr ls siguints intgrls d ; b) 6 d ; c) d ; d) ; ) z dz d ln( ) Rsusts los jrcicios y roblms b) c) R d lim R d d lim lim d d r R r d) d lim d lim d R r R Convrg ; b) Convrg r / / cot( ) d lim cot( ) d r 5 ln 5 ; c) Convrg r ; d) Divrg; ) Divrg; ) Convrg 5 ; g) Convrg ; h) Convrg ; i) Convrg ; j) Divrg; k) Divrg; l) Convrg ; b) ; c) ; b) ; c) No ist ningún vlor d con l cul l intgrl convrj n! 5 Convrg n!; l intgrl más gnrl convrg Sugrnci: si n n, mustr qu In In ; b) convrg n! n In d
5 6 Pr l intgrl I, obsrv qu imlic Busc un dsiguldd similr r l sgund intgrl Rlion n l utilidd d sts dsiguldds b), t sugrimos qu considrs l dirncil d 7 L intgrl convrg, l ár d l rgión dscrit s 8 L intgrl convrg r 9 k k ; l intgrl convrg ; l intgrl convrg n y convrg 5 ln ln ; b) n rctn( ) k s ; l intgrl convrg 8 ln Fs () s s ; b) Fs (), ; c) Fs () s s, s i) No rquir rsust, ést s ncuntr n l mismo tto ii) E, y Vr L rsust rc n l mismo tto sn C 6 5 L urz stá dd or ; c) m F G d, l clculr st intgrl obtnmos Gm F, dond G s l constnt d grvitción univrsl 6 L rsust d los incisos c) rcn n l lntminto dl roblm L rsust dl inciso d) s I ln() Pr l inciso ), us l cmbio d vribl y n l rsultdo dl inciso ntrior, ntoncs J ln() 7 ( ) ( ) sn sn d d (7) 5 8 () 6; b) Hz l cmbio y, 7 8 cmbio d vribl y, ; d) ; ) ln() ; c) Clcul l vlor d, y hz l
Integrales impropias.
IX / 8 UNIVERSIDAD SIMON BOLIVAR MA nro-mrzo d 4 Dprtmnto d Mtmátics Purs y Aplicds. Intgrls impropis. Ejrcicios sugridos pr : los tms d ls clss dl 4 y 9 d mrzo d 4. Tms : Otrs forms indtrminds. Intgrls
3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2
MsMtscom Intgrls Clculr l intgrl: ++ + (-) (+) - 7 + 8 ln - cos sn - - - + (+) ln ln 7 8 cos ln + + - +- - - + -+ ++ Ls gráfic (i), (ii) y (iii) corrspondn, no ncsrimnt por s ordn, ls d un función drivbl
INTEGRAL DEFINIDA ÁREAS Y VOLUMENES
Intgrl indinid. gl d Brrow INTEGA DEFINIDA ÁEAS Y OUMENES siguint rgl, qu s s n l torm undmntl dl cálculo intgrl, rlcion l intgrl dinid con ls intgrls indinids prmit clculr ls intgrls dinids. intgrl dinid
DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:
DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién
IES Mediterráneo de Málaga Solución Junio 2014 Juan Carlos Alonso Gianonatti BLOQUE A
IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti BLOQUE CUESTIÓN.: Sbindo qu, clcul, sin dsrrollr ni utilir l rgl d Srrus, los siguints dtrminnts, indicndo n cd pso qué propidd d los dtrminnts
DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:
DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán. Intrprtción ométric d
TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES
3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin
Cálculo II (0252) TEMA 3 INTEGRAL IMPROPIA. Semestre
Cálulo II (5) Smstr - TEMA 3 INTEGRAL IMPROPIA Smstr - Junio Dprtmnto d Mtmáti Aplid U.C.V. F.I.U.C.V. CÁLCULO II (5) Ls nots prsntds ontinuión tinn omo únio fin, l d prstr poyo l studint y filitr su ntndiminto
# - + # x # - integrales definidas. 017 resuelve estas integrales definidas. b) 2 = b) = - = calcula las integrales definidas.
