Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín"

Transcripción

1 NIVRSIDAD NACIONAL D COLOMBIA SD MDLLÍN FACLTAD D CINCIAS-SCLA D FÍSICA FÍSICA D OSCILACIONS ONDAS Y ÓPTICA MÓDLO # 10: ONDAS MCÁNICAS NRGÍA- Diego Lis Aristizábal R., Roberto Restrepo A., Tatiana Mñoz H. Profesores, scela de Física de la niversidad Nacional de Colombia Sede Medellín 1 Temas Introdcción Densidad de energía en ondas mecánicas Potencia e intensidad n análisis sobre el transporte y la conservación de la energía en ondas mecánicas nergía en ondas viajeras nergía en ondas estacionarias Introdcción n na onda lo qe se transmite es energía. n na onda mecánica la energía se propaga a través de la vibración de la materia y s velocidad de propagación depende de las propiedades elásticas del medio y de la inercia del mismo. Para los cálclos energéticos en las ondas mecánicas hay ciertos inconvenientes si se toma el modelo de partícla para el elemento del medio, ya qe sele llevar a grandes confsiones. l modelo qe se adoptará es el de n elemento diferencial del medio contino de longitd dx y sección transversal constante de área A. Se hará el análisis bien detallado para el caso de las ondas transversales en na cerda y los resltados se generalizarán para todas las ondas mecánicas a través de la generalización de la ley de Hooke. Densidad de energía en ondas mecánicas Densidad de energía cinética La energía cinética de n elemento de cerda de longitd dx y de masa dm = ρadx dm, Figra 1, es igal a: 1 y d = dm t

2 y aqí corresponde a la velocidad de vibración del elemento dx, A es el área de la sección transversal de t la cerda y s ρ la densidad volmétrica. Con base en esto la expresión anterior toma la sigiente forma, Figra 1 d 1 y = ρ Adx t 1 = ρy t [1] donde corresponde a la densidad de energía cinética de la cerda (y en general de n medio material a través del cal se propaga na onda). Se mide en J.m -3. La ecación [1] es de validez general para todas las ondas mecánicas tratadas en estas notas. n el caso de las ondas en los hilos o filamentos (cerdas my delgadas) y en los resortes es de mayor so la densidad lineal de energía cinética w. Como, μ ρ = A se obtiene qe la ecación [1] se transforma en, 1 w = μy t [1A] y se mide en J.m -1.

3 Densidad de energía potencial l elemento de cerda cando pasa la onda a través de él es estirado por la acción de la ferza de tensión cya magnitd es F, la cal es ejercida por la porción de la cerda izqierda (para na onda viajando hacia valores crecientes de x) y almacena na cantidad d de energía potencial debido al trabajo realizado por dicha ferza, d = Fdξ 3 donde dξ corresponde a la deformación sfrida por la cerda qe medía dx y pasó a medir dx + dy, es decir, d = F dx + dy - dx d = Fdx 1+ y x - dx haciendo la aproximación binomial, d = Fdx 1 + 1y x - dx 1 y d = Fdx x y dividiendo pro el volmen del elemento diferencial de cerda se obtiene, d 1 F y = Adx A x = A 1 F y x en donde es la densidad volmétrica de energía potencial y se mide en J.m -3. Ahora, como para la cerda el parámetro de elasticidad β es, F β = A se obtiene para la s densidad volmétrica de energía potencial,

4 1 y = β [] x La ecación [] es de validez general para todas las ondas mecánicas tratadas en estas notas. n el caso de las ondas en los hilos o filamentos (cerdas my delgadas) y en los resortes es de mayor so la densidad lineal de energía potencial w. Como, 4 μ ρ = A se obtiene qe la ecación [] se transforma en, 1 w = Fy x [A] y se mide en J.m -1. Observar qe la densidad de energía potencial es proporcional al cadrado de la pendiente, por lo qe el elemento de cerda qe está en na cresta o en n valle tiene na densidad de energía potencial igal a CRO, lo cal confnde ya qe en el modelo de partícla oscilando armónicamente debería tener la máxima energía potencial. s aqí en donde no se debe sar el modelo de partícla sino de elemento contino, y así se entiende qe s densidad energía potencial es nla porqe no está deformado. l elemento qe está pasando por la posición de eqilibrio tiene máxima densidad de energía potencial (es el qe está más deformado). Densidad de energía mecánica La energía mecánica es igal a la sma de la energía cinética y la energía potencial. Por lo tanto la densidad volmétrica de energía mecánica para na onda mecánica es, 1 y 1 y = ρ β [3] t x Para el caso de cerdas y resortes es preferible hablar de densidad lineal de energía mecánica, 1 y 1 y w = μ F [3A] t x Potencia e intensidad Potencia transmitida Si se spone na onda viajando hacia valores crecientes de x (de izqierda a derecha) la potencia qe entrega el elemento de cerda de la izqierda al de la derecha, Figra, es igal a,

5 5 Figra P = F V = Fsenα V y y y Para peqeñas amplitdes, P Ftanα Vy y y P = F [4] x t sta es la potencia transmitida por na onda mecánica qe se propaga a través de na cerda y se mide en Watts. s decir la expresión [4] sirve para calclar la energía mecánica transmitida a través de la cerda por cada nidad de tiempo: en 1 segndo cántos Joles se transmiten. Intensidad La intensidad se define como la energía qe flye a través de na sperficie en la nidad de tiempo. s decir, es potencia por nidad de área, P I = A Por lo tanto según la ecación [4], F y y I = A x t Ahora, como para la cerda el parámetro de elasticidad β es,

6 F β = A se obtiene para la intensidad, y y I = β [5] x t 6 La ecación [5] es de validez general para todas las ondas mecánicas tratadas en estas notas. La intensidad se mide en W.m -. n análisis sobre el transporte y la conservación de la energía en ondas mecánicas La variación instantánea de la densidad de energía mecánica en medio contino a través del cal se propaga na onda es, 1 y 1 y = ρ β t t t x y y y y = ρ + β t t t x xt Pero según la ecación de onda de orden, y y V x t y por lo tanto, y y y y = ρv + β t x t x xt y y y y = V ρ + β t x t x xt y como para na onda mecánica, V = β ρ se obtiene,

7 y y y y = β + β t x t x xt y y = β t x x t y según la ecación [5], 7 t = I x t I - = 0 x qe es la ecación de conservación de la energía en el proceso de transporte de energía a través del medio contino. Por ejemplo, la variación neta de energía la mecánica acmlada en n tramo de cerda entre dos posiciones x 1 y x es, x x x Adx = A dx = A dx = P x - P x1 x1 x1 x1 d 1 P t dt t A x haciendo n balance entre los instantes t y t+t se obtiene, t t + Δt Δt 1 P x - P x = P x P x Δt 1 final = inicial P x P x1 Δt "La energía mecánica final, transcrrido n tiempo t, es IGAL a la energía mecánica inicial MAS la energía mecánica qe se transfiere a la sección del medio contino comprendida entre x 1 y x en el intervalo de tiempo t. P(x) es la energía, por nidad de tiempo, qe flye por a través de sección transversal A bicada en el pnto x, es decir la POTNCIA TRANSMITIDA en la dirección x. Se pede dedcir entonces qe la energía mecánica en na porción de medio contino VARÍA CON L TIMPO, lo cal NO significa qe no se conserve: es simplemente qe se está TRANSMITINDO. nergía en ondas viajeras Densidades de energía n la cinemática de la onda viajera, se mostró qe estas cmplen la ecación diferencial de onda de orden 1,

8 y y -V x t por lo tanto reemplazando en la ecación [1], 1 1 y = ρy t = ρ -V x 8 1 y = ρv x Como para ondas mecánicas se cmple, β V = ρ Se obtiene, 1 y = β x es decir según la ecación [], = [6] y por ende, = + = [7] y = β [7A] x y = ρ [7B] t Las expresiones [6] y [7] SÓLO las cmplen las ondas viajeras. No las cmplen las ondas estacionarias: recordar qe las ondas estacionarias NO cmplen la ecación diferencial de orden 1. n las ondas viajeras la densidad de energía potencial y la densidad de energía cinética son igales. sto es na aparente contradicción pesto qe no hay na aparente conversión de energía cinética en energía potencial. Por ejemplo, en la cerda el pedacito qe está en na cresta o en n valle tienen densidad de energía tanto cinética como potencial nlas y el pedacito qe está pasando por la posición de eqilibrio posee máximas estas dos densidades. Sin embargo, esto no debe ser motivo de preocpación pesto qe en

9 el caso de la onda viajera n elemento del medio está cediendo la energía al elemento contigo y así scesivamente. Hay fljo de energía: la aparente pérdida de energía en asencia de ferzas de rozamiento se debe a qe está ella flyendo. STO F LO Q S ANALIZÓ en la sección anterior. Intensidad La intensidad se calcla con la expresión [5], y y I = β x t 9 y por lo tanto se tendrá para la onda viajera, y y y y I = β = β V x t x x I = y Vβ x Reemplazando [7A], I = V [8] Y se mide en W.m -. l signo MNOS si se qiere se pede obviar y s significado es: Si la onda se propaga hacia valores crecientes de x (sea por ejemplo hacia la derecha) la velocidad de propagación es POSITIVA y la intensidad es NGATIVA entendiéndose qe el segmento de medio contino de la izqierda cede al de la derecha. Si la onda se propaga hacia valores decrecientes de x (hacia la izqierda) la velocidad de propagación es NGATIVA y la intensidad es POSITIVA entendiéndose qe el segmento de medio contino de la izqierda gana energía (esta es cedida por el segmento de la derecha). l signo pes en la expresión [8] indica es el sentido en qe se cede la energía, por lo tanto se obviará con esa salvedad, I = V [8A] Ondas viajeras armónicas Densidades de energía Si la onda qe se propaga por el medio material es armónica plana en el sentido positivo de la x, la elongación y la velocidad de vibración de los elementos del medio son respectivamente, y = Asen kx - ωt + φ o

10 v = -ωacos kx - ωt + φ y o por lo tanto la densidad de energía cinética de n elemento dx de medio contino es según la ecación [1], = 1 ρ - ωacos kx - ωt + φ o 1 = ρω A cos kx - ωt + φo 10 como en la onda es viajera, =, la densidad de energía potencial de n elemento será, 1 = ρω A cos kx - ωt + φo además la densidad de energía mecánica es, = ρω A cos kx - ωt + φ o [9] La energía mecánica de n elemento dx por ejemplo en na cerda NO se conserva. l elemento cyo centro de masa está instantáneamente en la posición de eqilibrio, tiene máxima deformación y máxima rapidez, por tanto tendrá máxima densidad de energía potencial y máxima densidad de energía cinética. l elemento cyo centro de masa está instantáneamente en na cresta o en n valle, tendrá pendiente cero (no está deformado) y rapidez cero, por lo tanto tendrá densidad de energía potencial nla y densidad de energía cinética nla. n definitiva no hay conversión de energía cinética en potencial y viceversa. Podría pensarse como n caso de violación de la conservación de la energía, sin embargo, la energía mecánica no permanece constante es debido a qe la energía está flyendo (se está propagando): RCORDAR de nevo la discsión qe se hizo atrás. n la sigiente simlación se ilstra la variación de las energías cinética, potencial y mecánica de todos los elementos de na cerda por la qe se propaga na onda transversal. Se detalla la variación de estas energías en no de los elementos. Simlación: Analizar la simlación de SimlPhysics correspondiente al Ondas > nergía en ondas > nergía en ondas viajeras. Para acceder a ella hacer clic con el mose en el ítem señalado en la Figra 3. Se despliega la simlación de la Figra 4. n ésta hacer las variaciones permitidas y observar detenidamente los resltados.