intgrls dfinids 7 rsulv sts intgrls dfinids. ) + ( ) d b) d + ) + + ( ) d b) d + ln ln + ln + + 8 clcul ls intgrls dfinids. π ) ( sn ) d b) d ) ( sn ) d cos ( ) ( ) b) d ln + ln + ln 9 clcul, utilizndo
a > 0 y a 1. Si la base es e se llama exponencial natural tiene la forma
INTRODUCCIÓN A LAS MATEMATICAS SUPERIORES TEMA 6 FUNCIONES LOGARÍTMICAS Un función ponncil d s tin l form f ( pr tod R > 0 y. Si l s s s llm ponncil nturl tin l form dond f (. L.- Con l informción qu cunt
UNIVERSIDAD DE LA RIOJA JUNIO lim
IES Mditrráno d Málg Emn Junio d Jun Crlos lonso Ginontti UNIVERSIDD DE L RIOJ JUNIO El lumno contstrá los jrcicios d un d ls dos propusts ( o ) qu s l ofrcn. Nunc dbrá contstr jrcicios d un propust jrcicios
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------
IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d
26 EJERCICIOS de LOGARITMOS
6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.
4 3x 2x 3 6x x x x dt d x x dy p dx y
EJERCICIOS UNIDAD IV.- LA DERIVADA.- Comprub cd un d ls siguints drivds. d ) 8 d t 5 5 bt 5 t 5 bt dt d 6.-Rliz ls siguints drivds ) d.-comprobr cd un d ls siguints drivds. ) d d r d dr d d ( ) p b b b
IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II
IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un
= + 3x dx = x + C. Reglas de Integración elementales estándar
.. Antidrivds: UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ECONÓMICAS DET-8, MÉTODODOS CUANTITATIVOS III GUÍA DE EJERCICIOS, UNIDAD III Hst hor hmos studido lo qu s dnomin El Cálculo
Se llama tasa de variación media (T.V.M.) de una función y = f(x) en un intervalo a. T.V.M. a,b =
TEMA 7: DERIVADAS 7. Concpto d drivd. Función drivd. 7. Rgls d drivción. 7. CONCEPTO DE DERIVADA. FUNCIÓN DERIVADA. Est concpto mtmático no sólo nos prstrá un yud primordil n l rprsntción d funcions y
(a+1)x+ay=3 (a+1)x+(a+1)y+(a+2)z=1 (a 2 +a)x+(a 2-1)y+(a 2-2a-8)z=2a+5. a 1. a+1. a+2 a 2-2a a+5 ~1 0. a=-1
EXTRAORDINARIO DE 4. PROBLEMA A. Estudi l siguint sistm d uions linls dpndint dl prámtro rl y rsuélvlo n los sos n qu s omptil: Aplimos l método d Guss: ~ + + + + + - 3 + --6 - -+3 (+)+y3 (+)+(+)y+(+)z
Función exponencial y logarítmica:
MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)
FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS
FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds
Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2.
Tm Límits Mtmátics II º Bchillrto TEMA LIMITES CÁLCULO DE LÍMITES EJERCICIO : D un dinición pr sts prons y rprséntls gráicmnt: ) ) 9 6 c) ) ) Cundo s proim, l unción s hc muy grnd ) Cundo s proim, l unción
1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica
.. Ejrcicios rsultos sobr l función ponncil rítmic. Us ls propidds d l función ponncil (torm ) pr simplificr totlmnt l siguint prsión:. Prub qu Simplifiqu inicilmnt l numrdor l dnomindor d l frcción. Así:
3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p
IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrics dtrinnts Mtrics dtrinnts. Ejrcicios d Slctividd. º.- Junio 99. i) Dfin rngo d un triz. ii) Un triz d trs fils trs coluns tin rngo trs, cóo pud vrir
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS
ESCUELA SUPEIO POLITÉCNICA DEL LITOAL INSTITUTO DE CIENCIAS MATEMÁTICAS Mtmátics d Nivl 0A Invirno 00 Sgund Evlución Ingnirís Abril d 00 Nombr: VESIÓN. Dd l gráfic d l función f qu s djunt l prsnt, idntifiqu
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS
ESCUELA SUPEIO POLITÉCNICA DEL LITOAL INSTITUTO DE CIENCIAS MATEMÁTICAS Mtmátics d Nivl 0A Invirno 00 Sgund Evlución Ingnirís Abril d 00 Nombr: VESIÓN 0. Si g s un función d l n l cu gráfic stá dd por:
61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS
Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr
34 EJERCICIOS de LOGARITMOS
EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.
xdx 10. e dx 2 x x.ln dx x dx 7. x.cosh 15. x.(ln x) dx 9 x *Ver soluciones de los números impares en el libro de Leithold
REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS Contnido: Intgrals impropias Primra spci-unidad
31 EJERCICIOS de LOGARITMOS
EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 06 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserv, Ejercicio, Opción A Reserv, Ejercicio, Opción B Reserv, Ejercicio,
OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)
IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo
Solución de la ecuación de Schödinger para una partícula libre.