11 11 Figra 3 Figra 4 n la sigiente simlación se ilstra la variación de la energía cinética y la potencial en na partícla qe oscila armónicamente. Se observa la constancia en la energía mecánica y la conversión permanente de energía cinética en potencial y viceversa. Simlación: Analizar la simlación de SimlPhysics correspondiente al Oscilaciones > nergía en el MAS > nergía vs tiempo en el MAS. Para acceder a ella hacer clic con el mose en el ítem señalado en la Figra 5. Se despliega la simlación de la Figra 6. n ésta hacer las variaciones permitidas y observar detenidamente los resltados.

12 1 Figra 5 Figra 6 Potencia e intensidad La intensidad de la onda viajera se calcla con la ecación [8A], I = V n el caso de na onda armónica plana, reemplazando [9], I = ρω A V cos kx - ωt + φ o

13 y en promedio, 1 I = ρω A V [10] en donde A es a amplitd de la onda y V s velocidad de propagación. Dependencia de la intensidad de la geometría del frente de onda 13 Despreciando la disipación de energía cando la onda se propaga, se tendrá, intensidad promedio Area del frente de onda = constante Frente de onda plana Como el área del frente de onda plano permanece constante cando la onda viaja, se conclye qe s intensidad se mantiene constante, I = constante [11] Frente de onda cilíndrico Como el área del frente de onda cilíndrico amenta proporcionalmente con el radio de éste, (área frente onda = RL), se conclye qe: πr L I πr L = I 1 1 I I R = [1] R 1 1 Frente de onda esférico Como el área del frente de onda esférico amenta proporcionalmente con el cadrado del radio, (área frente onda = 4R ), se conclye qe: I 4πR = I 4πR 1 1 I I R = [13] 1 R1 esta expresión se conoce con el nombre de ley del inverso cadrado.

14 nergía en ondas estacionarias Densidades de energía Las ondas estacionarias no satisfacen la ecación de onda de orden -Vy x = y t, y por lo tanto no cmplen qe =, como es el caso de ondas viajeras. Ondas estacionarias armónicas 14 Densidades de energía Si se consideran ondas estacionarias armónicas como por ejemplo las qe se presentan en na cerda con ss extremos fijos, la elongación es igal a, y n = Ansenk nx cosωn t por tanto, las densidades de energía cinética y potencial son según las ecaciones [1] y [], = ρωnansen knx sen ωnt = βk nancos knx cos ωnt Como en ondas mecánicas se cmple qe, V = β ρ Y como, k V = ω n n se obtiene, = + = ρω A sen k x sen ω t + cos k x cos ω t n n n n n n Se debe observar qe si se toma n elemento de cerda dx, la energía cinética de la partícla qe lo representa, (es decir, s centro de masa) no es igal a la energía potencial como si lo es en el caso de na onda viajera. Para los elementos cyos centros de masa están bicados en n nodo la energía cinética es nla siendo s energía toda potencial. Scede lo opesto para los elementos cyos centros de masa están bicados en los vientres. s decir en las ondas estacionarias se da la conservación de la energía en cada elemento: hay conversión de energía cinética en potencial en cada elemento del medio: recordar qe esta onda no viaja por lo tanto NO propaga la energía. sto se ilstra en la sigiente simlación.

15 Simlación: Analizar la simlación de SimlPhysics correspondiente al Ondas > nergía en ondas > nergía en ondas estacionarias. Para acceder a ella hacer clic con el mose en el ítem señalado en la Figra 7. Se despliega la simlación de la Figra 8. n ésta hacer las variaciones permitidas y observar detenidamente los resltados. 15 Figra 7 Figra 8 Densidad de energía mecánica promedio Tomando el ejemplo de la cerda con extremos fijos y promediando en x se obtiene, 1 1 = ρωna n sen ωnt + cos ωnt

16 = ρωna n nv ω = πf y f n = se obtiene, L Y como n n π ρv A L n = n [14] 16 expresión qe corresponde al promedio de la energía mecánica del armónico n. Intensidad La intensidad según la ecación [8A] para na onda qe viaja es, I = V Como la onda estacionaria se compone de dos ondas viajeras qe tiene todo ss parámetros igales pero se propagan en direcciones opestas se tiene, I = I onda incidente + I onda reflejada = -V + V = 0 y por lo tanto la intensidad NTA en la onda estacionaria es cero como era de esperarse ya qe NO porpaga energía. FIN

Bárbara Cánovas Conesa. Concepto de Onda

Bárbara Cánovas Conesa. Concepto de Onda Bárbara Cánovas Conesa 637 720 113 www.clasesalacarta.com 1 Movimientos Armónicos. El Oscilador Armónico Concepto de Onda Una onda es una forma de transmisión de la energía. Es la propagación de una perturbación

Más detalles

En el caso de ondas electromagnéticas (luz) el campo eléctrico E y el campo magnético B varían de forma oscilatoria con el tiempo y la distancia:

En el caso de ondas electromagnéticas (luz) el campo eléctrico E y el campo magnético B varían de forma oscilatoria con el tiempo y la distancia: y : posición vertical www.clasesalacarta.com 1 Concepto de Onda ema 8.- Movimiento Ondulatorio. Ondas Mecánicas Onda es una forma de transmisión de la energía. Es la propagación de una perturbación en

Más detalles

2. Movimiento ondulatorio (I)

2. Movimiento ondulatorio (I) 2. Movimiento ondulatorio (I) Onda Pulso Tren de ondas Según la energía que propagan Tipos de onda Número de dimensiones en que se propagan: unidimensionales, bidimensionales y tridimensionales Relación

Más detalles

DERIVADAS. incremento de la variable independiente, x

DERIVADAS. incremento de la variable independiente, x DERIVADAS CPR. JORGE JUAN Xvia-Narón y= f(x): (a,b)r R fnción real definida en el dominio abierto, (a,b)r x 0, x (a,b) x= x -x 0 f(x )= f(x 0 +x) f(x 0 )= f(x 0 ) pntos del dominio de la fnción. incremento

Más detalles

ONDAS MECANICAS. Docente Turno 14: Lic. Alicia Corsini

ONDAS MECANICAS. Docente Turno 14: Lic. Alicia Corsini ONDAS MECANICAS Docente Turno 4: MOVIMIENTO ONDULATORIO: CONSTRUCCION DEL MODELO: MATERIA DEFORMABLE O ELASTICA POR DONDE SE PROPAGAN LAS ONDAS MECANICAS Las ondas de agua las ondas sonoras son ejemplos

Más detalles

DINÁMICA DE FLUIDOS. Flujo Potencial. Potencial de velocidades. Función de corriente. Ejemplos.

DINÁMICA DE FLUIDOS. Flujo Potencial. Potencial de velocidades. Función de corriente. Ejemplos. DINÁMIC DE FLUIDOS Propiedades de los Flidos. Concepto de flido. Flido ideal. Viscosidad Tensión sperficial. Capilaridad Estática. Presión en n pnto. Ecación general de la estática. Teoremas de Pascal

Más detalles

Movimiento ondulatorio

Movimiento ondulatorio Movimiento ondulatorio 1. Introducción Se llama onda a la propagación de energía sin transporte neto de la materia. En cualquier caso se cumple que: - Una perturbación inicial se propaga sin transporte

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CASTELAR ADAJOZ A Mengiano PRUEA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTARIA JUNIO - 9 (RESUELTOS por Antonio Mengiano) MATEMÁTICAS II Tiempo máimo: horas y mintos - Debe escogerse na sola de las opciones

Más detalles

Introducción a la simulación de fluidos (II) Animación Avanzada

Introducción a la simulación de fluidos (II) Animación Avanzada Introdcción a la simlación de flidos (II) Animación Avanzada Iván Aldán Íñigez 7 de Marzo de 014 Índice Flidos en el contino Leyes de conservación Método de paso fraccionado Advección Viscosidad Ferzas

Más detalles

Física 2º Bach. Ondas 10/12/04

Física 2º Bach. Ondas 10/12/04 Física º Bach. Ondas 10/1/04 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [6 PTOS.] 1. Una partícula de 600 g oscila con M.A.S. Se toma como origen de tiempos el instante en que pasa por el origen

Más detalles

UNIDAD 1 REPASO SOBRE ONDAS ELECTROMAGNETICAS

UNIDAD 1 REPASO SOBRE ONDAS ELECTROMAGNETICAS UNIDAD 1 REPASO 01: DE OSCILACIONES Y ONDAS REPASO SOBRE ONDAS ELECTROMAGNETICAS Una vibración u oscilación es un vaivén en el tiempo. Un vaivén tanto en el espacio como en el tiempo es una onda. Una onda

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 1. Ondas. 2. Propagación de ondas mecánicas. 3. Parámetros del movimiento ondulatorio. 4. Ondas armónicas. 5. Energía del movimiento ondulatorio. 6. El sonido. Física 2º Bachillerato

Más detalles

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco

Más detalles

CUESTIONES DE ONDAS. 2) Explique la doble periodicidad de las ondas armónicas e indique las magnitudes que las describen.

CUESTIONES DE ONDAS. 2) Explique la doble periodicidad de las ondas armónicas e indique las magnitudes que las describen. CUESTIONES DE ONDAS 2017 1) Considere la siguiente ecuación de las ondas que se propagan en una cuerda: y(x,t) = A sen (Bt ± Cx). Qué representan los coeficientes A, B y C? Cuáles son sus unidades en el

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández MAS Estudio dinámico y cinemático 1. (90-J11) Una pequeña plataforma horizontal sufre un movimiento armónico simple en sentido vertical, de 3 cm de amplitud y cuya frecuencia aumenta progresivamente. Sobre

Más detalles

Chapter 15 ONDAS MECÁNICAS. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman

Chapter 15 ONDAS MECÁNICAS. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Chapter 15 ONDAS MECÁNICAS PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman La riqueza consiste mucho más en el disfrute que en la posesión. - Aristóteles

Más detalles

Lección 1: Tensiones verticales en los suelos.

Lección 1: Tensiones verticales en los suelos. Lección : Tensiones verticales en los selos. Tensión vertical en n pnto del terreno. La tensión vertical en n pnto calqiera de n selo a na profndidad es el peso de la colmna de terreno existente por encima

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

F2Bach 1. Introducción. Noción de onda. Tipos de ondas 2. Magnitudes características de una onda 3. E cuac ó ió d n e l as on as arm

F2Bach 1. Introducción. Noción de onda. Tipos de ondas 2. Magnitudes características de una onda 3. E cuac ó ió d n e l as on as arm F Bach Movimiento ondulatorio 1. Introducción. Noción de onda. Tipos de ondas. Magnitudes características de una onda 3. Ecuación de las ondas armónicas unidimensionales i 4. Propiedad importante de la

Más detalles

TEMA 5.- Vibraciones y ondas

TEMA 5.- Vibraciones y ondas TEMA 5.- Vibraciones y ondas CUESTIONES 41.- a) En un movimiento armónico simple, cuánto vale la elongación en el instante en el que la velocidad es la mitad de su valor máximo? Exprese el resultado en

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 2001 1. Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación

Más detalles

OSCILADOR ARMONICO: partícula con M.A.S. ECUACION DEL M.A.S: x = A sen (ω t+ φ 0 )

OSCILADOR ARMONICO: partícula con M.A.S. ECUACION DEL M.A.S: x = A sen (ω t+ φ 0 ) ONDAS. M.A.S: Tipo de movimiento oscilatorio que tienen los cuerpos que se mueven por acción de una fuerza restauradora: F=-k x OSCILADOR ARMONICO: partícula con M.A.S ECUACION DEL M.A.S: x = A sen (ω