Solución d l cución d Schöding un tícul lib. Vmos nliz l volución tmol d l función d ond d un tícul lib con un jmlo concto. Ptimos d l siguint condición inicil: (; ) ik dond y k son dos constnts ls. Lo
SOLUCIONES DE LIMITES
SOLUCIONES DE LIMITES.. Ln Sustituyndo por obtnmos: INDETERMINADO Ln Como s trt d un indtrminción d tipo L Hopitl, plicmos dich rgl: Ln Ln Rsolvmos prt l it Ln INDETERMINACIÓN d tipo L Hopitl otr vz: 6Ln
ACTIVIDADES FINALES EJERCICIOS. trino grau fernández. x lím. lím. lím. lím. sen x 1. x 1. lím x 0 sen x x. lím. x lím. sen x. x arcsen x lím 11.
L Í M I T E S th ls ACTIVIDADES FINALES EJERCICIOS Ln tg sn sn [ ( )] 5 sn 6 cotg 7 sn sn 8 9 sn rcsn sn b sn sn cotg 5 sn cos 6 sn 7 n 8 Ln 9 Ln trino gru frnándz th ls 5 Clculr pr qu s cumpl: π Ln tg
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos
IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l
3.11 Trasformada de Laplace de una función periódica 246
3. Trformd d plc d un función priódic 46 3. Trformd d plc d un función priódic Dfinición 3.. Un función f llmd priódic i y olo i, it un númro no nulo f tl qu impr y cundo té n l dominio d f, tmbién lo
(esta notación fue elegida por el matemático Leonhar Euler) De hecho la función f ( x)
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA DURACION 9 OCTUBRE
UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.
IES Pdr Povd (Gudi Mtmátics I UNIDAD 9 LÍMITES DE FUNCIONES CONTINUIDAD Límit d un unción n un punto Límits ltrls Límit d un unción n un punto Límits n l ininito Comportminto d un unción cundo Comportminto
Solución Segunda Prueba Intermedia (23/01/2018) Curso 2017/18
Solución Segund Prueb Intermedi 3//8) Curso 7/8 Problem. Indic si los siguientes enuncidos son VERDADEROS o FALSOS, justicndo l respuest. ) Si f : [, b] R es continu con c f)d < b f)d. b) Si f : [, + )
Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos
. Considr los siguints númros compljos: ) z = 3 i 2) z 2 = 2 3 i 3) z 3 = + 3 i ) z = i π Matmáticas Avanzadas para Ingniría Funcions rals xtndidas al Plano Compljo, problmas rsultos Dtrmin la part ral
Definición de derivada
Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()
UNIDAD 8 LÍMITES DE FUNCIONES. CONTINUIDAD.
IES Pdr Povd (Gudi Mtmátics Aplicds ls CCSS I UNIDAD 8 LÍMITES DE FUNCIONES CONTINUIDAD CONCEPTOS PREVIOS: Dcimos qu: y s l tind, si tom vlors cd vz más próimos Ejmplo: L scunci d númros ; ; ; 9; 8; ;
Problemas y preguntas de tipo test. Integrales indefinidas. 1. Calcula las siguientes integrales: b) dx = dx
Análisis Mmáio. Ingrls Prolms y prguns d ipo s Ingrls indfinids. Clul ls siguins ingrls: ) d ) d ) S sri l ingrndo omo s indi: d = d ) (sin ) d d os d) = d ln ) d = d 7 / 5 / / 7 / = d ) Ajusndo onsns:
TEMA 5: INTEGRACIÓN. f(x) dx.
TEMA 5: INTEGRACIÓN. L integrl indefinid En muchos spectos, l operción llmd integrción que vmos estudir quí es l operción invers l derivción. Definición.. L función F es un ntiderivd (o primitiv) de l
INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades.
INTEGRALES 5. Primitiva d una unción. Intgral indinida. Propidads. 5. Intgración d uncions racionals. 5. Intgración por parts. 5. Intgración por cambio d variabls. 5. Primitiva d una unción. Intgral indinida.
Por sólo citar algunos ejemplos, a continuación se mencionan las aplicaciones más conocidas de la integral:
Fcultd d Contdurí Administrción. UNAM Apliccions d l intgrl Autor: Dr. José Mnul Bcrr Espinos MATEMÁTICAS BÁSICAS APLICACIONES DE LA INTEGRAL Eistn muchos cmpos dl conociminto n qu istn pliccions d l intgrl.