Más detalles

FÍSICA - 2º BACHILLERATO MOVIMIENTO ONDULATORIO RESUMEN CARACTERÍSTICAS GENERALES DE LAS ONDAS

FÍSICA - 2º BACHILLERATO MOVIMIENTO ONDULATORIO RESUMEN CARACTERÍSTICAS GENERALES DE LAS ONDAS Física º Bachillerato Movimiento Ondulatorio - FÍSICA - º BACHILLERATO MOVIMIENTO ONDULATORIO RESUMEN CARACTERÍSTICAS GENERALES DE LAS ONDAS. Una onda es una perturbación que se propaga de un punto a otro

Más detalles

Qué parámetros describen el movimiento ondulatorio? Cómo se puede describir matemáticamente el

Qué parámetros describen el movimiento ondulatorio? Cómo se puede describir matemáticamente el Qué parámetros describen el movimiento ondulatorio? Cómo se puede describir matemáticamente el movimiento de una onda? Cuáles son las diferentes velocidades que se pueden conocer para una onda en una cuerda?

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

Sesión I. Elementos finitos en la industria -1- I.1 Introducción. I.2 El método de rigideces. I.3 Estructura de los programas

Sesión I. Elementos finitos en la industria -1- I.1 Introducción. I.2 El método de rigideces. I.3 Estructura de los programas I. Introdcción I. El método de rigideces I. Estrctra de los programas I. Principios variacionales -- I. INTRODUCCIÓN El modelo básico de n cerpo en mecánica debe representar a calqier cerpo posible. Consideremos

Más detalles

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical la cuerda es extensible La cuerda vibrante inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical y(x, t) la posición depende

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 2001 1.- Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación

Más detalles

ONDAS Y SONIDO JUNIO 1997: 1.- SEPTIEMBRE

ONDAS Y SONIDO JUNIO 1997: 1.- SEPTIEMBRE ONDAS Y SONIDO JUNIO 1997: 1.- Explica el efecto Doppler. SEPTIEMBRE 1997: 2.- La ecuación de una onda que se propaga por una cuerda es y(x,t) = 5 sen (0.628t 2.2x), donde x e y vienen dados en metros

Más detalles

Tema 10: Movimiento ondulatorio*

Tema 10: Movimiento ondulatorio* Tema 10: Movimiento ondulatorio* Física I Grado en Ingeniería Electrónica, Robótica y Mecatrónica (GIERM) Primer Curso *Prof.Dr. Joaquín Bernal Méndez y Prof.Dra. Ana Mª Marco Ramírez 1 Índice Introducción

Más detalles

EJERCICIOS DE SELECTIVIDAD ONDAS

EJERCICIOS DE SELECTIVIDAD ONDAS EJERCICIOS DE SELECTIVIDAD ONDAS 1. La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (16 t - 10 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud,

Más detalles

Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín

Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA FÍSICA DE OSCILACIONES ONDAS Y ÓPTICA MÓDULO # 3: OSCILACIONES MECÁNICAS ENERGÍA- Dieg Luis Aristizábal R., Rbert Restrep

Más detalles

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa?

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? Unidad II Ondas Unidad II - Ondas 2 Ondas Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? o Cómo es posible que nos comuniquemos por celular? o Cómo

Más detalles

AB se representa por. CD y

AB se representa por. CD y 1.- VECTORES. OPERACIONES Vector fijo Un ector fijo AB es n segmento orientado con origen en el pnto A y extremo en B Todo ector fijo AB tiene tres elementos: Módlo: Es la longitd del segmento AB. El módlo

Más detalles

DÍA 1. c) Razone cómo cambiarían la amplitud y la frecuencia de un MAS si: i) aumentara la energía mecánica, ii) Disminuyera la masa oscilante.

DÍA 1. c) Razone cómo cambiarían la amplitud y la frecuencia de un MAS si: i) aumentara la energía mecánica, ii) Disminuyera la masa oscilante. DÍA 1 Problema 1: Una partícula de 0,2 Kg describe un movimiento armónico simple a lo largo del eje OX, de frecuencia 20 Hz. En el instante inicial la partícula pasa por el origen, moviéndose hacia la

Más detalles

MOVIMIENTO ONDULATORIO.

MOVIMIENTO ONDULATORIO. Síntesis Física º Bach. Ondas. O - MOVIMIENTO ONDULTORIO. Ondas. Una onda es una perturbación que se propaga entre dos puntos sin transporte de materia, pero sí de energía y momento. Supongamos que dicha

Más detalles

Unidad 3 - Modos Normales de una barra y Análisis de Fourier Conceptos:

Unidad 3 - Modos Normales de una barra y Análisis de Fourier Conceptos: Unidad 3 - Modos Normales de una barra y Análisis de Fourier Conceptos: 1. Tensión y deformación 2. Movimiento ondulatorio simple 3. Ondas periódicas 4. Ondas estacionarias Tensión y deformación Objeto

Más detalles

Unidad 13: Ondas armónicas

Unidad 13: Ondas armónicas Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 13: Ondas armónicas Universidad Politécnica de Madrid 22 de marzo de 2010 2 13.1. Planificación

Más detalles

BACHILLERATO FÍSICA 6. MOVIMIENTO ONDULATORIO. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA 6. MOVIMIENTO ONDULATORIO. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA 6. MOVIMIENTO ONDULATORIO R. Artacho Dpto. de Física y Química 6. MOVIMIENTOS ONDULATORIO Índice CONTENIDOS 1. Concepto de onda 2. Propagación de ondas mecánicas 3. Ondas armónicas

Más detalles

β = 0,0012 m. A) Usando la figura 2, determine el umbral de audición para la frecuencia del

β = 0,0012 m. A) Usando la figura 2, determine el umbral de audición para la frecuencia del Dos pastores de La Gomera ntrodcción Silbar es na forma de transmitir información a grandes distancias en espacios abiertos. Los lgares donde se tilizan estos lengajes silbados tienen nas características

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3 INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía

Más detalles

Movimiento ondulatorio

Movimiento ondulatorio Movimiento ondulatorio Física I Grado en Ingeniería de Organización Industrial Primer Curso Joaquín Bernal Méndez/Ana Mª Marco Ramírez Curso 013/014 Dpto.Física Aplicada III Universidad de Sevilla Índice

Más detalles

PROBLEMAS. Una onda transversal se propaga por una cuerda según la ecuación:

PROBLEMAS. Una onda transversal se propaga por una cuerda según la ecuación: PROBLEMAS Ejercicio 1 Una onda armónica que viaje en el sentido positivo del eje OX tiene una amplitud de 8,0 cm, una longitud de onda de 20 cm y una frecuencia de 8,0 Hz. El desplazamiento transversal

Más detalles

RESUMEN DE FÍSICA - 2º BACH.

RESUMEN DE FÍSICA - 2º BACH. pg. 1 de 6 RESUMEN DE FÍSIC - 2º BCH. PRTE I Emiliano G. Flores egonzalezflores@educa.madrid.org Este documento contiene un resumen de los conceptos y expresiones matemáticas más significativas de la materia

Más detalles

Ondas Electromagnéticas

Ondas Electromagnéticas Física IV Ondas Electromagnéticas http://mjfisica.net Versión 8.2015 Contenido Concepto de onda Elementos de una onda Ecuaciones de Maxwell Ondas electromagnéticas Ecuación de ondas electromagnéticas senoidales

Más detalles

Los datos del sistema están dados en valores por unidad sobre las mismas bases.

Los datos del sistema están dados en valores por unidad sobre las mismas bases. Ejemplo. Malio Rodrígez. Ejemplo, Malio Rodrígez En el sigiente sistema de potencia ocrre n cortocircito trifásico sólido en el pnto, el cal esta bicado exactamente en la mita de la línea -. Los interrptores

Más detalles

Operación Matriciales y Matrices en Sistemas de Potencia

Operación Matriciales y Matrices en Sistemas de Potencia Anexo.. Problema Reselto Considere la red mostrada en la Figra., y los sigientes datos. 4 5 6 7 8 Fig... Tabla... Datos del Sistema Línea X L -. -.5 -.84 -.5 -. -4.84-5.7-6.6 6-7.68 4-7.84 5-8.7 7-8.4

Más detalles

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: DENOMINADORES CON FACTORES LINEALES CUADRÁTICOS

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: DENOMINADORES CON FACTORES LINEALES CUADRÁTICOS UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: DENOMINADORES CON FACTORES LINEALES CUADRÁTICOS DENOMINADORES CON FACTORES LINEALES CUADRÁTICOS Cando al smar dos fracciones algebraicas

Más detalles

TEMA 5- MOVIMIENTOS ONDULATORIOS

TEMA 5- MOVIMIENTOS ONDULATORIOS TEMA 5- MOVIMIENTOS ONDULATORIOS 5.1.- Movimiento ondulatorio: ONDAS. Un movimiento ondulatorio es una forma de transmisión de energía y movimiento por el medio, sin transporte neto de materia. Ø Perturbación

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

Fundamentos de acústica

Fundamentos de acústica Tema 1 Fundamentos de acústica 1.1 Introducción Definición del sonido El sonido es una vibración mecánica que se transmite a través de un medio elástico, capaz de producir una sensación auditiva debido

Más detalles

Una onda estacionaria es el resultado de la superposición de dos movimientos ondulatorios armónicos de igual amplitud y frecuencia que se propagan en

Una onda estacionaria es el resultado de la superposición de dos movimientos ondulatorios armónicos de igual amplitud y frecuencia que se propagan en 1 Una onda estacionaria es el resultado de la superposición de dos movimientos ondulatorios armónicos de igual amplitud y frecuencia que se propagan en sentidos opuestos a través de un medio. Pero la onda

Más detalles

IDENTIFICAR LOS ELEMENTOS DE UN VECTOR

IDENTIFICAR LOS ELEMENTOS DE UN VECTOR 8 REPSO POO OJETIVO IDENTIFICR LOS ELEMENTOS DE UN VECTOR Nombre: Crso: Fecha: Vector: segmento orientado determinado por dos pntos: (a, a ), origen del ector, y (b, b ), extremo del ector. Coordenadas

Más detalles

Física Ondas 10/11/06

Física Ondas 10/11/06 Física Ondas 10/11/06 I.E.S. Elviña DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre Problemas [5 Ptos.] 1. Para el proyectil de la figura, calcula: (a) El vector velocidad con que se incrusta en el suelo. [1]

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO ELVER ANTONIO RIVAS CÓRDOBA MOVIMIENTO ONDULATORIO El movimiento ondulatorio se manifiesta cuando la energía que se propaga en un medio elástico produce movimientos que lo cambian. Para describir una onda

Más detalles

Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín

Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA FÍSICA DE OSCILACIONES ONDAS Y ÓPTICA MÓDULO # 7: ONDAS MECÁNICAS CINEMÁTICA DE ONDAS VIAJERAS- Diego Luis Aristizábal

Más detalles

ESTADO DE TENSIONES Y DE DEFORMACIONES

ESTADO DE TENSIONES Y DE DEFORMACIONES ENSAYOS NDUSTRALES Dpto. ngeniería Mecánica y Naval acltad de ngeniería Universidad de Benos Aires ESTADO DE TENSONES Y DE DEORMACONES Lis A. de Vedia Hernán Svoboda Benos Aires 00 - Ensayos ndstriales

Más detalles

Regla de la cadena. Regla de la cadena y. son diferenciables, entonces: w w u w v y u y v y. y g. donde F, w w u w v x u x v x

Regla de la cadena. Regla de la cadena y. son diferenciables, entonces: w w u w v y u y v y. y g. donde F, w w u w v x u x v x Regla de la cadena Una de las reglas qe en el cálclo de na variable reslta my útil es la regla de la cadena. Dicho grosso modo, esta regla sirve para derivar na composición de fnciones, esto es, na fnción

Más detalles

INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES

INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES UNIDAD 9 INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES.- Calclar las sigientes integrales definidas: a) d b) d c) e e ln(ln ) d d) e + d e) sen cos d f ) ( )cos d e + +.- Sean a = sen d y b = los valores de a y

Más detalles

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo.