La integral. x p. b 2 C 1. x p es continua en R.
CAPÍTULO L integrl.8 L ntieriv y l integrl inefini El teorem Funmentl el Cálculo constituye un herrmient muy oeros r el cálculo e ls integrles, ues nos ermitirá consierr csos c vez más comlejos, que iremos
LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.
Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función
EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES
IES Padr Povda (Guadi) EJERCICIOS UNIDADES y : INTEGRACIÓN DE FUNCIONES (-M;Jun-A-) San f : R R y g : R R las funcions dfinidas rspctivamnt por f ( ) = y g( ) = + a) ( punto) Esboza las gráficas d f y
dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx
Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible
Determinantes y la Regla de Cramer
Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos
SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla.
UNIA : Introducción a las drivadas ACTIVIAES-PÁG. 0. Las solucions aparcn n la tabla. [0, ] [, 6] a) f () = b) f () = + c) f () = 9 d) f () = 7, 6 8, 67. El valor d los límits s: f ( h) f () a) lím 6 h
LÍMITES DE FUNCIONES.
LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté
El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )
Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con
Héctor Palma Valenzuela. Dpto. de Matemática UdeC Definición e interpretación geométrica
Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. L Integrl.-. Definición e interpretción geométric Dd un función continu f :[, b] R ynonegtiv (f (), [, b]), vmos considerr l región del plno bjo l gráfic de
Aplicaciones del Cálculo diferencial e integral
Aplicciones del Cálculo diferencil e integrl Integrción numéric con Mxim http://euler.us.es/~rento/ Rento Álvrez-Nodrse Universidd de Sevill Rento Álvrez-Nodrse Universidd de Sevill Aplicciones del Cálculo
, al conjunto de puntos P
Fcltd d ontdrí y Administrción. UNAM Intgrl dinid indinid Ator: Dr. José Mnl Bcrr Espinos MATEMÁTIAS BÁSIAS INTEGRAL DEFINIDA E INDEFINIDA SUMA DE RIEMANN S n intrvlo crrdo [, ], l conjnto d pntos P n
INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL
INSTITUTO POLITECNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGIA PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL ELABORO: PROF. MARIO CERVANTES CONTRERAS DICIEMBRE DE 7 EJERCICIOS DE
x a es una serie de la forma que el radio de convergencia de la serie geométrica es el intervalo abierto
ERIE DE POTENCIA ERIE DE POTENCIA. Diició. U sri d pocis c s u sri d l orm c c c c... c... Por jmplo. i c y l sri d pocis om l orm....... Por jmplo. i c y l sri d pocis om l orm....... TEOREMA. El cojuo
FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL
FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) -FUNCION LOGARITMO NATURAL Definición propieddes L funcion logritmo nturl de un numero positivo se not ln su dominio es el conjunto de los números reles positivos
lm í d x = lm í ln x + x 1 H = lm í x + e x 2
Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg
F U T S W W P V F W P V G U T S P V G F P V W P V P V W. nfec. G nfe C. Energía libre y fuerza electromotriz.
nrgí libr y furz lctromotriz. Dsd un punto d vist trmodinámico, sbmos qu tmprtur constnt, l disminución d l nrgí libr d Hlmholtz, F (pr un procso rvrsibl), rprsnt l trbjo totl (W) hcho sobr los lrddors,
TABLA DE DERIVADAS. g f
TABLA DE DERIVADAS Funcions:, g (continn a la ) Númro: k ) y = k y = 0 ) y = y = ) y = ± g y = ± g ) y = k y = k ) y = g y = g + g 6) y = g ' g g' g y = 7) y = k k y = k 8) y = k y = k L k 9) y = y = 0)
METODOS NUMERICOS TALLER 7, SEMESTRE Se obtuvieron los siguientes datos de la distancia recorrida por un cohete contra el tiempo:
METODOS NUMERICOS 697 TALLER 7, SEMESTRE Tem: Derivción e integrción numérics Se recomiend relizr los ejercicios propuestos en el texto guí, en prticulr los siguientes: Sección :,,, 7, 8,, Sección :, 8
Deducción de las reglas de derivación. Partiendo de las derivadas de la función potencial, la función exponencial y la función seno, ( ) ( ) 1
dmttmtics.wordprss.com Btriz d Otto Lópz Dducción d ls rgls d drivción Prtindo d ls drivds d l función potncil, l función ponncil l función sno, = R = f = =, f = sn = cos, f,, d ls rgls d drivción pr l