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo. 1. CONSIDERACIONES GENERALES La mayor parte de información del mundo que nos rodea la percibimos a través de los sentidos de la vista y del oído. Ambos son estimulados por medio de ondas de diferentes

Más detalles

BLOQUE 4: GEOMETRÍA. Vectores. La recta en el plano

BLOQUE 4: GEOMETRÍA. Vectores. La recta en el plano BLOQUE 4: GEOMETRÍA Vectores La recta en el plano 63 VECTORES Hay magnitdes qe no qedan bien definidas mediante n número; necesitamos conocer además s dirección y s sentido. A estas magnitdes se les llama

Más detalles

FÍSICA GENERAL Fac. Cs. Exactas - UNCPBA

FÍSICA GENERAL Fac. Cs. Exactas - UNCPBA FÍSICA GENERAL Fac. Cs. Exactas - UNCPBA Cursada 218 Cátedra Teoría/Práctica (Comisión 1): Dr. Fernando Lanzini Dr. Matías Quiroga Teoría/Práctica (Comisión 2): Dr. Sebastián Tognana Prof. Olga Garbellini

Más detalles

ONDAS. Los fenómenos ondulatorios aparecen en todas las ramas de la Física.

ONDAS. Los fenómenos ondulatorios aparecen en todas las ramas de la Física. ONDAS Los fenómenos ondulatorios aparecen en todas las ramas de la Física. El movimiento ondulatorio se origina cuando una perturbación se propaga en el espacio. No hay transporte de materia pero si de

Más detalles

3) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro.

3) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro. Movimiento ondulatorio Cuestiones 1) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda, se propaga por una

Más detalles

TEMA: MOVIMIENTO ARMÓNICO SIMPLE

TEMA: MOVIMIENTO ARMÓNICO SIMPLE TEMA: MOVIMIENTO ARMÓNICO SIMPLE C-J-04 a) Al colgar una masa en el extremo de un muelle en posición vertical, éste se desplaza 5 cm; de qué magnitudes del sistema depende la relación entre dicho desplazamiento

Más detalles

Fundamentos de Oscilaciones, ondas y óptica

Fundamentos de Oscilaciones, ondas y óptica Fundamentos de Oscilaciones, ondas y óptica Ondas mecánicas en diferentes medios Felipe Valencia Hernandez fvalenciah@unal.edu.co Departamento de física, Universidad Nacional de Colombia http://sites.google.com/a/unal.edu.co/curso1000020

Más detalles

Utilizando una identidad trigonométrica, se llega a:

Utilizando una identidad trigonométrica, se llega a: Ondas Estacionarias Cuando dos ondas de la misma frecuencia y de la misma amplitud viajan en direcciones opuestas se combinan obedeciendo al principio de superposición produciendo un fenómeno de interferencia.

Más detalles

F2 Bach. Movimiento ondulatorio

F2 Bach. Movimiento ondulatorio 1. Introducción. Noción de onda. Tipos de ondas 2. Magnitudes características de una onda 3. Ecuación de las ondas armónicas unidimensionales 4. Propiedad importante de la ecuación de ondas armónica 5.

Más detalles

ONDAS. José Luis Rodríguez Blanco

ONDAS. José Luis Rodríguez Blanco ONDAS José Luis Rodríguez Blanco MOVIMIENTO ONDULATORIO Propagación de una perturbación con transferencia de energía y momento lineal, pero sin transporte de materia Los puntos alcanzados por la perturbación

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N?

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N? FÍSICA 2º DE BACHILLERATO PROBLEMAS DE ONDAS 1.- De las funciones que se presentan a continuación (en las que todas las magnitudes están expresadas en el S.I.), sólo dos pueden representar ecuaciones de

Más detalles

Ondas resumen de la clase anterior. Características de las ondas

Ondas resumen de la clase anterior. Características de las ondas resumen de la clase anterior Características de las ondas Algunas características de una onda: La posición más alta con respecto a la posición de equilibrio se llama Cresta. La posición más baja con respecto

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecaciones Diferenciales de Primer Orden Definición Clasificación de las Ecaciones Diferenciales Una ecación diferencial es aqélla qe contiene las derivadas o diferenciales de na o más variables

Más detalles

Física II, Ondas Ondas en Medios Elásticos

Física II, Ondas Ondas en Medios Elásticos Física II, Ondas Ondas en Medios Elásticos Profesor: Pedro Labraña Departamento de Física, Universidad del Bío-Bío Carrera: Ingeniería Civil en Informática Créditos: 5 Ondas en Medios Elásticos Introducción,

Más detalles

MOVIMIENTO OSCILATORIO O VIBRATORIO

MOVIMIENTO OSCILATORIO O VIBRATORIO MOVIMIENTO OSCILATORIO O VIBRATORIO 1. Movimiento armónico simple (MAS). 2. Ecuaciones del MAS. 3. Dinámica del MAS. 4. Energía del MAS. 5. El oscilador armónico. 6. El péndulo simple. Física 2º bachillerato

Más detalles

Primer examen parcial del curso Física III, M

Primer examen parcial del curso Física III, M Primer examen parcial del curso Física III, 106020M Prof. Beatriz Londoño 15 de Octubre de 2013 Tenga en cuenta: Escriba en todas las hojas adicionales su nombre El uso de celulares y tabletas no está

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro.

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro. Movimiento ondulatorio Cuestiones (96-E) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda, se propaga por

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: FENÓMENOS ONDULATORIOS GUÍA: 1201 ESTUDIANTE: E-MAIL: FECHA: MOVIMIENTO ARMÓNICO SIMPLE En las preguntas 1 a 10, el enunciado es una afirmación seguida de la palabra

Más detalles

Tema 6: Movimiento vibratorio.

Tema 6: Movimiento vibratorio. Física. 2º Bachillerato. Tema 6: Movimiento vibratorio. 6.1. Introducción. Cinemática de MAS. Un cuerpo describe un movimiento periódico cuando su posición, velocidad y aceleración se repiten al cabo de

Más detalles

1. En una cuerda tensa 16 m de longitud, con sus extremos fijos, se ha generado una onda de ecuación: π

1. En una cuerda tensa 16 m de longitud, con sus extremos fijos, se ha generado una onda de ecuación: π Selectividad 2009.- 1. La ecuación de una onda que se propaga por una cuerda tensa es y( x, t) = 0,003 sen(2t 3 x) (S.I.) a) Explique de qué tipo de onda se trata, en que sentido se propaga y calcule el

Más detalles

Clase Nº 2 PSU Ciencias: Física. Ondas I - Conceptos. Profesor: Cristian Orcaistegui.

Clase Nº 2 PSU Ciencias: Física. Ondas I - Conceptos. Profesor: Cristian Orcaistegui. Clase Nº 2 PSU Ciencias: Física Ondas I - Conceptos Profesor: Cristian Orcaistegui c.orcaisteguiv@gmail.com Ondas 1. Oscilaciones Se dice que una partícula o cuerpo está oscilando cuando efectúa un movimiento

Más detalles

VIBRACIONES Y ONDAS 1. 2.

VIBRACIONES Y ONDAS 1. 2. VIBRACIONES Y ONDAS 1. 2. 3. 4. Un objeto se encuentra sometido a un movimiento armónico simple en torno a un punto P. La magnitud del desplazamiento desde P es x. Cuál de las siguientes respuestas es

Más detalles

LÍMITES, CONTINUIDAD Y DERIVADAS

LÍMITES, CONTINUIDAD Y DERIVADAS LÍMITES, CONTINUIDAD Y DERIVADAS ÍNDICE. Concepto de límite. Propiedades de los límites 3. Definición de continidad 4. Tipos de continidad 5. Concepto de derivada 6. Tabla de derivadas 7. Crecimiento y

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Estudio del movimiento armónico simple. Desde el punto de vista dinámico, es el movimiento de una partícula que se mueve sobre una recta, sometida a la acción de una fuerza atractiva

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

Capítulo II. Propiedades mecánicas.

Capítulo II. Propiedades mecánicas. Capítlo II Propiedades mecánicas. 1 Cra esferzo - deformación ingenieril El Ensayo de tracción se realiza bajo la norma STM E-8, o bien la norma chilena NCH 2, entre otras. S importancia radica en qe es

Más detalles

VECTORES EN EL PLANO. el punto B el extremo. Mientras no preste confusión el vector v podemos expresarlo simplemente por v.

VECTORES EN EL PLANO. el punto B el extremo. Mientras no preste confusión el vector v podemos expresarlo simplemente por v. COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA Asignatra: FÍSICA 10º Profesor: Lic. EDUARDO DUARTE SUESCÚN TALLER DE VECTORES VECTORES EN EL PLANO Vector fijo. Es n segmento orientado. Lo representamos por

Más detalles

BACHILLERATO FÍSICA C. MOVIMIENTOS OSCILATORIOS. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA C. MOVIMIENTOS OSCILATORIOS. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA C. MOVIMIENTOS OSCILATORIOS R. Artacho Dpto. de Física y Química ÍNDICE 1. Oscilaciones o vibraciones armónicas 2. El movimiento armónico simple 3. Consideraciones dinámicas del MAS

Más detalles

INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO ONCE MATERIAL DE APOYO MOVIMIENTO ONDULATORIO

INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO ONCE MATERIAL DE APOYO MOVIMIENTO ONDULATORIO 1 INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO ONCE MATERIAL DE APOYO MOVIMIENTO ONDULATORIO CONSIDERACIONES GENERALES La mayor parte de información del mundo que nos rodea la percibimos a través

Más detalles

Mecánica I Tema 5. Manuel Ruiz Delgado. 1 de diciembre de 2010

Mecánica I Tema 5. Manuel Ruiz Delgado. 1 de diciembre de 2010 Mecánica I Tema 5 Dinámica del sólido rígido Manel Ri Delgado 1 de diciembre de 010 eometría de masas Centro de masas de gravedad............................................... 4 Tensor de inercia.........................................................

Más detalles

Un movimiento ondulatorio, una onda, es la propagación de una perturbación, sin transporte

Un movimiento ondulatorio, una onda, es la propagación de una perturbación, sin transporte Movimiento Ondulatorio 1 Movimiento Ondulatorio Un movimiento ondulatorio, una onda, es la propagación de una perturbación, sin transporte neto de materia, pero con transporte de energía. 2 Clases de Ondas

Más detalles

dy v 4 cos 100 t 20 x v 4 ms a 400 sen 100 t 20 x a 400 T 0,686 s f 1,46 s k 2,617 m 2 f 9,173rad s v

dy v 4 cos 100 t 20 x v 4 ms a 400 sen 100 t 20 x a 400 T 0,686 s f 1,46 s k 2,617 m 2 f 9,173rad s v 01. Una onda transversal se propaga a lo largo de una cuerda horizontal, en el sentido negativo del eje de abscisas, siendo 10 cm la distancia mínima entre dos puntos que oscilan en fase. Sabiendo que

Más detalles